Learning to predict gender from iris images
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Abstract— This paper employs machine learning techniques
to develop models that predict gender based on the iris texture
features. While there is a large body of research that explores
biometrics as a means of verifying identity, there has been very
little work done to determine if biometric measures can be used
to determine specific human attributes. If it is possible to discover
such attributes, they would be useful in situations where a
biometric system fails to identify an individual that has not been
enrolled, yet still needs to be identified. The iris was selected
as the biometric to analyze for two major reasons: (1) quality
methods have already been developed to segment and encode
an iris image, (2) current iris encoding methods are conducive
to selecting and extracting attributes from an iris texture and
creating a meaningful feature vector.

Index Terms— gender classification, iris, biometric

I. INTRODUCTION

Traditionally, every subject that would need to be iden-
tified in a biometric system must be enrolled. This means
that the subject’s biometric data is gathered and stored in
the system. Whenever a user attempts to be identified by
the system, it matches the user’s biometric data with all of
the enrolled data and will identify the user if a successful
match is made. However, this method does not account for
subjects who are not enrolled in the system. Supposing a
system attempts to identify a subject that is not enrolled,
the only information the system can provide is that there is
no matching enrolled subject. However, a system capable of
analyzing biometric data could provide enough information
about an unknown subject that alternative identity methods
could be pursued. It can also enable impostor identification,
that is disguised genders.

The focus of this paper is to predict gender based on iris
image data. Unlike properties such as ethnicity, the distribu-
tion of gender does not vary based on external constraints.
Thus, we can be assured that any gender-related patterns
discovered in the iris will not be subject to the various biases
that may afflict other properties. Moreover, gender allows
us to eliminate various biases of ethnicities, procurement
environment, etc. We can run a controlled group within
each ethnicity, demographic, and procurement environment
to weed out the variations in gender predictions and presence
of biases, if any. To the best of our knowledge, we are not
aware of any other study that attempts to predict gender from
irises.

The paper is organized as follows. In section 2 we discuss
the related work. In section 3 we present the procedure of
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extracting feature vector from an iris image. In section 3, we
discuss the machine learning algorithm used for training the
model from the derived feature vector. Section 4 presents our
core results and observations. We conclude with Section 5.

II. RELATED WORK

Currently, few studies of this nature have been made,
but none, to the best of our knowledge, have used the
properties of an iris image to predict gender. Qiu, Sun, and
Tan developed a model to predict ethnicity using iris data
( [1]) using the AdaBoost algorithm ( [2]) and achieved an
accuracy of 85.95%. Their model attempts to predict if a
subject is either Asian or non-Asian. While the accuracy is
quite high, one concern that must be addressed is potential
bias associated with the iris databases they use for each
class. All of the Asian images come from the CASIA dataset,
while non-Asian images come from the UPOL and UBIRIS
datasets. Naturally, this forms a very strong sample selection
bias in the paper given different databases of ethnicities. In
this paper, it is never addressed whether there is any concern
over the prediction models learning on subtle differences
in the iris databases. However, simply looking at sample
images from each dataset suggests that there may be potential
for bias since images from one dataset appear significantly
darker than images from the others.

Fig. 1.

LG EOU 2200 Station.



Some biometric work has been done on gender clas-
sification, but all existing work involves the analysis of
face image data. Moghaddam and Yang [3] used Support
Vector Machines to achieve an accuracy of 96.6% using
low resolution “thumbnails” of face images. Gutta et al. [4]
employ an ensemble of RBF networks and inductive decision
trees to obtain an accuracy of 96%. Sun et al. also use face
images for gender identification [5]. Jain et al [6] approach
gender classification from the frontal facial images using a
combination of ICA and Support Vector Machines.

III. DATA AND FEATURE CREATION

In this section we discuss the core step and contribution
of our work: derivation of a feature vector from iris images
to predict gender. We believe the most critical component of
a learning task is providing a cogent representation of data.

A. Data Acquisition

We used Iridian LG EOU200 system [7] to acquire all our
data. The system has one infra-red LED on the top, one at the
bottom left, and one at the bottom right. Figure 1 shows the
Iridian data acquisition station. The subjects’ images were
acquired on a weekly basis, with no subject repeating during
a week. The distance between the eyes and the system was
around 6 inches. Once a subject is appropriately positioned,
the images are acquired in three stages with each of the LED
lights getting activated one after the other. The resulting iris
images carry a resolution of 640 x 480 with the intensity
value scaled to use an 8-bit range. We ran a rigorous quality
check to discard images with poor quality such as motion
blur or out-of-focus. Note that both left and right images
were acquired during each session.

B. Segmentation and Encoding

We used the “ND_IRIS” software [9] to perform seg-
mentation on the iris images. ND_IRIS deploys canny edge
detector [10] circular Hough transformation to perform the
segmentation. First, the limbic boundary is detected and then
the pupillary boundary. We refer the reader to Xiaomei Liu’s
dissertation [9] for complete details on the ND_Iris software.
Figure 2 shows an acquired iris image before and after
segmentation.

The segmentation procedure is followed by texture encod-
ing. The original image is first translated from the cartesian
(z,y) image coordinates to polar coordinates (r,6) using
Daugman’s rubber sheet model [11]. This results in an
unwrapped image of size 20(r) x 240(6). Figure 3 shows
an example. Each row represents a “ring” through the iris.
The first row is closest to the iris and the last row is closest
to the sclera. Once the images are unwrapped in this fashion,
fast fourier transform (FFT) is applied to each row (treated
as a signal). If = is a row of the image, then the FFT results
in a vector Y.
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The resulting vector Y is passed through a 1-D Gabor
Filter (F'), resulting in Zj. Finally, the inverse FFT is applied
to get a new convolved image as shown in vector I.
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The gabor filter out comprises of both the real and imagi-
nary components. Since the phase angle is now quantized
into two bits, we arrive at a template of size 20 x 480.
Figure 3 shows a normalized and unwrapped image.

C. Feature extraction

As each iris image is processed, features of the iris are
extracted during various phases of the processing. During
iris segmentation, variables the radius and center of both the
iris and pupil are available and are stored as “geometric”
features. In the iris encoding phase, the iris image is repre-
sented as an array of complex numbers with 20 rows and 480
columns. We extract the real components at this stage, which
will be called as the “texture” features. We considered the
imaginary components as well, but our initial investigation
implied no immediate advantage to adding the imaginary
component so we just persisted with the real components.
Both the geometric and texture features are then used for
deriving additional features, as will be discussed below.

D. Geometric Features

In this context, geometric features refer to those that
pertain to dimensions of the iris. These features are acquired
during the segmentation phase of iris image processing and
thus contain no information about the actual texture. The
measurements for all of these features are in pixels (or, in the
case of area-related features, pixels squared). The geometric
features are:

o distX: The scalar distance between the X-coordinates
of the center of the iris and the center of the pupil.

« distY: The scalar distance between the Y-coordinates of
the center of the iris and the center of the pupil.

o distCenter: The scalar distance between the center of
the iris and the center of the pupil. Calculated using
disX and disY.

o irisArea: The total area of the iris and the pupil.
Calculated using the iris radius.

o pupilArea: The area of the pupil. Calculated using the
pupil radius.

o diffArea: The difference between irisArea and pupi-
1Area. This gives the true “area” of the iris alone.

« areaRatio: The ratio of irisArea to pupilArea.

E. Texture Features

Texture features are those that were extracted from the iris
image during the encoding phase of the image processing.
At one point in the encoding process, the iris is represented
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Fig. 2.

Fig. 3. Unwrapped Iris.

by an array of complex numbers consisting of 20 rows and
240 columns (since we are only using the real component,
there are 240 possible values for each row). The rows of
the array correspond to concentric rings in the iris. Each
column corresponds to a different angle from the center of
the iris. Thus, traversing through a row would be analagous to
tracing a circle around the iris that is concentric in relation
to the pupil and iris boundaries and lies between the two.
Traversing down a column is analagous to maintaining a
fixed angle from the center of the pupil and travelling from
the pupil-iris boundary outwards to the outer edge of the iris.
All of the texture features involve operations on this encoded
array:
o rowXRealMean: The mean value of the real compo-
nents of the complex numbers in row X.
o rowXRealStd: The standard deviation of the real com-
ponents of the complex numbers in row X.
o rowXWindowVar: A measure of variation of the real
components of the complex numbers in a row within a
window of size 4. This variance is calculated as follows:

o V(i g) — 1+ T(, )
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where
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e colVar: An overall measure of variation of the real
components of the complex numbers in the entire array.
Instead of a one-dimensional sweep of each row, this
feature considers the variance along each column.

Once the feature vectors were constructed, each was as-

signed a class label of male or female based on the subject’s
gender.

Sample images of a subject in the training data.

IV. MACHINE LEARNING FRAMEWORK

The machine learning framework consisted of feature
selection, decision tree learning and ensemble methods.

A. Feature Selection

Feature selection is a common process in machine learn-
ing, in which a subset of the features available from the data
are selected for application of a learning algorithm, such as
for classification. Feature selection based on information gain
is the most popular method. In this a feature is selected based
on the maximum possible information gain from a partition
based on the feature.

Specifically, there be d features denoted by X =
{X1,X2,..., X4} and c class labels denoted by the set Y.
Let S,, denote the set of n instances (image feature vectors).
In particular, S, = (X(1),¥1), (X2),¥2))s - > (Xn)» Yn))
is the set of n ordered pairs, each consisting of a feature
vector x(;) and a class label y(;. Suppose we wanted to
determine the information gain resulting from partitioning
the examples in S,, at X; = wv;. Let S,f be the subset
of examples such that X; < v; and SZ be the remaining
examples in .S,,. Additionally, let S, , denote the examples
in S, with the class label y. The information entropy in S,

is defined as
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The information gain by partitioning at X; = v; is defined
as the decrease in entropy due to the partitioning, i.e.,
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B. Classifier Learning

We used the C4.5 decision tree algorithm [12] as the core
learning technique. Our initial experiments included SVM
and neural networks, but they resulted in no obvious gain
over just using a simple and fast decision tree technique.
So for clarity of experiments and expression in the paper,



we restricted to the usage of C4.5 decision tree. Moreover,
we wanted to use an unstable classifier to get gains from
ensemble methods.

Using C4.5 as the base classifier, we learned ensembles us-
ing bagging [13] and random subspaces [14], [15] to further
improve the accuracy of prediction. Bagging involves making
many “bootstrap” aggregates of a training set. A bootstrap
replicate is typically of the same size as the original dataset.
The random subspace method constructs an ensemble of
classifiers on independently selected feature subsets, and
combines them using a heuristic such as majority voting, sum
rule, etc. A decision tree is learned on each of the subspaces
or bootstraps generating an ensemble. We learned ensembles
with size up to 100. With random subspaces we tried feature
subsets of sizes 5, 10, 15, and 20.

V. EXPERIMENTS

We performed a comprehensive array of experiments to
evaluate the accuracy of our approach for gender prediction.
We just included the left irises for all the subjects. We
considered the following independent sets.

1) All: This included all the images without any parti-
tioning to eliminate the bias from LED illumination
or ethnicity or subject. This gave us a total of 57,137
images. We maintained the balance of distribution of
males and females.

2) LED: We considered one LED at time to eliminate
the effect of any specular highlight introduced during
acquisition. Each time an iris is enrolled, three images
from slightly different angles are captured simuta-
neously. In order to ensure that the prediction model
is not, for example, learning that two of the three
images are male and, thus, since the third image has
very similar data, must also be male, a subset of the
data is created that includes only one image from
each acquisition. 10-fold CV was employed in this
experiment as well. Each of the three LED sets carried
16,469 images, again balanced. Note that they don’t
exactly sum up to all images, as we had to drop some
images due to imbalance in class distribution between
genders.

3) Ethnicity: We considered different ethnicities such
that each ethnicity was considered separately. Finally,
it must be established that predictions are not being
made on ethnicity. For example, if it turns out that
the majority of the males in the data are asian, it
could be that the prediction model is built on features
that differentiate ethnicity instead of gender. To ensure
this, the data is divided based on ethnicity. White and
asian data account for the majority of instances, thus a
prediction model is built for each of these ethnicities.
We considered the two largest ethnicities in our set —
Caucasian and Asians. The Caucasian set comprised of
36,850 images and the Asian set comprised of 16,385
images.

We used 10-fold cross-validation on each of the sets

to validate the approach. 10-fold CV involves randomly

splitting the instances into ten equally sized partitions. Each
partition is used for testing exactly once, while the other
nine partitions are used to train a classifier. Thus, 10-fold
CV involves ten iterations of training a classifier and testing
the model. The mean of the accuracies from each iteration
represents an overall accuracy of the model.

A. Results

1) All: No Bias Reduction: Figure 4 shows the results
obtained from using the unbiased set. Interestingly, we were
able to approach a performance of 75% in accuracy, which
is significantly better than random. However, we have not
eliminated the effect from any of the biases in the dataset.
Another noteworthy observation that will persist throughout
each experiment is that bagging produces the highest accu-
racy, random subspaces with 5 features selected produces
the lowest accuracy, and as the number of features selected
increases, the accuracy approaches that of bagging.
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Fig. 4. All subjects.

2) LED Bias Reduction: Since, different LED illumina-
tions introduce different images of a subject, potentially
captured on the same day, we wanted to carefully eliminate
the artifact of predicting on the same subject, albeit captured
under the different light. Figure 5 shows the results. The
bagging accuracy for LED bias reduction is very close to
the bagging accuracy for no bias reduction, which seems
to suggest that using all three images from each acquisition
does not substantially improve the results. It is interesting to
note that using random subspaces with relatively few features
out-performs the corresponding experiments with no bias
reduction. This could be due to the fact that the size of the
LED data set is one third of the size of the full set. Thus, it
may have been able to “overfit” the data with a small number
of features.

3) Ethnic Bias Reduction: Figure 6 shows the results from
predicting gender for caucasian ethnicity. Interestingly, there
is a significant jump in the performance for predicting gender
for caucasians. We are able to approach accuracies in the
upwards of 80% with Bagging. It is compelling that there
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Fig. 5. LED Bias.
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Fig. 6. Ethnic Bias Reduction

VI. CONCLUSION

Employing decision tree learning made it possible to de-
velop gender classification models that can reach accuracies
close to 80%. This is a notable result as it has previously been
an unchartered territory. Our ballpark was: can we do better
than guessing at random. We obviously established that by
achieving statistically significantly improved performances.
Moreover, we also showed that by eliminating certain biases
the performance persists.

One logical extension of this work would be to devise
a more complicated feature vector and determine if there
are more features, either global or local, that are useful in
classifying gender. From here, it may be possible to discover
if there are specific singular features that determine gender.
In other words, it may be interesting and useful to search for
features of particularly high quality, while this experiment
relies on a large quantity of features and possibly interactions
between them.

Using similar techniques as those found in this experi-
ment, it may be possible to classify an individual based on
attributes besides gender using iris image data.
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