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Abstract— The paper measures the ability of face recognition
algorithms to distinguish between identical twin siblings. The
experimental dataset consists of images taken of 126 pairs of
identical twins (252 people) collected on the same day and 24
pairs of identical twins (48 people) with images collected one
year apart. Recognition experiments are conducted using three
of the top submissions to the Multiple Biometric Evaluation
(MBE) 2010 Still Face Track [1]. Performance results are
reported for both same day and cross year matching. Per-
formance results are broken out by lighting conditions (studio
and outside); expression (neutral and smiling); gender and age.
Confidence intervals were generated by a bootstrap method. In
terms of both the number of paris of twins and lapsed time
between acquisitions, this is the most extensive investigation of
face recognition performance on twins to date.

I. INTRODUCTION

In the face recognition community, the conventional wis-
dom is that distinguishing between identical twins is one
of the most challenging problems in face recognition. This
paper presents the first detailed study of the ability of
face recognition algorithms to distinguish between identi-
cal twins. The data in this study includes face images of
126 pairs of identical twins (252 people) collected on the
same day and images from 24 pairs of identical twins (48
people) collected one year apart. Recognition performance
is reported for three of the top submissions to the Multiple
Biometric Evaluation (MBE) 2010 Still Face Track [1].

Experiments report the ability of the algorithms to distin-
guish between identical twins under five experimental condi-
tions. These conditions include elapsed time between image
acquisition. Performance is measured for images collected on
the same day and separated by a year. Images were collected
in both a mobile studio environment and in outside ambient
lighting. Images of a subject were collected with both a
neutral and smiling expression. Performance is also broken
out by gender and age. Ninety percent confidence intervals
were generated by a bootstrap method.

The number of experimental conditions allows for a robust
assessment of the ability to distinguish between identical
twins. The recognition results from images taken on the same
day in the studio environment show performance under ideal
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conditions. The one-year time lapse recognition experiments
provide a glimpse of potential performance under operational
conditions.

The authors are only aware of one paper that examines the
ability of face recognition algorithms to recognize identical
twins. Sun et al. [2] conducted a study of biometric iden-
tification of identical twin siblings using the face, iris, and
fingerprint modes as well as a fusion of these modalities. The
data they used was collected in 2007 at the fourth Annual
Festival of Beijing Twins Day. All images were collected
during a single session. The data set used for experimentation
consisted of samples from 134 subjects: 64 pairs of twins
and two sets of triplets. Face recognition experiments were
performed by a Cognitec FaceVACS system. The main result
from the face recognition experiments was that the “identical
twin impostor” distribution (i.e., the set of scores matching
images of identical twin siblings) was “more similar to
the [match] distribution than to the general impostor dis-
tribution.” The main conclusion is that, for the Cognitec
FaceVACS system, there is greater overlap between the
match distribution and the non-match distribution consisting
of identical twin sibling face images than a general impostor
distribution.

II. DATA

Data supporting these experiments were collected at the
Twins Days festival [3] in Twinsburg, Ohio in August 2009
and August 2010. The Twins Days festival is a weekend
event with a typical attendance of between 1500 and 2000
twin sibling pairs along with other multiple-birth sibling
groups and their family members. Twins attending the festi-
val range in age from newborn to elderly. Attendees at the
festival represent a variety of different ethnic groups and
races, and Caucasians are the largest single group. Research
groups are hosted in a designated area on the festival grounds
and research groups who provide advertisement copy to
the festival organizers receive publicity in the Festival’s
printed program. Prior to acceptance by the Festival, the
data acquisition protocol was reviewed and approved by
the Festival organizers. All data was collected under the
approved protocol and subjects completed a consent form
prior to each acquisition. If subjects wished, they were
allowed to participate on both days of the festival.

Our twins data collection involved a half-day of setup
and equipment testing the day before the Festival opened,
followed by two full days of data collection, followed by
equipment tear-down and departure. Data validation and
enrollment consumed several weeks after the completion



of data collection activities. In 2009, our data acquisitions
performed for each subject included

• 2D face still photography with simultaneous HD video
recordings, captured inside the rented tent under studio
lighting, and with ambient outdoor lighting in an area
adjacent to the tent; and

• iris video capture using an LG2200 EOU system at-
tached to a digital video recorder;

In 2010, data acquisitions were conducted jointly by Notre
Dame and West Virginia University, and included the fol-
lowing modes for each subject:

• 2D face still photography with simultaneous HD and
4k x 2k video recordings, captured inside the rented
tent under studio lighting;

• 3D face stills captured from a Minolta 910 range
scanner;

• iris still images captured with an LG4000 iris camera;
and

• fingerprints captured with a CrossMatch sensor.
The 2009 collection yielded 17,486 face stills from 252 twin
subjects (126 pairs), of whom 34 (17 pairs) appeared in each
of the two days of the Festival. Figure 1 shows an example
set of images for a subject who participated in both the 2009
and 2010 collections. In 2010, data collection yielded 6863
face stills from 240 twin subjects (120 pairs), of whom 10 (5
pairs) came both days. There were 48 twins (24 pairs) who
participated in both 2009 and 2010 acquisitions, and two twin
subjects (one pair) participated in both days of both years.
Finally, one set of identical triplets participated in 2010.

III. METHODS AND MATERIALS

A. Algorithms

Performance is reported for three of the top submissions
to the Multiple Biometric Evaluation (MBE) 2010 Still Face
Track [1]. The algorithms were run in verification mode. To
emphasize the potential for algorithms to distinguish between
identical twins, the algorithms are de-identified and labelled
‘A’, ‘B’, and ‘C’.

B. Reporting Performance

The goal of this study is to measure the ability of algo-
rithms to distinguish between identical twins. The primary
performance statistics reflect this goal. A match face pair
consist of two images of the same person. In this paper,
a match face pair consists of two images of a person
who has an identical twin in this study. The performance
statistics false reject rate (FRR) and verification rate (VR) are
computed from the match face pairs. Unless explicitly stated
otherwise, in this paper, a non-match face pair consists of
one image from each person in a pair of identical twins.
From the non-match pairs, false accept rates (FAR) are
computed. When the non-match face pairs are identical
twins the analysis measures the ability of an algorithm to
distinguish between identical twins.

The primary statistic for reporting performance will be
the equal error rate (EER). The EER is the point where

the FRR and the FAR are equal. Distinguishing between
identical twins is similar to a two-alternative force choice
paradigm and is related to the area under the receiver
operating characteristic (ROC) [4],[5]. However, the EER
was selected instead of the area under the ROC statistic
because the EER has a direct relationship to the classical
performance measures verification and false accept rates.

Confidence intervals are generated by a bootstrap method.
The sampling method is based on the subset bootstrap
technique applied to biometrics [6]. The bootstrap samples at
the level of pairs of identical twins. When a pair of identical
twins is sampled, all match scores and non-matches for that
pair of identical twins is selected. If a pair of identical twins
were sampled n times, then n copies of all the pairs match
and non-match scores for that pair of identical twins were
extracted.

IV. EXPERIMENTS

A. Same Day

The first experiment measures the ability to distinguish
between identical twins when their images are collected on
the same day. Because the images were collected on the same
day, they provide an upper bound on performance.

All images in this experiment were collected during Twins
Days 2009. Results are reported for six experimental con-
ditions. In the first condition, all images were collected in
the mobile studio and subjects had a neutral expression.
In Figure 2 this condition is label ‘Studio Neutral.’ This
experimental condition measures performance under the best
possible environment. Figure 2 gives the EERs for all of
the six conditions in the same day experiments. The EERs
are plotted along with a 90% confidence interval. Table I
gives one confidence interval for each of the experimental
conditions in Figure 2.

TABLE I
THIS TABLE PROVIDES ONE CONFIDENCE INTERVAL FOR EACH OF THE

SIX EXPERIMENTAL CONDITIONS IN FIGURE 2. THE CONFIDENCE

INTERVALS ARE AT A 90% LEVEL FOR THE EER. THE CONFIDENCE

INTERVAL PROVIDED IS FOR THE ALGORITHM WITH THE SMALLEST

LOWER ENDPOINT.

Confidence Interval
Experimental condition Lower endpoint Upper endpoint
Studio Neutral 0.01 0.04
Studio Neutral-Smile 0.04 0.07
Studio-Ambient Neutral 0.03 0.07
Studio-Ambient Neutral-Smile 0.05 0.10
Ambient Neutral 0.12 0.21
Ambient Neutral-Smile 0.12 0.16

In the second condition, all images were collected with
ambient outside lighting and subjects had a neutral expres-
sion (labeled ‘Ambient Neutral‘ in Figure 2). This condition
measured the ability to distinguish twins when both images
were collect under ambient lighting on the same day.

In the third condition, all images were collected in the
mobile studio. The algorithms compared two images where
the face in one image had a neutral expression and in the
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Fig. 1. Example images from a pair of identical twins acquired in both 2009 and 2010. Images (a) and (b) were collected in August 2009, and images
(c) and (d) were collected in August 2010. Images (a) and (c) are of the same twin, and images (b) and (d) are of the same twin. All four images were
taken in the mobile studio environment.

second image, the face had a smile (labeled ‘Studio Neutral-
Smile’). In the fourth condition, all images were collected
with ambient outside lighting. The algorithms compared two
images where the face in one image had a neutral expression
and in the second image, the face had a smile (labeled
‘Ambient Neutral-Smile’). These two conditions measure
the impact of a change in expression on performance. The
experiment examined the effect of a change in expression
for both studio and ambient lighting factors.

The next two experimental conditions measure the effect
of changing the image capture environment. In both con-
ditions, the algorithms compare images where one image
was acquired in the studio and the other was acquired under

ambient lighting. In the fifth condition, all faces had a neutral
expression (labeled ’Studio-Ambient Neutral’). In the sixth
condition, one face had a neutral expression and the second
face was smiling (label ’Studio-Ambient Neutral-Smile’).

For all algorithms, at the 90% confidence level, the ‘Studio
Neutral’ condition has the best performance. For Algorithms
B and C, they have the highest EER for ‘Ambient Neutral’
condition. For Algorithm A, there is no statistically signif-
icant difference in the EER for the ‘Ambient Neutral’ and
‘Ambient Neutral-Smiling’ conditions.

In the Studio to Studio comparisons, for all three algo-
rithms, a change in expression yields a statistically significant
change in the EER. Also, in the Studio to Ambient lighting
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Fig. 3. A ROC showing the extremes in performance on the same day.

comparisons, for all three algorithms, a change in expression
yields a statistically significant change in the EER.

For all three algorithms, the EERs are significantly higher
for the Ambient light conditions than either the Studio-to-
Studio or Studio-to-Ambient light conditions.

The same day experiments show that the ‘Studio Neutral’
condition produces the best EERs and the ambient lighting
conditions have the worst EERs.

The last analysis in this section looks at the range of
performance for the same day conditions on a ROC. Figure 3
shows the ROC for the ‘Studio Neutral’ and ‘Ambient
Neutral’ conditions for Algorithm C. The horizontal axis
is the false accept rate where the non-match face pairs are
identical twins. The vertical axis is the verification rate where
the match face pairs are subjects who have an identical twin
in the study. The ‘Studio Neutral’ ROC is an upper bound
on Algorithm A’s performance and the ‘Ambient Neutral’ is
a lower bound for same day performance. This ROC shows
the large range of performance possible for distinguishing
between identical twins.

B. Cross Year

This experiment measures the ability to distinguish be-
tween identical twins from frontal images taken one year
apart. For the cross-year experimental conditions, perfor-
mance was computed from 24 pairs of identical twins (48
subjects) and 126 pairs of identical twins (256 subjects) for
the same-day conditions. Performance is measured under
two conditions. The first is comparing two faces when both
were taken in the mobile studio (labeled ‘Studio-studio in
Figure 4). The second compared two images when one was
taken in the mobile studio and the other was taken under

ambient lighting conditions (labeled ‘Studio-ambient’). In
the control condition for this experiment, both images were
taken on the same day (labeled ‘same day’). Performance
is reported for the same two experimental conditions in the
cross year case. Table II gives one confidence interval for
each of the experimental conditions in Figure 4. The 90%
confidence intervals are longer for the cross-year conditions
because there are fewer subjects in the cross-year condition
than the same-day case.

TABLE II
THIS TABLE PROVIDES ONE CONFIDENCE INTERVAL FOR EACH OF THE

FOUR EXPERIMENTAL CONDITIONS IN FIGURE 4. THE CONFIDENCE

INTERVALS ARE AT A 90% LEVEL FOR THE EER. THE CONFIDENCE

INTERVAL PROVIDED IS FOR THE ALGORITHM WITH THE SMALLEST

LOWER ENDPOINT.

Confidence Interval
Experimental condition Lower endpoint Upper endpoint
Studio-studio same day 0.06 0.08
Studio-ambient same day 0.06 0.10
Studio-studio cross-year 0.12 0.21
Studio-ambient cross-year 0.15 0.27

At the 90% confidence level, there is no significant differ-
ence in performance for the three algorithms in both cross-
year experimental conditions. For Algorithm B, there is a
significant difference in EER between the ‘Studio-ambient’
and ‘Studio-studio’ case for the cross-year condition. For al-
gorithms A and B, there is a significant drop in performance
when going from the same day to cross-year comparisons.
For algorithm C, the difference is not significant between
the ‘Studio-ambient same day’ and ‘Studio-studio cross-year’
conditions. For algorithm C, there was significant differences
in the EERs between the ‘Studio-studio cross-year’ condition
and the two same year conditions.

C. Covariates

The next set of experiments look for effects of gender and
age on performance. For each covariate, the effect of the
covariate is reported for the studio-to-studio and studio-to-
ambient lighting conditions. Performance is only reported for
images collected on the same day in 2009. There were not
enough subjects to measure covariate effects on the cross-
year data.

The effect of gender on EER is reported for males and fe-
males. Performance is reported in Fig 5 with 90% confidence
intervals. With the exception of the result for algorithm A
on ‘Studio-to-ambient’ lighting condition, there was not a
significant effect of gender on performance.

The age is broken into categories. The first is over 40
years old (born before 1969) and the second is 40 years old
or younger (born 1969 or later). Performance is reported in
Fig 6. For the studio-to-studio lighting condition, there is
an age effect with performance better on the over 40 year
old age group. For the studio-to-ambient lighting condition,
there is not an age effect.
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Fig. 2. This barplot summarizes performance when all images for each set of identical twins are collected on the same day. Performance is reported
under six different experimental conditions. The EERs are plotted with error-bars for a 90% confidence interval.
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Fig. 4. This barplot shows the effect on performance with a one-year time lapse between images of identical twins. The EERs are plotted with error-bars
for a 90% confidence interval. Performance is reported for studio-to-studio lighting matching conditions for images taken on the same day and for images
taken a year apart. Performance is reported for similar conditions for studio-to-ambient lighting matching.
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Fig. 5. These two barplots show performance broken out by gender. The top barplot shows performance for the three algorithms for the studio experimental
condition. The bottom barplot shows performance for the three algorithms for studio against the ambient lighting condition. Both barplots show error-bars
for a 90% confidence interval.
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Fig. 6. These two barplots show performance broken out by age. The top barplot shows performance for the three algorithms for the studio experimental
condition. The bottom barplot shows performance for the three algorithms for studio against the ambient lighting conditions. Both barplots show error-bars
for a 90% confidence interval.



The covariate results for identical twins generally agree
with the results for the general population [7]. There is not
a gender effect, and older people are easier to recognize.

D. Relationship to Non-twin Performance
The previous experiments have examined the ability of

algorithms to distinguish between identical twins. In standard
analysis, performance is measured on an algorithm’s ability
to distinguish between people who are not twins. In this
experiment we examine the relationship between the similar-
ity score threshold required to distinguish between identical
twins and standard non-match face pairs.

To compare identical twin and standard non-match face
pairs, similarity scores were computed from a set of stan-
dard non-match pairs. For the studio lighting and neutral
expression conditions, the set of standard non-match face
pairs consisted of all non-match pairs that are not twins.
The EER for the ROC with the identical twin match pairs of
faces and the standard non-match face pairs is 0.00. Back-
to-back histograms of the all similarity scores distributions
are plotted in Figure 7.

A similar analysis was performed for ambient-to-ambient
lighting and neutral-to-neutral conditions. In this case, the
EER when using standard non-match face pairs is 0.005.
Back-to-back histograms of the three corresponding similar-
ity score distributions are plotted in Figure 8.

The histograms in Figures 7 and 8 show significant overlap
between the match and non-match distributions for identical
twins. By contrast, there is minimal overlap between the
match and non-match distributions for the standard non-
match cases. This shows that increasing the sensitivity of a
system to detect identical twins would result in a substantial
increase in the false reject rate.

V. CONCLUSION

This paper presents the first detailed looked at the ability
to distinguish between identical twins. Experimental results
measured the performance when faces were collected on
the same day and a year apart. The results also measured
the effect of changes in expression and lighting. Also,
an experiment examined the effect of gender and age on
performance.

There was a significant range of performance. The best
performance was observed when all images of a pair of
identical twins were taken on the same day in the studio
environment and the twins had a neutral expression. For this
case, the best performing algorithm had a 90% confidence
interval for the EER from 0.01 to 0.04. The corresponding
confidence interval for the same day with ambient light
and neutral expression was 0.12 to 0.21. For cross-year
recognition, the best 90% confidence interval for the EER
was from 0.15 to 0.27. Performance also showed that gender
does not effect performance and that there is an age effect.
The results showed that it is easier to distinguish twins over
40 year old than twins under 40.

Our results show that there is promise for distinguishing
identical twins under ideal conditions (same day, studio light-
ing and neutral expression). However, under less than ideal

conditions, the problem is very challenging. New research
ideas are needed to help improve performance on recognition
of identical twins in realistic imaging contexts.
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Fig. 7. Back-to-back histograms of the similarity score distributions for Algorithm C for the Studio-to-studio lighting and Neutral-to-neutral expression
experiment. All three distributions are for face pairs collected on the same day. The distribution for match face pairs is plotted in red in the histogram
on the left (labeled ‘matchIdenticalTwins’ in this Figure). The distribution for non-match pairs for identical twins is plotted in blue in both histograms
(labeled ‘nonMatchIdenticalTwins’). The distribution for non-match pairs for non-identical twins (standard non-match face pairs) is plotted in green in the
histograms on the left (labeled ‘nonMatchNonTwins’).
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Fig. 8. Back-to-back histograms of the similarity score distributions for Algorithm C for the Ambient-to-ambient lighting and Neutral-to-neutral expression
experiment. All three distributions are for face pairs collected on the same day. The distribution for match face pairs is plotted in red in the histogram
on the left (labeled ‘matchIdenticalTwins’ in this Figure). The distribution for non-match pairs for identical twins is plotted in blue in both histograms
(labeled ‘nonMatchIdenticalTwins’). The distribution for non-match pairs for non-identical twins (standard non-match face pairs) is plotted in green in the
histograms on the left (labeled ‘nonMatchNonTwins’).


