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Abstract. Extraction of normalized face from input images is an essential pre-
processing step of many face recognition algorithms. Typical face extraction al-
gorithms make use of the locations of facial features, such as the center of eyes,
that are marked either manually or automatically. It is not guaranteed, however,
that we always obtain the exact or optimal locations of the eye centers, and using
inaccurate landmark locations, and consequently poorly registered faces, is one
of the main causes of performance degradation in appearance-based face recog-
nition. Moreover, in some applications, it is hard to verify the correctness of the
face extraction for every query image. For improved performance and robust-
ness to the eye location variation, we propose an eye perturbation approach that
generates multiple face extractions from a query image by using the perturbed
eye locations centered at the initial eye locations. The extracted faces are then
matched against the enrolled gallery set to produce individual similarity scores.
Final decisions can be made by using various committee methods – nearest neigh-
bor, maximum vote, etc.– of combining the results of individual classifiers. We
conclude that the proposed eye perturbation approach with nearest neighbor clas-
sification improves recognition performance and makes existing face recognition
algorithms robust to eye localization errors.

1 Introduction

Many face recognition methodologies require, as an essential preprocessing step, the
extraction of a normalized face region from the input image. In many appearance-based
face recognition approaches, the face extraction is performed based on the locations
of facial landmarks, such as eyes, nose, or mouth [1]. Once the coordinates of these
landmarks are given, extraction of the face can be done through the processes of image
scaling, rotation, intensity normalization, and aligning to a predetermined template, etc.
that minimizes the variations unrelated to the identity.

The most prominent facial landmarks in 2D face images are the eyes [2], whereas it
is the nose in 3D (depth) face images [3]. The locations of eye centers can be obtained
either manually or automatically by using eye detection algorithms [4]. Often, however,
the detected eye locations are unreliable; they are inaccurate and inconsistent across eye
detectors. This causes sub-optimal face extraction, and consequently degrades recogni-
tion performance even with a good algorithm and images of well-posed faces [5]. In
this paper we first investigates the effect of the accuracy of eye locations.

Minimizing the errors at the stage of localization is desired for this problem, but has
a limit. An alternative solution is to take the existence of localization errors for granted,

T. Kanade, A. Jain, and N.K. Ratha (Eds.): AVBPA 2005, LNCS 3546, pp. 41–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



42 Jaesik Min, Kevin W. Bowyer, and Patrick J. Flynn

and to design a recognition algorithm that is robust to the localization variation. In this
paper we propose to produce multiple eye locations perturbed from the initial locations
of both eyes and then use the extracted faces from these eye locations. We tested two
representative face recognition algorithms, PCA and FaceIt, on a large number of face
extractions that are generated from various sampling of eye locations. Then we com-
pared the results of eye perturbation to the baseline.

The remaining sections of this paper are organized as follows. In Section 2, a num-
ber of related works are investigated. Sections 3 to 5 describe how we designed the
experiments on eye perturbation and committee and discusses the effect of these factors
on the performance. Section 6 shows compared results of the experiments. Section 7
summarizes our work and introduces topics to be addressed in future work.

2 Previous Works

The importance of eye localization as a preprocessing module in a face recognition
system has been addressed by many researchers. Marques et al. [6] investigated the
effect of eye position on a PCA-based face recognition algorithm. They used a total
of 8 images and showed the sensitivity of the algorithm to the eye location deviations
along various directions. As mentioned in their work, even the eye positions that are
manually selected – or at least inspected – by human operators are unreliable and tend
to deviate from a definition of the geometric eye center.

The role of eye locations in achieving high performance in face recognition systems
received special focus in the paper by Riopka et al. [2]. They evaluated the effect of eye
location accuracy through experiments of 3 different face recognition algorithms, that
is, Principal Component Analysis (PCA), Elastic Bunch Graph Matching (EBGM), and
FaceIt, on 1024 images from FERET database [7] by generating 17×17=289 perturba-
tions of eye locations from the original locations and compared the recognition results.
They first used ideal image data – that is, used the same image set for both gallery and
probe sets – to measure the pure effect of eye perturbation. Then they applied the same
perturbation to more realistic images. They report that using real image data did not
degrade the performance drastically when the same eye perturbation is applied.

Some researchers have proposed solutions to the inaccurate localization problem.
In the paper by Martinez [8], the gallery is augmented by perturbation and modeled by
Gaussian Mixture Models (GMM). Shan et al. [9] defined robustness to misalignment in
their paper and observed the effects of misalignment. They also proposed an enhanced
Linear Discriminant Analysis (LDA) algorithm for face recognition that generated mul-
tiple (9×9=81) virtual samples from each original training image by perturbation.

3 Experimental Design

A total of 600 subjects were selected partly from the FERET database [7] and partly
from the University of Notre Dame (ND) database [10] so that their neutral expression
face images are used in creating a training image set. Another 393 subjects from the
ND database who participated between years of 2002 and 2003 were selected to create
a test image set where each subject’s earliest image is used as the gallery image and the
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gallery probe

Fig. 1. Gallery and probe image samples of the University of Notre Dame database. Each image
is either 1200×1600 or 1704×2272-pixel color image

latest image is put into the probe set (Figure 1). The elapsed time between the gallery
and probe images ranges from 1 to 94 weeks, with 35 weeks on average. Both gallery
and probe images are acquired under the same controlled environment, that is, lighting
condition, background, and facial expression. There may exist slight and unintended
pose variation and other variations over time.

As the recognition algorithms, we used two representative face recognition algo-
rithms: PCA and FaceIt. For the PCA algorithm, we used the Version 5.0 code imple-
mented at Colorado State University (CSU) [11]. The Mahalanobis Angle was selected
as the distance metric, and no dimension reduction of the eigenspace was performed.
For the FaceIt algorithm, we used the version G5, which was developed and distributed
by Identix Incorporated.

The recognition performance is represented by a cumulative match characteristic
(CMC) score, where CMC score at rank r is defined as the ratio of people whose correct
match exists within r best matches. For example, a score of 85% at rank 1 means that
85% of people were correctly matched at the first choice. Similarly, a score of 90%
at rank 3 means that 90% of people have their correct matches in the first three best
matches. Therefore, a single recognition result gives different scores at different ranks,
and the score at rank s is higher than or equal to the score at rank r, where r < s.

4 Effect of Inaccurate Localization

Previous studies [2, 9] show that PCA and LDA algorithms are sensitive to eye localiza-
tion errors. Figure 2 shows the real examples of face extraction when eyes are localized
by the eye locater module of the FaceIt software. Inaccurate localization yields unde-
sirable, e.g., scaled, rotated, or translated face templates. In this section, we investigate
how the inaccurate localization affects the performance of algorithms. For this we set
the manually marked eye locations as the ground truth and the automatically selected
eye locations as the set of real-life samples, because it sounds more practical to get
samples from a real eye locater rather than to add artificial random noises to the ground
truth locations.

Originally, all of the 393 gallery images and 393 probe images are provided with
ground truth eye locations. The probe images were also fed into the eye locater module
of the FaceIt software to get the eyes localized automatically. These locations are com-
pared to the ground truth eye locations of the same images. The difference between the
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scaled scaled rotated translated

Fig. 2. Examples of poorly extracted faces due to the eye position deviation. Faces at the top
row are from gallery images with ground truth eye positions and faces at the bottom are from
corresponding probe images with automatically marked eye positions

manual and the automated eye locations is 10.7 pixels on average, with standard devi-
ation of 5.7 pixels, while the average distance between two eye centers in the ground
truth is 268.8 pixels.

We ran three face recognition algorithms at hand on this gallery set (with ground
truth) and probe set (automatic markings). Figure 3 shows how the performance of each
algorithm degrades with the inaccurate eye locations. As expected, the PCA algorithm
degrades abruptly, confirming that it is highly dependent on the localization accuracy.
The FaceIt and EBGM algorithms turned out to be relatively tolerant to the inaccurate
localizations; the performance also degrades, but the amount of degradation is negli-
gible. We do not know what FaceIt does to handle this problem, and EBGM adjusts
itself to some degree. Similar experiments with FaceIt performed in [2] showed large
degradation with the “weathered” image set. In the next session we propose a method
of augmenting the probe data to solve the problem caused by misalignment.

5 Eye Perturbations

Using large and representative samples per class is the best way to assure better classi-
fication, but it is not always feasible [8]. Generating multiple versions of face templates
from a limited number of originals, thus augmenting the dataset, is one promising so-
lution, as in [8, 9]. To solve the problem of inaccurate eye localization as discussed
in Section 4, we propose to augment the probe images by perturbing the initial eye
locations.

In real-life applications, the gallery set resides in the database, thus its quality and
metadata are under strict control. In contrast, the probe images usually are transient and
its quality (along with that of metadata) is less controlled. Thus, it is more likely the
probe images have bad eye localization than the gallery images do. Therefore, instead
of augmenting the gallery set as in [8, 9], we propose to augment the probe images. By
keeping the gallery set and augmenting the probe images, the face recognition system
becomes more flexible in that the degree of dataset augmentation is easily adjustable
accordingly; there is no need of rebuilding or remodeling of the system.
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Effect of Eye Location Deviation
393 subjects; gallery images are manually marked

Fig. 3. The performance degradation due to inaccurate eye localization. The CMC at rank 1 of
PCA algorithm dropped 76.3 % to 53.5 %. The EBGM (51.1 % to 47.6 %) and FaceIt (90.8 % to
89.8 %) were less affected by the deviation

All of 786 images used in our experiments are accompanied by the ground truth
facial landmarks, which are marked by a number of different human operators and are
highly reliable in spite of the existence of slight variations across operators and over
time. The images also are provided with the machine-selected eye locations. For each
original query image, we generate multiple normalized faces by perturbing the initial
– either ground truth or machine-selected – eye locations (Figure 4). The sampling
window size is set to 49×49 pixels so that it covers an area slightly wider than the iris.
We sample 41 uniformly distributed locations for each eye, a total of 41×41=1681 pairs
of eye locations, and thus generate the same number of normalized faces for each query
image.

Each normalized face probe matches against the gallery set and produces distance
measures to each of the 393 gallery images. So for each query image we will have 1681
individual classification results. A number of committee schemes to combine these re-
sults are available, such as nearest neighbor, k-nearest neighbors, weighted sum, maxi-
mum vote, etc. So far we tested the nearest neighbor and maximum votes. In the nearest
neighbor (NN) scheme, we simply select the pair of probe and gallery with the mini-
mum distance – or the highest similarity score in FaceIt terminology. In the maximum
vote scheme, the gallery image that gets the maximum number of NN selections from
1681 individual normalized face probes is finally selected.

6 Results and Discussion

We compared the NN ensemble method to the baseline on the PCA and the FaceIt al-
gorithms, where both ground truth and machine-selected eye markings are provided
(Fig. 5 (a)). The NN ensemble PCA algorithm scored 79.4 % rank-1 CMC, marginally
improved from that of the baseline PCA, 76.3 %. The improvement achieved by the
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(a) (b)

(c)

Fig. 4. An example of multiple generation of normalized faces from a probe image. Given an
original image (a), possibly with inaccurate eye locations, 41 sampling locations centered at the
initial eye locations are selected for each eye as illustrated in (b). Six out of 1681 normalized
faces are shown in (c)
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Fig. 5. Comparison between the baseline and ensemble methods. The ensemble methods achieved
both improvement (significant or marginal) and stability in performance

NN ensemble is just over 3 %, but considering that the baseline performance was with
the ground truth, it promises greater improvement with machine-selected eye locations.
The experiment of the ensemble PCA algorithm with machine-selected eye locations
reached 79.1 % rank-1 CMC, which is a huge improvement from the baseline perfor-
mance of 53.7 %. The comparison of baseline and ensemble FaceIt is shown in Fig.
5 (b). The baseline performance of FaceIt is already high enough, but we still observe
marginal improvements, and the amount of improvement is a little higher in case of
machine-selected eye locations, which was expected. The overall CMC curves shown
in Figure 5 indicate that the ensemble method also achieved stability in performance
as well as improvement, that is, we observe only negligible difference in performance
between the ground truth and automatic markings.

At this point we need to analyze the mechanism of the maximum vote scheme,
which yields low performance. The maximum-vote ensemble method was also applied
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Fig. 6. The distribution of nearest neighbor distances in the (a) baseline and (b) ensemble PCA
with the automatically marked eye locations. Each of the 393 probes have 393 distance mea-
sures to the gallery images, and this plot shows how the 393 NN distance outlies in the overall
distribution of probe-to-gallery distances

with the PCA algorithm, but it achieved lower performance (63.6 % rank-1 CMC) than
that of the baseline. In general, the NN pair of a probe and a gallery image is the ex-
treme outlier in the distribution of distances between probe and gallery images. We
investigated how far the NN distance lies in the distance distribution. In the baseline ex-
periment the correctly matched NN distances lie at, on average, 5.2 standard deviation
of the distance distribution, and the incorrectly matched NN distances lie at 3.6 standard
deviation (Figure 6 (a)). In both cases, the NN distances are the extreme outliers in the
distribution whose p-values are less than 0.001. This extremity of the NN distance gets
further (Figure 6 (b)) in the ensemble scheme because it produces a better (or equal at
least) NN distance and adds a huge amount of mediocre distances. This explains the
poor performance achieved by the maximum vote committee method, where the newly
produced NN distance just casts one vote equally as the other 1680 distances do. There-
fore, hereinafter we discard the maximum vote committee scheme and focus on the NN
scheme only.

Figure 7 shows two examples of successful NN match after the eye perturbation. At
the top row, the original probe in the baseline was matched to a wrong gallery image,
and the correct gallery image scored rank of 150; after the eye perturbation, one of the
perturbed probes was matched to the correct gallery image. At the bottom row of the
figure, which is the case where the machine-selected eye locations were provided, the
rank score has jumped from 131 to 1.

However, augmenting the dataset not always improve the performance. It is pos-
sible that some of the enlarged data may match to wrong gallery images with smaller
distances than that of correct match. In our experiments it actually happened (Figure 8),
but the rank change is relatively small. The count and amount of performance improve-
ment and degradation are summarized in Table 1. In the PCA case with ground truth,
the number of instances of improvement is not much more than that of degradation, but
the average amount of rank change is larger, which gives overall improvement. In the
PCA case with machine-selected eye locations, both the number and the amount of rank
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(a) (b) (c) (d)

Fig. 7. Successful cases of eye perturbation. The probe with initial eye localization (a) is matched
to a wrong gallery image (b). After perturbation, a new probe image (c) is successfully matched
to the correct gallery image (d). It is shown that the probe image (a) and the gallery image (d) are
not well aligned

(a) (b) (c) (d)

Fig. 8. Examples of degradation after eye perturbation. The probe with initial eye localization (a)
is matched to a correct gallery image (b). After perturbation, a new probe (c) picked up a wrong
match (d) that has smaller distance

change is large, which explains the big jump in the CMC curve in Figure 5. The FaceIt
rank results have similar patterns, although less obvious.

There also exist cases where the proposed method cannot be the solution. The sub-
ject in Figure 9, for example, has significant pose change between the gallery and probe
images. Neither PCA nor FaceIt succeeded in matching this subject correctly both in
the baseline and in the ensemble method because the problem here comes from the pose
angle rather than from the localization accuracy.

7 Conclusions and Future Works

In this paper we showed the effect of inaccurate eye localization on the performance of
face recognition and proposed a method that is robust to the effect. We first investigated
the impact of eye localization accuracy through experiments with two sets of realis-
tic localization data; a set of manual markings, which is used as the ground truth, and
another set automatically marked by a commercial software, which served as the devi-
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Table 1. The rank change between the baseline and the NN ensemble methods

PCA FaceIt
GT Auto GT Auto

Count Amount Count Amount Count Amount Count Amount
Improved 69 36.4 160 44.2 22 16.7 31 53.6
Degraded 51 7.9 28 16.3 13 19.2 10 13.3
Unchanged 273 205 358 352

(a) (b) (c) (d) (e)

Fig. 9. A failed match after eye sampling. The various extractions of the probe images, (a) and
(c), could not be matched to the correct gallery image, (e), because the pose difference between
the original gallery and probe images is significant. Image (c) and (d) are the nearest neighbor
pair after the eye perturbation

ation from the ground truth. By using large sets of images with substantial time lapse
between the gallery and probe images, and by using real-life outputs of eye localization,
we showed that, for some face recognition algorithms, the accuracy of eye localization
is critical to the recognition performance.

Based on the baseline experimental results, we proposed an eye perturbation ap-
proach to make existing face recognition algorithms robust to the eye localization vari-
ation. A number of experiments with ground truth and machine-selected eye locations
showed that achieving both improvement and robustness was successful.

It will be worth investigation to extend this experiments with image sets of larger
variety. As mentioned in [2], the inaccurate eye localization may have the greatest im-
pact on controlled pairs of gallery and probe images; using pairs of different conditions
in the probe images – e.g., uncontrolled probe images against controlled gallery – might
attenuate the effect of inaccurate localization.

Currently the increased computational cost is the main problem of the proposed ap-
proach. We used a full-scale eye perturbation for a thorough investigation, but a smaller
and sparser sampling may be enough for the intended purpose. Alternatively, the de-
gree of perturbation may be parameterized so that the degree can be adjustable. We also
plan to design an intelligent decision algorithm by modeling the distribution of NN dis-
tances as shown in Figure 6, so that it can decide the necessity and degree of the eye
perturbation, methods of combining individual classifications, etc.
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