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Abstract

We propose a new approach to range image segmentation of planar and curved surface

scenes. Our method is mainly an extended design of an existing algorithm, which was guided

by a framework of performance evaluation. We choose the range segmentation algorithm

developed by Jiang and Bunke as our baseline algorithm, which is fast and has shown rela-

tively high performance in several experimental performance evaluation studies. We analyze

the types of errors made by the algorithm, propose design modifications to decrease the error

rate, and experimentally verify that the new approach achieves statistically significant perfor-

mance improvement. Whereas the baseline algorithm applies the edge-linking uniformly to all

edge pixels to segment a region, the modified algorithm selects high potential edge areas in the

region by analyzing the surface fit pattern and gives priority of edge-linking to those areas.

The contributions of this work are (1) an improved algorithm for segmentation of range

images of both planar and curved surface scenes, and (2) a demonstration of using empirical

performance evaluation to guide algorithm design and modification to achieve better

performance.
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1. Introduction

Many algorithms have been presented for range image segmentation, and some of

them have undergone experimental comparisons [7,16,9,15], and novel approaches

have been presented to get better performance. Jiang and Kuhni [12] presented a

contour closure algorithm for better performance in edge-based region segmenta-

tion. Cinque [5] used genetic algorithms for optimal setting of range segmentation
algorithm parameters. Bellon and Silva [1] presented an improvement by using an

edge detection technique. Other various techniques [3,4,13] have also been used

for better range segmentation.

We present an improved version of a range image segmentation algorithm origi-

nally developed at the University of Bern (UB) [11], which uses an edge-based ap-

proach and is applicable to both planar and curved surface scenes. The UB

algorithm has shown dominance both in performance and speed in an experimental

comparison [16]. The basic strategy of the algorithm is to start from coarse initial
segmentation based on edges of the range image and to proceed to further refine-

ment. Since a typical edge extraction has ‘‘gaps’’ along true edges, most initial re-

gions are under-segmented and need to be split into smaller ones. For each region,

the baseline algorithm hypothesizes a quadratic surface. If the amount of surface

fit error is greater than a predefined threshold, the region is recursively split until

every sub-region satisfies its own surface hypothesis. The splitting is achieved by

linking edge segments inside the region, and the linking is achieved by dilating every

edge pixel of the region.
When splitting a region, the baseline algorithm discards all qualitative and quan-

titative information regarding the surface fit errors, and depends only on the binary

edge map. Our improved approach focuses on how to use the surface fit errors to

better split the initial under-segmented regions. We define three prominent patterns

of surface fit error which are frequent in failed surface hypotheses and are useful in

determining proper splitting actions. The experiment was performed by utilizing a

range image segmentation evaluation framework [14] and the improvement of per-

formance was verified by statistical significance tests.
The remaining sections of this paper are organized as follows. Section 2 explains

how the baseline range image segmentation algorithm works and how it was trained

for our experiments. Section 3 analyzes the drawback of the baseline algorithm and

introduces new methods to make improvement. Section 4 briefly describes the eval-

uation framework that we employ for comparing the baseline and the improved

algorithms. Section 5 shows the results of both algorithms and compares them,

and Section 6 summarizes our work and introduces topics to be addressed in future

work.
 C

UN2. The baseline algorithm

The UB algorithm is a fast range segmentation algorithm that is based on edge

detection along scan lines. By dealing with curve segments as the data primitives,
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it reduces the amount of data, thus obtaining its speed. The algorithm consists of

three steps: edge extraction, edge grouping, and post-processing, each of which will

be explained in the following subsections.

2.1. Edge extraction

The edge extraction method used in the UB algorithm is described in [10]. The
edge detector scans the range image along four directions: horizontal, vertical, and

two diagonals. Each scanned line is a three-dimensional curve. Partitioning each

scan line into quadratic curve segments is performed by using the classical line fitting

algorithm [6]. The end points of these segments are viewed as the potential edge

points. The edge strength of the edge candidates are evaluated by computing the

height difference (jump edges) and the angle difference (crease edges) between two

adjacent curve segments. Each potential edge pixel can be assigned up to four edge

strength values of each type from the four scan lines passing through the pixel (Fig.
1). Among these edge strength values, the maximum values are taken to define the

overall edge strength of each edge type (jump or crease). Finally, the candidate edge

pixel is determined as an edge point if at least one type of edge strength is greater

than the corresponding threshold value.

2.2. Edge grouping

For best segmentation performance, the edge that matches the region boundary
should be a closed contour. But, due to noise in the raw image and other reasons,
UN
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Fig. 1. Edge extractions along four scan directions. In the overall edge map, edges created due to shadow

regions are also drawn.
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Fig. 2. Region splitting (edge grouping) of the baseline algorithm. (A) The incomplete edge extraction

from Fig. 1 causes a large initial under-segmented region (white). (B–D) Each step splits the under-

segmented region (white). (E) Splitting is finished. (F) After the post-processing, eroded pixels are

recovered to adjacent regions.

(A) Initial region (B) 1st step (C) 2nd step

(D) 3rd step (E) 4th step (F) final
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edge detection is completed, the algorithm performs the connected component label-
ing to generate the initial segmentation. Since the true edges are not fully connected

at the initial step, the initial segmentation result tends to have a high ratio of under-

segmented regions.

The UB algorithm makes a surface hypothesis on each segmented region and tests

the hypothesis by calculating the fitting error between the segmented region and the

hypothesized surface. If the surface fit errors (RMSE and average) of a region are

less than predefined thresholds (T c
a and T c

r for curved surface, or T p
a and T p

r for planar

surface scenes, discussed later), then the region is accepted as the final segmentation;
otherwise the algorithm splits the region into subregions. The process is performed

recursively until all the subregions either pass the surface hypothesis or get smaller

below the predefined minimum size, which is one of the algorithm parameters.

The specific region splitting method used by the baseline algorithm is as follows.

The algorithm dilates all the edge pixels inside the region—including the region

boundary—in order to fill the gaps between the true edge segments. After each dila-

tion step, new surfaces are computed for the newly shaped regions (Fig. 2). Note that
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surface fit error tends to get smaller as the area gets smaller, especially on curved sur-

faces. The edge dilation scheme is purely based on the binary edge map of the region.

Therefore, the scheme requires that the binary edge map is of reasonable quality.

Otherwise, linking of false edges (in a dense edge map) or excessive dilation of edges

(in a sparse edge map) will occur.

2.3. Post-processing

After the edge grouping is completed, a post-processing is performed to process

unlabeled pixels so far. The unlabeled pixels include those that were eroded in the

process of edge dilation. Such pixels are merged to an adjacent region as long as

the fit error after the merging is tolerable. Less strict values are set for the surface

fit error thresholds: T p
a � T p

f or T c
a � T c

f . Figs. 2E and F shows before and after

of the post-processing.

2.4. Training

The UB algorithm has a total of 10 parameters as shown in Table 1. Parameters

Tg, Tj, and Tc are used in the edge extraction step, and parameters T p
r , T

c
r , T

p
a , T

c
a, and

Ts are related to surface approximation, thus used in the edge grouping step. The

remaining parameters T p
f and T c

f are used in the post-processing step and specify

how the parameters T p
a and T c

a, respectively, can be relaxed in merging the unlabeled

pixels.
As it is impractical to train the algorithm over all the parameters because of the

computational load of training, we selected the most four significant parameters in

training: a set of (Tg, Tj, Ts, and Tc) for the ABW images and another set of (Tg,

Tj, Tc, and T c
r) for the Cyberware images. A total of 69,400 executions of the baseline

algorithm (65 CPU hours on a Sun Fire 880) were performed in training the algo-

rithm over the 10 ABW training sets and 78,300 executions (48 h on a Sun Fire

880) in training the algorithm over the 10 Cyberware training sets.
UN
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Table 1

Parameters of university of bern segmenter

Name Description

Tg Max. distance between scan line and quadratic curve fit

T p
r Planar surface approximation RMS error:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
error2=RegionSize

p

T c
r Curved surface approximation RMS error:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
error2=RegionSize

p

T p
a Planar surface approximation average error:

P
|error|/RegionSize

T c
a Curved surface approximation average error:

P
|error|/RegionSize

Tj Threshold of jump edge strength

Tc Threshold of crease edge strength

Ts Minimum number of pixels of a legitimate region

T p
f Tolerance of T p

a in the post processing

T c
f Tolerance of T c

a in the post processing
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3. Improvement

Getting correctly closed edges is important for the UB algorithm to achieve a suc-

cessful segmentation. The algorithm assumes that a moderately well extracted edge

map is given initially and refines the initial segmentation by subsequent edge linking

procedures. One thing to note here is that in the UB algorithm the surface hypothesis

is performed for every region, but the qualitative result of the hypothesis is not used
at all in handling the failed surface hypothesis. That is, the surface fit is used only to

pick up the under-segmented regions, and refining those under-segmentations is per-

formed without knowing how the surface fits the region.

For better edge linking, a new adaptive contour closing algorithm that uses a

direction-guided edge grouping approach has recently been presented by Jiang [8].

It also assumes that no other information is given except for the binary edge map

of the scene. In other words, the approach is considered as a stand-alone edge group-

ing algorithm rather than a component of a segmentation algorithm. As mentioned
in the paper, its performance is highly dependent on the edge shapes and the result of

contour closing is not successful in some cases. Besl and Jain [2] designed an algo-

rithm that starts from coarse segmentation initially created by using surface curva-

ture sign labeling and refines it by an iterative region-growing that is based on the

surface fitting errors.

In this paper we present a new approach to improve the segmentation perfor-

mance of the UB algorithm by using the surface fit error information in determining

edge linking. The new approach is focused on the second step of the baseline algo-
rithm, that is, edge grouping; other components of the original algorithm, such as

edge extraction and post-processing, remain untouched.

3.1. Surface fit error map

The main potential drawback of the baseline algorithm is the unnecessary ero-

sion of non-edge regions in the process of edge linking. Whenever the surface

hypothesis fails, which means that a region turns out to be under-segmented,
the baseline algorithm tries to split the region by linking the gaps between edge

segments. The linking is performed by dilating all the edge pixels of the region

including the boundary. In many cases, when the edge segments are disconnected

only by several pixels and noise level is low, the algorithm produces very reliable

and fast splitting results. In many other cases, however, this simple scheme causes

several problems. When the edge map is too dense, many false edge points tend

to be linked together, creating unwanted false edge contours. This results in over-

segmentation, or more severely when the partitions are too small, missed regions
in the final output (Fig. 3). On the other hand, when the edge map is too

sparse—few edge pixels exist except for the boundary of the region—linking

the edge segments takes repeated steps of edge dilation, shrinking the region as

a result of excessive inward erosion from boundary edges, which sometimes is

not able to be recovered even by the post-processing of the baseline algorithm

(Fig. 4). In both cases, it is very likely to miss part of the region. Setting proper
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Fig. 3. Over-segmentation example of the baseline algorithm. Due to the dense edge map, noisy edge

pixels are linked together, creating false contours. (C–E) Different intensities imply different regions.

(A) GT (B) Edge extraction

(D) 1st step (E) 2nd step (F) Final

(C) Initial

J. Min, K.W. Bowyer / Computer Vision and Image Understanding xxx (2004) xxx–xxx 7

YCVIU 1143 No. of Pages 17, DTD=5.0.1

24 August 2004 Disk Used Gomti (CE) / Prabhakaran (TE)
ARTICLE IN PRESS
UN
CO

RR
ECvalues for the two edge-related thresholds (Tj and Tc) may help prevent these

cases, but the threshold values usually have to be set over a number of training

images of various scene quality.

The main idea of our improvement is to dilate edge pixels of an under-seg-

mented region selectively, and the selection is based on how the hypothesized

surface patch fits the region. We can categorize several patterns of surface

hypothesis failure, for each of which we prescribe different action. Whenever

the surface fit is made to a region, we build a surface fit error map of the region
that represents the surface fit error amount of each pixel. For simpler represen-

tation, we assign grey-level value (0–255) to the fit error. That is, we assign black

(=0) if f (x,y) � z (x,y)P2*avgerr, white (=255) if z (x,y) � f (x,y)P2*avgerr,

where f (x,y) is the surface point, z (x,y) is the region point, and avgerr is the

average surface fit error value of the region. Other fit error values in between

are scaled into grey, so that grey-level 127 means zero fit error. The extreme

fit error areas, black and white, will play a major role in the following subsec-

tions. Given an under-segmented region, instead of blindly dilating edge pixels,
our new approach takes following three levels of action depending on the surface

fit patterns:
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Fig. 4. Under-segmentation and missed region example of the baseline algorithm. Due to the sparse edge

map, edge grouping is performed repeatedly, resulting in severe erosion of the initial region. Splitting is not

successful and several regions are missed.

(A) GT

(D) 3rd step (E) 5th step (F) Final

(C) 1st step(B) Initial
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ing, a border line is created along the zero-crossing line regardless of the existence

of edge points.

� Forced split. Whenever an extreme area itself (black or white) splits the region,

forced erosion is performed on that area until the split is accomplished.

� Selective linking. If the region has not been split at the two levels above, edge dila-
tion is performed only on the areas with high fit error.

3.2. Direct split

It is not guaranteed that the very strong candidate of an edge is fully connected in

the edge map. There are several possible reasons: too strict edge threshold, noisy in-

puts, or real disconnections of edge at some level. The surface fit error values around
these disconnected high jump edges have patterns in which an area of highly negative

(black) fit error is adjacent to an area of highly positive (white) fit error (Fig. 5C).

Thus, it is intuitive to separate these areas no matter how many edge points already

exist in the area. For each under-segmented region, all adjoining extreme areas with
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Fig. 5. Comparison of blind edge linking and direct split. (A) An under-segmented region. Due to

incomplete edge detection, the upside-down funnel and the small triangular planar background are

connected. (B) Surface fit error map of the region. Two extreme areas with opposite signs are adjoining in

the upper part of the region. (C) Result of blind edge linking by the baseline algorithm. The funnel and

background are detached, but the funnel is over-segmented at this early step. (D) Result of direct split. The

funnel and the background are detached without any side-effects.
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done successfully and other irrelevant edge points remain intact, saving non-edge

pixels from erosion.

3.3. Forced split

In general, crease edges are harder to extract than jump edges. The surface fit er-

ror values around the true crease edges also have patterns in which an area of ex-

treme fit error (negative or positive) traverses the region. To determine the true
crease edge region, we test every extreme area to see whether it really splits the re-

gion. After deleting the area temporarily from the region, we check if the deletion

splits the region by performing connected component labeling upon the region. If

the labeling shows two or more regions, we register it as a strong candidate for crease

edge. Then the dilation of edge points is performed only in this area until it gets a

split of the region. In the worst situation of the edge detection, we are given no edge

point at all in this extreme area. Then the forced split will erode the region inwards

from the boundary until the region is split. Fig. 6 shows the results both from the
baseline and the improved algorithm.
UN
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RR

Fig. 6. Comparison of blind edge linking and forced split at the intermediate step (before post-processing).

Only the regions of interest are shown. (A) Ground truth. (B) The baseline result. A small region at the

rightmost side of the block is missing as result of excessive erosion of the region. Another region at the

other right face of the block is eroded excessively. (C) The forced split result. The forced split has been

applied. No region is missing and no region is eroded seriously.
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3.4. Selective linking of edges

If the surface fit error map does not show any of the special patterns described

above, or splitting the region is not completed even after applying the actions above,

a selective dilation of edges is performed. This is similar to the original edge dilation

scheme of the baseline, except that not all the edge pixels inside the region are se-

lected for dilation. A typical surface fit error map of an under-segmented region
has various areas of different fit errors. It is intuitive that edge points around the area

with high surface fit error, regardless of the sign, are more likely—although not al-

ways true—to be near the true edges than ones with low surface fit error.

We divide the surface fitting errors into three groups, i.e., high (greater than two

times of the average), medium (greater than the average), and low (less than the aver-

age), according to the relative value to the average fit error of the region.At the first step

of dilation, edge points with high surface fitting error are dilated. If it succeeds in link-

ing some edges and in splitting the region, then the dilation stops. Otherwise, dilating is
performed on the edge pixels with medium surface fitting error. If it succeeds, then the

same action will be taken. Otherwise, all the remaining edge pixels are dilated and per-

forming this final step will have the same effect as the baseline algorithm. At worst, the

algorithm with the new dilation approach does the same action as the baseline.

Both the baseline and the improved algorithm assume that a sufficient amount of

edge pixels are provided along true edge contours. This assumption is more crucial to

the baseline algorithm. Moreover, the baseline algorithm also assumes that false edge

pixels are not dense in order to avoid over-segmentation. The second requirement is
not crucial to the improved approach, therefore we can lower the edge thresholds

without worrying about over-segmentation.

3.5. Training

We apply a different order of significance of the parameters to the baseline and the

improved algorithms because they work differently. For example, for the ABW im-

age set, the improved algorithm shows no performance improvement between 1-pa-
rameter and 2-parameter tuning when Tj is set for the second significant parameter as

we did for the baseline algorithm. A new order of parameter significance was deter-

mined in a trial-and-error manner, as was done in the baseline algorithm.

We selected a set of parameters (Tg, Tr, Tj, and T p
a) for the training on the ABW

images, and another set of parameters (Tg, Tc, T
c
a, and Tj) for the training on the

Cyberware images. A total of 76,446 executions of the improved algorithm (156 h

on a Sun Fire 880) were performed in training the algorithm over the 10 ABW train-

ing sets and 76,428 executions (73 h on a Sun Fire 880) in training the algorithm over
the 10 Cyberware training sets. The increased training time of the improved algo-

rithm was expected because of several reasons. First, whenever a failed surface

hypothesis is found, the algorithm tries to find surface fit patterns on which the direct

split and/or the forced split operations are applicable. The baseline algorithm does

not have this stage. Second, the pixels to be eroded by the selective erosion are a sub-

set of the pixels to be eroded by the baseline algorithm. Therefore, the baseline algo-
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4. Evaluation framework

The definition of the performance metrics for the segmentation is the same as used
by Hoover et al. [7]. A machine segmentation (MS) of an image compares to the

ground truth (GT) specification for that image to count instances of correct segmen-

tation, under-segmentation, over-segmentation, missed regions, and noise regions.

The definitions of these metrics are based on the degree of mutual overlap required

between a region in the MS and a corresponding region in the GT. An instance of

‘‘correct segmentation’’ is recorded if and only if an MS region and its corresponding

GT region have greater than the required threshold of mutual overlap. Multiple MS

regions that correspond to one GT region constitute an instance of over-segmenta-
tion. One MS region that corresponds to several GT regions constitutes an instance

of under-segmentation. A GT region that has no corresponding MS region consti-

tutes an instance of a missed region. A MS region that has no corresponding GT re-

gion constitutes an instance of a noise region. Fig. 7 illustrates these definitions of the

performance metrics. For the statistical test for significance, we use the number of

instances of correct segmentation.

The performance evaluation framework [14] that we employ uses separate sets of

images for train, validation, and test. The training step searches for the ‘‘best’’
parameter settings. The validation step decides how many of the segmenter�s param-

eters should have their value learned through training versus left at the default value.

The test step determines performance curves to be used in comparing different seg-

menters. Because the selected parameter settings may vary based on the particular

set of training images, we create multiple different training sets by random sampling

from a larger pool of training images. This applies to the validation and test sets, too.
UN
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Fig. 7. Illustration of definitions for scoring region segmentation results.
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In general, typical algorithms have a number of parameters that control their

operation and the default values for the parameters. This introduces the question

of how many of the available parameters should be trained. After training on a given

number of parameters, the parameter values for each training set are run on each

validation set. If there are Ttr training sets and V validation sets, then Ttr · V perfor-

mance curves are produced. If the improvement of the validation in going from

N � 1 to N parameters is statistically significant, then training is repeated using
N + 1 parameters. If there was no improvement in going to N parameters, then

the (N � 1)-parameter training result is kept.

The final trained parameter values from each training set are run on each test set,

resulting in Ttr · Tte performance curves. The areas under these curves are used as

the basis of a test for statistical significance of an observed difference in performance

between segmenters. The performance is compared quantitatively and statistically by

using the paired differences in the areas under the performance curves.

Assume that we are comparing a ‘‘challenger’’ algorithm to a ‘‘baseline’’ algo-
rithm. The test statistic will be the difference between the areas under the perfor-

mance curves. The sign test can be used to check for statistical significance

without requiring the assumption that the differences follow a normal distribution.

The null hypothesis is that there is no true difference in average performance between

the algorithms. Under the null hypothesis, each algorithm has a 0.5 probability of

generating the larger area under the performance curve on any given trial. The num-

ber of trials for which one algorithm generates a larger area than the other should

follow a binomial distribution. Our framework implementation automatically re-
ports the results of a sign test.
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5. Experimental results

In Sections 2 and 3, both the baseline and the improved algorithm are trained

using validation steps and 10 sets of trained parameters were applied to each of

the 10 test sets. For each algorithm over each range data type, we got 100 (10 train
sets · 10 test sets) performances of five different metrics (correct classification, under-

segmentation, over-segmentation, missed region, and noise region) in the form of

values of area under the performance curve. A paired sign test was performed on

these 100 pairs of quantitative values to determine statistical significance. As is

shown in subsequent subsections below, the improvement obtained by using the

new algorithm is small but statistically significant (at the a = 0.05 level) for both data

sets.

5.1. Results on planar-surface image sets

The paired comparison of 100 performance values (correct classification) between

two algorithms is shown in Fig. 8. The new algorithm produced slightly better per-

formance than the baseline in 67 out of 100 instances. The improvement in correct

classification mostly came from reduction of missed regions (Fig. 9), which, in the
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Fig. 8. Comparison of performance between the baseline and the improved algorithm on ABW test sets.

Fig. 9. Comparison of incorrect segmentations (missed regions) between the baseline and the improved

algorithm on ABW test sets.
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baseline algorithm, occurred mainly due to the excessive erosion of small regions.

There was a small decrease in over-segmentations and a small increase in noise re-

gions that in effect cancel each other out, and therefore did not influence the overall

performance. The new algorithm produced more under-segmentations in 96 out of

100 cases, but the amounts were so small that it did not make difference.
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Fig. 10 shows machine segmentation samples from both algorithms. Note that

setting different overlap thresholds produces different interpretations of the same

segmentation result. For example, an instance of correct classification at a lower

threshold switches to an error metric at a higher threshold. And an instance of

over-segmentation at a lower overlap threshold (e.g., 51%) switches to an instance

of missed region plus multiple instances of noise region at a higher overlap threshold

(e.g., 95%). In the figure, we counted the number of instances of each performance
metric at the fixed overlap threshold of 85%.
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Fig. 10. Segmentation comparison on ABW images at 85% overlap threshold. (A–C) Test image ‘‘abw.18.’’

Two over-segmentations, two missed regions, and one noise region are recovered. (D–F) Test image

‘‘abw.28.’’ One missed region is recovered. (G–I) Test image ‘‘abw.25.’’ One missed region is recovered,

but another missed region and additional two noise regions are created.

(A) GT

(E) Baseline(D) GT (F) Improved

(B) Baseline (C) Improved

(G) GT (H) Baseline (I) Improved
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We can conclude that the new algorithm applied to the planar surface scenes im-

proved the correct segmentation performance by relieving the excessive erosion

problem of the baseline algorithm. The ABW data set contains many small planar

regions which can be easily rejected from region acceptance due to small size after

excessive erosion of the baseline algorithm. As all of the surfaces are planar, the

new algorithm benefits from the forced split and selective erosion approaches be-

cause the boundaries of adjoining planar surfaces are more likely having extreme
fit errors.

5.2. Results on curved-surface image sets

The paired comparison of 100 performance values between two algorithms is dis-

played in Fig. 11. The new algorithm produced better performance than the baseline

in a statistically significant fraction of the results (72 out of 100 in the paired sign

test).
By analyzing the performance of the baseline algorithm, we knew that its correct

classification performance was largely influenced by its level of under-segmentation;

on a curved surface, the algorithm tends to satisfy the fit error threshold by eroding

the outer area of the under-segmented region. On the contrary, the improved algo-

rithm is more likely to erode the inner area, which has high fit error. Thus, the new

algorithm generally reduced the level of under-segmentation but did not have major

effects on other performance metrics. An increase in the level of noise regions de-

graded performance on some images but this was often outweighed by the decrease
in under-segmentation. There is no remaining predominant error tendency in the

new algorithm. Fig. 12 shows machine segmentation samples from both algorithms.
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Fig. 11. Comparison of performance between the baseline and the improved algorithm on Cyberware test

sets.



OR
RE

CT
ED

PR
OO

F

366

367
368
369
370
371

Fig. 12. Segmentation comparison on Cyberware images at 85% overlap threshold. (A–C) Test image

‘‘cone1.’’ One under-segmentation is recovered. (D–F) Test image ‘‘snowman.’’ Two missed regions and

one noise region are recovered. (G–I) Test image ‘‘snowman’’ (with another parameter setting). Two

missed regions and one noise region are created.

(B) Baseline (C) Improved

(D) GT (E) Baseline (F) Improved

(G) GT (H) Baseline (I) Improved

(A) GT
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C6. Summary and conclusions

An improvement in range image segmentation has been achieved by applying a

new approach to handling failed surface hypothesis. Instead of linking edges blindly

the new algorithm analyzes the surface fit patterns of the failed surface hypothesis.

The improvement was verified by using a range image segmentation evaluation

framework with sets of planar and curved surface scene images.
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With image sets of uniform complexity, the produced edge maps may be of rea-

sonable quality, so the baseline algorithm will perform well and be faster than the

new approach. However, images with a wide variety in sizes of objects and/or in

scene complexity will let the edge images be of low quality, so the baseline algorithm

that only looks at the edge map would have difficulties in achieving a successful seg-

mentation. By applying our novel approach, we were able to design an improved

algorithm that is less sensitive to the edge extraction results.
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