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Abstract

The periocular region is the part of the face immediately surrounding the eye, and researchers have recently begun to in-

vestigate how to use the periocular region for recognition. Understanding how humans recognize faces helped computer

vision researchers develop algorithms for face recognition. Likewise, understanding how humans analyze periocular

images could benefit researchers developing algorithms for periocular recognition. We conducted two experiments to

determine how humans analyze periocular images. In these experiments, we presented pairs of images and asked vol-

unteers to determine whether the two images showed eyes from the same subject or from different subjects. In the first

experiment, subjects were paired randomly to create different-subject queries. Our volunteers correctly determined the

relationship between the two images in 92% of the queries. In the second experiment, we considered multiple factors

in forming different-subject pairs; queries were formed from pairs of subjects with the same gender and race, and with

similar eye color, makeup, eyelash length, and eye occlusion. In addition, we limited the amount of time volunteers

could view a query pair. On this harder experiment, the correct verification rate was 79%. We asked volunteers to

describe what features in the images were helpful to them in making their decisions. In both experiments, eyelashes

were reported to be the most helpful feature.
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1. Introduction

The periocular region is the part of the face immedi-

ately surrounding the eye. While the face and the iris

have both been studied extensively as biometric character-

istics [1, 2], the use of the periocular region for a biomet-

ric system is an emerging field of research. Periocular bio-

metrics could potentially be combined with iris biometrics

to obtain a more robust system than iris biometrics alone.

If an iris biometrics system captured an iris image of poor

quality, the region surrounding the eye might still be used

to confirm or refute an identity. A further argument for

researching periocular biometrics is that current iris bio-

metric systems already capture images containing some

periocular information, yet when making recognition de-

cisions, they ignore all pixel information outside the iris

region. The periocular area of the image may contain

useful information that could improve recognition perfor-

mance, if we could identify and extract useful features in

that region.

A few papers [3, 4, 5, 6, 7, 8, 9, 10] have presented al-

gorithms for periocular recognition, but their approaches

have relied on general computer vision techniques rather

than methods specific to this biometric characteristic. One

way to begin designing algorithms specific to this region

of the face is to examine how humans make recognition

decisions using the periocular region.

Other computational vision problems have benefitted

from a good understanding of the human visual system.

In a recent book chapter, O’Toole [11] says, “Collabora-

tive interactions between computational and psycholog-

ical approaches to face recognition have offered numer-

ous insights into the kinds of face representations capa-

ble of supporting the many tasks humans accomplish with

faces” [11]. Sinha et al. [12] describe numerous basic

findings from the study of human face recognition that

have direct implications for the design of computational

systems. Their report says “The only system that [works]

well in the face of [challenges like sensor noise, viewing

distance, and illumination] is the human visual system. It

makes eminent sense, therefore, to attempt to understand

the strategies this biological system employs, as a first step

towards eventually translating them into machine-based

algorithms” [12].

In this study, we investigated which features humans

found useful for making decisions about identity based

on periocular information. We presented pairs of images
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Table I: Research in Image Classification

Paper Data Algorithm Features

Abiantun and

Savvides [13]

ICE data: 2953 near-

infrared iris images

Classify images as right or left

eyes. Extract features using ad-

aboost. Classify using support

vector machines, linear discrim-

inant analysis, or principal com-

ponent analysis.

tear-duct

Bhat and Sav-

vides [14]

ICE data: 2953 near-

infrared iris images; ad-

ditional near-infrared iris

images

Classify images as right or left

eyes using active shape models.

eye shape

Li et al. [15] CMU-PIER data: 107

East-Asian subjects; sub-

set of UBIRISv1 data:

107 Caucasian subjects

Classify images as Asian or Cau-

casian using active shape models,

edge filters, and a nearest neigh-

bor classifier.

eyelashes

Merkow et al.

[16]

Images downloaded from

the web

Gender classification using local

binary patterns (LBP), principal

component analysis, linear dis-

criminant analysis, and support

vector machines.

LBP features

Lyle et al. [17] FRGC data: visible light

face images: 410 subjects

Gender and ethnicity classifica-

tion using grayscale pixel intensi-

ties and local binary patterns with

a non-linear support vector ma-

chine.

pixel intensity,

LBP features

to volunteers and asked them to determine whether the

two images showed eyes from the same subject or from

different subjects. In our first experiment, subjects were

paired randomly to create different-subject queries. In the

second experiment, we challenged participants by pair-

ing similar images together rather than pairing subjects

at random for the different-subject queries. In both ex-

periments, we asked volunteers to describe what features

in the images were helpful to them in making their deci-

sions. We found that the features that humans found most

helpful were not the features used by current periocular

biometrics work [3, 4, 5, 6, 7, 8, 9, 10]. Based on our re-

search, we anticipate that explicit modeling and descrip-

tion of eyelids, eyelashes, and tear ducts could yield more

recognition power than the current periocular biometrics

algorithms published in the literature.

The rest of this paper is organized as follows. Section 2

summarizes the previous work in periocular biometrics.

Section 3 describes how we selected and pre-processed

eye images for our experiment. Our experimental method

is outlined in Section 4. Section 5 presents our analysis.

Finally, Section 6 presents a summary of our findings, a

discussion of the implications of our experiment, and rec-

ommendations for future work.

2. Related Work

The work related to periocular biometrics can be clas-

sified into two categories. The first category includes re-

search in segmenting and describing periocular features

for image classification. This research classifies images

as containing left or right eyes, or it classifies images by

gender or ethnicity. Works in this category are listed in

Table I.

The second category includes research that has ana-

lyzed periocular features for recognition purposes. These

works used gradient orientation histograms, local binary

patterns, and SIFT features for periocular recognition.

Works in this category are listed in Table II.
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Table II: Research in Periocular Recognition

Paper Data Algorithm Features

Park et al. [3] 899 visible light face im-

ages, 30 subjects

Gradient orientation histograms,

local binary patterns, Euclidean

distance, SIFT matcher

Eye region with

width of 6*iris-

radius and height

of 4*iris-radius

Miller et al. [4] FRGC data: visible light

face images, 410 subjects;

FERET data: visible light

face images, 54 subjects

Local binary patterns, City block

distance

LBP features

Adams et al. [5] Same as Miller et al. Local binary patterns and genetic

algorithm to select features

LBP features

Woodard et al.

[7]

FRGC data: visible light

face images; MBGC near-

infrared face images

Local binary patterns with city

block distance and color features

with Bhattacharya coefficient

LBP features,

color

Woodard et al.

[6]

MBGC data: near infrared

face images, 88 subjects

Local binary patterns; Result

fused with iris matching results

LBP features

Miller et al. [8] FRGC data: visible light

face images

Local binary patterns, color LBP features,

color

Xu et al. [9] FRGC data: visible light

face images

Local Walsh-Transform binary

patterns

LBP features

Bharadwaj et al.

[10]

UBIRISv2: visible light

iris images

Circular local binary patterns and

second-order global statistics

LBP features and

second-order fea-

tures

This work Near infrared images from

LG 2200 iris camera

Human analysis Eyelashes, tear

duct, eyelids

One difference between our work and the above men-

tioned papers is the target data type. The periocular recog-

nition papers all used periocular regions cropped from

face data. Our work uses near infrared images of a small

periocular region, from the type of image we get from iris

cameras. The anticipated application is to use periocular

information to assist in iris recognition when iris quality

is poor.

Another difference between our work and the above

work is the development strategy. The recognition papers

have followed a strategy of applying common computer

vision techniques to analyze images. We attempted to ap-

proach periocular recognition from a different angle. We

aimed to investigate the features that humans find most

useful for recognition in near infrared images of the peri-

ocular region.

3. Data

In selecting our data, we considered using eye images

taken from two different cameras: an LG2200 and an

LG4000 iris camera. The LG2200 is an older model, and

the images taken with this camera sometimes have unde-

sirable interlacing or lighting artifacts [18]. On the other

hand, in our data sets, the LG4000 images seemed to show

less periocular data around the eyes. Since our purpose

was to investigate features in the periocular region, we

chose to use the LG2200 images so that the view of the pe-

riocular region would be larger. We hand-selected a subset

of images, choosing images in good focus, with minimal

interlacing and shadow artifacts. We also favored images

that included both the inner and outer corners of the eye.

For our first experiment, we selected images from 120

different subjects. We had 60 male subjects and 60 female

subjects. 108 of them were Caucasian and 12 were Asian.
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For 40 of the subjects, we selected two images of an eye

and saved the images as a “match” pair. In each case, the

two images selected were acquired at least a week apart.

For the remaining subjects, we selected one image of an

eye, paired it with an image from another subject, and

saved it as a “nonmatch” pair. Thus, the queries that we

would present to our volunteers involved 40 match pairs,

and 40 nonmatch pairs. All queries were either both left

eyes, or both right eyes.

In our second experiment, we used images from 210

subjects. We had 104 male and 106 female subjects. 187

were Caucasian, 15 Asian, 3 Asian-Southern, 3 Hispanic,

and 2 Black or African-American. As in our previous ex-

periment, we randomly assigned subjects to be used in

either “match” or “nonmatch” pairs. We had 70 subjects

for the “match” pairs and 140 subjects for the “nonmatch”

pairs. Rather than randomly pairing the 140 nonmatch

subjects into queries, we paired similar subjects together.

All nonmatch subjects were paired so that two subjects in

a pair had the same gender and race. In addition, simi-

lar subjects were paired as follows. For all possible pairs

of images, we computed a difference score based on eye

color (blue, green, hazel, light brown, or dark brown),

presence of makeup (no-makeup, light-makeup, or heavy-

makeup), dilation ratio, percent eye occlusion, eyelashes

(short, medium, or long), and contacts (present or absent).

We then paired the most-similar subjects together to make

nonmatch queries. For match queries, we used images

taken at least a week apart so that no query would show

images from the same session. Additionally, we randomly

chose whether to show two left eyes or two right eyes for

the query.

In both experiments, our objective was to examine how

humans analyzed the periocular region. Consequently, we

did not want the iris to be visible during our tests. To

locate the iris in each image, we used our automatic seg-

mentation software, which uses active contours to find the

iris boundaries. Next, we hand-checked all of the seg-

mentations. If our software had made an error in finding

the inner or outer iris boundary, we manually marked the

center and a point on the boundary to identify the correct

center and radius of an appropriate circle. If the software

had made an error in finding the eyelid, we marked four

points along the boundary to define three line segments

approximating the eyelid contour.

For all of the images, we set the pixels inside the

iris/pupil region to black. An example image where the

iris has been blacked-out is shown in Figure 6.

4. Experimental Method

In order to determine which features in the periocular

region were most helpful to the human visual system, we

designed an experiment to present pairs of eye images to

volunteers and ask for responses. We designed a graph-

ical user interface (GUI) to display our images. At the

beginning of each session, the computer displayed exam-

ple pairs of eye images to the participant. The examples

included both match and nonmatch pairs. Next, the com-

puter displayed the test queries. For each test query, the

software displayed a pair of images and asked the user to

respond whether he or she thought the two images were

from the same person or from different people. In addi-

tion, he could note his level of confidence in his response –

whether he was “certain” of his response, or only thought

that his response was “likely” the correct answer.

The user was asked to rate a number of features depend-

ing on whether each feature was “very helpful,” “help-

ful,” or “not helpful” for determining identity. The fea-

tures listed were “eye shape,” “tear duct,”1 “outer corner,”

“eyelashes,” “skin,” “eyebrow,” “eyelid,” and “other.” If

a user marked that some “other” feature was helpful, he

was asked to enter what feature(s) he was referring to. A

final text box on the screen asked the user to describe any

other additional information that he used while examining

the eye images.

In Experiment 1, we asked volunteers to rate the help-

fulness of the various features for every single query pair.

Users did not have any time limit for examining the im-

ages. After the user had classified the pair of images as

“same person” or “different people” and rated all features,

he could click “Next” to proceed. At that point the user

was told whether he had correctly classified the pair of

images. Then, the next query was displayed. All volun-

teers saw the same queries, but the order of the queries

was randomized for each volunteer. A screenshot of the

GUI interface is visible in Figure 1.

One drawback of our first experimental design was that

the number of queries was relatively small. Despite the

small number of queries, we had one participant take an

hour and forty minutes to respond to the 80 queries. In

order to present a larger number of queries during Experi-

ment 2, we limited viewing time to three seconds for each

pair of images. By limiting viewing times, we could show

a larger number of queries and therefore get feedback

1We used the term “tear duct” informally in this instance to refer to

the region near the inner corner of the eye. A more appropriate term

might be “medial canthus” but we did not expect the volunteers in our

experiment to know this term.
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Figure 1: In our first experiment, we asked participants to rate

the helpfulness of various features with every single query.

on valuable features after participants had seem a greater

number of images. Unfortunately, this design makes it

difficult to directly compare accuracy on Experiments 1

and 2; however, we are able to achieve our primary goal

of determining which features humans find most useful.

A reasonable area of future work would be to determine

how much of the accuracy difference between the two ex-

periments is due to the shortened viewing time and how

much is due to pairing similar images together for non-

match queries.

Experiment 2 showed pairs of images for three seconds,

and after the allotted time, the images were hidden from

view. At that point, users could respond whether the two

images were from the same person or from different peo-

ple. Once the user responded and clicked “Next”, the

software reported whether the user had correctly classi-

fied the pair of images. As in Experiment 1, the order

of the queries was randomized for each user. Users were

only asked to rate the helpfulness of the various features

once, after seeing all of the queries. A screenshot of the

GUI interface is visible in Figure 2.

We solicited volunteers from the students and staff at

the University of Notre Dame to participate in our experi-

ments. We had 25 volunteers participate in Experiment 1,

and 28 volunteers for Experiment 2.

5. Results

5.1. How well can humans determine whether two peri-

ocular images are from the same person or not?

To find overall accuracy scores for our experiments, we

counted the number of times the participant was “likely”

or “certain” of the correct response; that is, we made

Figure 2: In our second experiment, the software displayed a

pair of images like the pair shown above for three seconds. Af-

ter the three seconds, the images were hidden and users could

respond whether the two images were same or different. We

asked participants to rate the helpfulness of various features

only once at the end of the experiment, after they had seen all

of the queries.

no distinction based on the participant’s confidence level,

only on whether they believed a pair to be from the same

person, or believed a pair to be from different people. We

divided the number of correct responses by the total num-

ber of queries to yield and accuracy score.

On Experiment 1, the average number of correct re-

sponses was 73.68 out of 80, which is 92.10% (standard

deviation 4.62%). The minimum score was 65
80
= 81.25%,

and the maximum score was 79
80
= 98.75%.

On Experiment 2, the average number of correct re-

sponses was 110.25 out of 140, which is 78.75% (stan-

dard deviation 5.70%). The minimum score was 89
140
=

63.57%, and the maximum score was 124
140
= 88.57%.

We used a t-test to evaluate the null hypothesis that hu-

mans did not perform differently than random guessing.

For both experiments, the resulting p-value was less than

10−4. Thus, we have statistically significant evidence that

our volunteers were doing better than random.

5.2. Did humans score higher when they felt more cer-

tain?

As mentioned above, users had the option to mark

whether they were “certain” of their response or whether

their response was merely “likely” to be correct. Some

participants were more “certain” than others.

On Experiment 1, one participant responded “certain”

for 70 of the 80 queries. On the other hand, one partici-

pant did not answer “certain” for any queries. Discount-

ing the person who was never certain, the average score on
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the questions where participants were certain was 96.64%

(standard deviation 5.26%). The average score when par-

ticipants were less certain was 84.84% (standard deviation

11.24%).

On Experiment 2, one participant responded “certain”

for 140 of the 140 queries. Two responded “certain” for

only 19 of the 140 queries. The average score on the ques-

tions where participants were certain was 88.90% (stan-

dard deviation 7.46%). The average score when partic-

ipants were less certain was 70.77% (standard deviation

8.09%). Thus, in both experiments volunteers did better

on the subset of the queries where they felt “certain” of

their answer.

5.3. Did humans do better on the second half of the test

than the first half?

To determine whether participants were improving

throughout the duration of the experiment, we compared

scores from the first half of the test with scores from the

second half of the test. For Experiment 1, the average

scores on the two halves of the test were nearly identical.

On the first half of queries the average score was 92.20%

(standard deviation 5.12%), and on the second half of the

queries, the average score was 92.00% (standard devia-

tion 5.00%). For Experiment 2 where we presented more

queries, there was some improvement between the two

halves of the test. On the first half of queries the average

score was 77.86% (standard deviation 5.30%), and on the

second half of the queries, the average score was 79.64%

(standard deviation 7.85%). We computed a one-tailed t-

test to check whether the scores on the second half were

statistically signicantly higher than the scores on the first

half. The resulting p-value was 0.095. Thus there is insuf-

ficient evidence to show that the subjects learned over the

course of the test.

These results are consistent with results from other

experiments where we had participants view periocular

regions of twins’ eyes [19] and of left and right eye

pairs [20]. In both cases, the average scores were higher

on the second half of the test, but we did not find statisti-

cally significant evidence of improvement. It may be that

a longer test is needed in order to see statistically signifi-

cant evidence of learning.

5.4. In Experiment 1, which features were correlated with

correct responses?

A primary goal of our research was to determine which

features in the periocular region were most helpful to the

human visual system when making recognition decisions.

Specifically, we are interested in features present in near-

infrared images of the type that can be obtained by a typi-

cal iris camera. In Experiment 1, we asked participants to

rate the helpfulness of features on every query; therefore,

we could evaluate which features they reported as useful

on the subset of queries where they correctly determined

whether the image pair was from same person.

For all correct responses, we counted the number of

times each feature was rated as “very helpful” to the user,

“helpful”, or “not helpful”. A bar chart of these counts is

given in Figure 3. The features in this figure are sorted by

the number of times each feature was regarded as “very

helpful”. According to these results, the most helpful fea-

ture was eyelashes, although tear duct and eye shape were

also very helpful. The ranking from most helpful to least

helpful was (1) eyelashes, (2) tear duct, (3) eye shape,

(4) eyelid, (5) eyebrow, (6) outer corner, (7) skin, and (8)

other.

Other researchers have found eyebrows to be more use-

ful than eyes in identifying famous people [12], so the fact

that eyebrows were ranked fifth out of eight is perhaps de-

ceiving. The reason eyebrows received such a low rank-

ing in our experiment is that none of the images showed a

complete eyebrow. In about forty queries, the two images

both showed some part of the eyebrow, but in the other

forty queries, the eyebrow was outside the image field-of-

view in at least one of the images in the pair. On images

with a larger field of view, eyebrows could be significantly

more valuable. We suggest that iris sensors with a larger

field of view would be more useful when attempting to

combine iris and periocular biometric information.

The low ranking for “outer corner” (sixth out of eight)

did not surprise us, because in our own observation of a

number of eye images, the outer corner does not often pro-

vide much unique detail for distinguishing one eye from

another. There were three queries where the outer corner

of the eye was not visible in the image (See Figure 9).

Skin ranked seventh out of eight in our experiment, fol-

lowed only by “other”. Part of the reason for the low rank

of this feature is that the images were all near-infrared im-

ages. Therefore, participants could not use skin color to

make their decisions. This result may not be quite as strik-

ing if we used a data set containing a greater diversity of

ethnicities. However, we have noticed that variations in

lighting can make light skin appear dark in a near-infrared

image, suggesting that overall intensity in the skin region

may have greater intra-class variation than inter-class vari-

ation in these types of images.
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Figure 3: Eyelashes were considered the most helpful feature for making decisions about identity. The tear duct and shape of the

eye were also very helpful.
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This result suggests that those two features would be less helpful for making decisions about identity than other features such as

eyelashes.

7



!"

#"

$!"

$#"

%!"

%#"

&'()*+,(+" &'()-." /(*0"1234" &'("5,*6(" &'(7089" :24(0"

;80<(0"

5=-<" :4,(0"

>
2
?
7
(
0"
8
@"
A
(
+6
8
<
+(
+"

A*4(."B()6@2)<(++"8@"C(*420(+D"&E6(0-?(<4"%"

F(0'"B()6@2)"

B()6@2)"

>84"B()6@2)"

Figure 5: In both Experiment 1 (Fig. 3) and Experiment 2, eyelashes were the top-ranked feature. The tear duct was also very

valuable, being ranked second in Experiment 1 and third in Experiment 2.

5.5. In Experiment 1, which features were correlated with

incorrect responses?

In addition to considering which features were marked

most helpful for correct responses, we also looked at

how features were rated when participants responded in-

correctly. For all the incorrectly answered queries, we

counted the number of times each feature was “very help-

ful”, “helpful”, or “not helpful”. A bar chart of these

counts is given in Figure 4. We might expect to have

a similar rank ordering for the features in the incorrect

queries as we had for the correct queries, simply because

if certain features are working well for identification, a

volunteer would tend to continue to use the same fea-

tures. Therefore, rather than focusing on the overall rank

order of the features, we considered how the feature rank-

ings differed from the correct responses to the incorrect

responses. The ranking from most helpful feature to least

helpful feature for the incorrect queries was (1) eye shape,

(2) tear duct, (3) eyelashes, (4) outer corner, (5) eyebrow,

(6) eyelid, (7) skin, and (8) other. Notice that “eye shape”

changed from rank three to rank one. Also “outer cor-

ner” changed from rank six to rank four. This result im-

plies that eye shape and outer corner are features that are

less valuable for correct identification. On the other hand,

“eyelashes” and “eyelid” both changed rank in the oppo-

site direction, implying that those features are more valu-

able for correct identification.

5.6. In Experiment 2, which features were rated most

helpful?

In Experiment 2, we asked participants to rate features

after they had seen all of the queries. Thus, we could

not analyze which features they found useful on specific

queries. However, we did tabulate the feature rankings

that participants gave. A bar chart of these counts is given

in Figure 5. In both Experiment 1 and Experiment 2, eye-

lashes were rated as the most helpful feature. The next

three features – tear duct, eye shape, and eyelid – were

ranked in slightly different order for the two experiments,

but still ranked in the top four. The consistency of re-

sponses over two different experiments with different im-

ages and different participants shows that eyelashes are

very helpful to humans in verification tasks with these

types of images. The tear duct is also very valuable, being

ranked second in Experiment 1 and third in Experiment 2.

5.7. What additional information did humans provide?

In addition to the specific features that participants were

asked to rate, participants were also asked to describe

other factors they considered in making their decisions.

Users were prompted to “explain what features in the im-

age were most useful to you in making your decision”,

and enter their response in a text box.
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Table III: Summary of Responses

to an Open-Ended Request to list Most Useful Features

Query Helpful Features Unhelpful or

Type Misleading Features

Match clusters of eyelashes glare

Queries single “stray” eyelashes shadow

eyelash density different lighting

eyelash direction different angle of eye

eyelash length different eye shape

eyelash intensity amount the eye was open

tear duct hair in one image

eyebrow contact lens

unusual eye shape vs. no contact lens

slant of eyes makeup vs. no makeup

amount the eye was open

contacts

makeup

Nonmatch lashes in tear duct region glare

Queries eyelash density makeup

eyelash direction

eyelash length

eyelash intensity

tear duct

eyebrow

eyelid

eye shape

crease above the eye

contacts

makeup

Table III summarizes volunteers’ free-responses. Only

responses from queries where they got the answer correct

are listed. Participants found a number of different traits

of eyelashes valuable. They considered the density of eye-

lashes (or number of eyelashes), eyelash direction, length,

and intensity (light vs. dark). Clusters of eyelashes, or sin-

gle eyelashes pointing in an unusual direction were help-

ful, too. Contacts were helpful as a “soft biometric”. That

is, the presence of a contact lens in both images could be

used as supporting evidence that the two images were of

the same eye. However, no participants relied on contacts

as a deciding factor. Two of the eighty queries in Exper-

iment 1 showed match pairs where one image in the pair

showed a contact lens, and the other did not. Participants

did well for both of these pairs: the percents of volunteers

who classified these pairs correctly were 92% (23 of 25)

and 96% (24 of 25).

Makeup was listed both as “very helpful” for some

queries, and as “misleading” for other queries. When a

subject wore exactly the same type of makeup for multiple

acquisition sessions, the makeup was useful for recogni-

tion. Alternatively, when a subject changed her makeup,

recognition was harder. One of the eighty queries in Ex-

periment 1 showed a match pair where only one of the

images displayed makeup. Although 24 of 25 participants

still correctly classified this pair, every participant who

provided written comments for this pair remarked that the

presence of mascara in only one of the images was dis-

tracting or misleading.

5.8. Which pairs were most frequently classified cor-

rectly, and which pairs were most frequently classi-

fied incorrectly?

In Experiment 1, there were 21 match pairs that were

classified correctly by all participants. One example of
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a pair that was classified correctly by all participants is

shown in Figure 6. There were 12 nonmatch pairs classi-

fied correctly by all participants. An example is shown in

Figure 7.

Figure 8 shows the match pair most frequently classi-

fied incorrectly in Experiment 1. Eleven of the 25 partici-

pants mistakenly thought that these two images were from

different people. This pair is challenging because the eye

is wide open in one of the images, but not it the other. Fig-

ure 9 shows the nonmatch pair most frequently classified

incorrectly. This pair was also misclassified by 11 partic-

ipants, although the set of 11 participants who responded

incorrectly for the pair in Figure 9 was different from the

set of participants who responded incorrectly for Figure 8.

In Experiment 2, there were 3 match pairs that were

classified correctly by all volunteers. One example of a

pair that was classified correctly by all volunteers is shown

in Figure 10. There were no nonmatch pairs classified cor-

rectly by all volunteers, but Figure 11 shows a nonmatch

pair classified correctly by 27 of 28 volunteers.

Figure 12 shows the match pair most frequently clas-

sified incorrectly in Experiment 2. Seventeen of the 25

volunteers mistakenly thought that these two images were

from different people. Figure 13 shows the nonmatch pair

most frequently classified incorrectly. This pair was mis-

classified by 16 volunteers.

6. Discussion and Conclusion

We conducted two experiments examining how well

humans could classify a pair of periocular images as being

from the same person or from different people. In Experi-

ment 1, we formed nonmatch queries by randomly pairing

two subjects together. In Experiment 2, we formed non-

match queries by pairing subjects with the same gender,

same ethnicity, and similar eye color, makeup, eye occlu-

sion, and eyelash length. Also in Experiment 2, we lim-

ited the viewing time to three seconds for each pair to al-

low us to present a larger number of queries in the experi-

ment. In both experiments, we presented an equal number

of match and nonmatch queries. We found that humans

correctly classified the pairs on the easier task (Experi-

ment 1) with an average accuracy of 92%. On the harder

task (Experiment 2), average accuracy was 79%. Thus, we

observed a large drop in performance on the harder task.

However, both experiments showed humans performing

significantly better than random guessing.

Participants’ scores were higher on the queries where

they expressed high confidence. On the subset of queries

where participants were confident, the average score was

97% for Experiment 1 and 89% for Experiment 2. There-

fore, we infer that participants correctly judged their rela-

tive confidence in their responses.

The performance on Experiment 1 was about 92% for

both the first and second halves of the test. However, on

Experiment 2, which presented 75% more queries, perfor-

mance improved by about 2% between the first and second

portions of the test. This improvement was not statisti-

cally significant, but it is possible that a longer test might

show statistically significant evidence of learning.

Eyelashes were rated as the most helpful feature in both

Experiments 1 and 2. Participants used eyelash intensity,

length, direction, and density. They also looked for groups

of eyelashes that clustered together, and for single eye-

lashes separated from the others. The tear duct was rated

as the second most helpful feature in Experiment 1, and

the third most helpful feature in Experiment 2. Eye shape

and eyelids were also rated highly. However, eye shape

was used in a large number of incorrect responses. Both

eye shape and the outer corner of the eye were used a

higher proportion of the time for incorrect responses than

they were for correct responses, thus those two features

might not be as useful for recognition. Skin and the outer

corner of the eye were ranked lowest in both experiments.

The presence of contacts was used as a soft biometric.

Eye makeup was helpful in some image pairs, and dis-

tracting in others. Changes in lighting were challenging,

and large differences in eye occlusion were also a chal-

lenge.

Our analysis suggests some specific ways to design

powerful periocular biometrics systems. We expect that

for near-infrared periocular images, a biometrics system

that explicitly detects eyelids, eyelashes, the tear duct and

the entire shape of the eye could be more powerful than

some of the skin analysis methods presented previously.

While the eyelashes were judged the most helpful fea-

ture, analyzing the eyelashes would likely require detect-

ing the eyelids first. Eyelids can be detected using edge

detection and Hough transforms [21, 22], a parabolic “in-

tegrodifferential operator” [23], or active contours [24].

The research into eyelid detection has primarily been

aimed at detecting and disregarding the eyelids during iris

recognition, but we suggest detecting and describing eye-

lids and eyelashes to aid in identification. Feature vectors

describing eyelashes could include measures for the den-

sity of eyelashes along the eyelid, the uniformity of direc-

tion of the eyelashes, and the curvature and length of the

eyelashes. We could also use metrics comparing the upper

and lower lashes.

The second most helpful feature in our study was the
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Figure 6: In Experiment 1, all 25 participants correctly classified these two images as being from the same person.

Figure 7: In Experiment 1, all 25 participants correctly classified these two images as being from different people

Figure 8: In Experiment 1, eleven of 25 participants incorrectly guessed that these images were from different people, when in fact,

these eyes are from the same person. This pair is challenging because one eye is much more open than the other.
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Figure 9: In Experiment 1, eleven of 25 participants incorrectly guessed that these images were from the same person, when in fact,

they are from two different people.

Figure 10: All 28 participants in Experiment 2 correctly classified these two images as being from the same person.

Figure 11: Twenty-seven of 28 participants in Experiment 2 correctly classified these two images as being from different people
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Figure 12: Seventeen out of 28 participants in Experiment 2 incorrectly guessed that these images were from different people, when

in fact, these eyes are from the same person.

Figure 13: Sixteen of 28 participants in Experiment 2 incorrectly guessed that these images were from the same person, when in

fact, they are from two different people.

tear duct region. Once we have detected the eyelids, we

could extend those curves to locate the tear duct region.

This region should more formally be referred to as the

medial canthus. A canthus is the angle or corner on each

side of the eye, where the upper and lower lids meet. The

medial canthus is the inner corner of the eye, or the cor-

ner closest to the nose. Two structures are often visible

in the medial canthus, the lacrimal caruncle and the plica

semilunaris [25]. These two features typically have lower

contrast than eyelashes and iris. Therefore, they would be

harder for a computer vision algorithm to identify, but if

they were detectable, the sizes and shapes of these struc-

tures would be possible features. Detecting the medial

canthus itself would be easier than detecting the caruncle

and plica semilunaris, because the algorithm could follow

the curves of the upper and lower eyelids until they meet

at the canthus. Alternatively, we could follow the method

suggested by Abiantun and Savvides [13] using boosted

Haar features. Once detected, we could measure the an-

gle formed by the upper and lower eyelids and analyze

how the canthus meets the eyelids. In Asians, the epican-

thal fold may cover part of the medial canthus [25] so that

there is a smooth line from the upper eyelid to the inner

corner of the eye (e.g. Figure 6). The epicanthal fold is

present in fetuses of all races, but in Caucasians it has usu-

ally disappeared by the time of birth [25]. Therefore, Cau-

casian eyes are more likely to have a distinct cusp where

the medial canthus and upper eyelid meet (e.g. Figure 8).

The shape of the eye has potential to be helpful, but

the term “eye shape” is ambiguous, which might explain

the seemingly contradictory results we obtained about the

helpfulness of this particular feature. To describe the
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shape of the eye, we could analyze the curvature of the

eyelids. We could also detect the presence or absence of

the superior palpebral furrow – the crease in the upper

eyelid – and measure its curvature if present.

Previous periocular research has focused on texture and

key points in the area around the eye. The majority of

prior work [4, 5, 6, 7, 8] masked an elliptical region in the

middle of the periocular region “to eliminate the effect of

textures in the iris and the surrounding sclera area” [4].

This mask effectively occludes a large portion of the eye-

lashes and tear duct region, thus hiding the features that

we find are most valuable. Park et al. [3] do not mask the

eye, but they also do not do any explicit feature modeling

beyond detecting the iris. These promising prior works

have all shown recognition rates at or above 77%. How-

ever, we suggest that there is potential for greater recog-

nition power by considering additional features.
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