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Abstract—The most common iris biometric algorithm repre-
sents the texture of an iris using a binary iris code. Not all bits in
an iris code are equally consistent. A bit is deemed fragile if its
value changes across iris codes created from different images of
the same iris. Previous research has shown that iris recognition
performance can be improved by masking these fragile bits.
Rather than ignoring fragile bits completely, we consider what
beneficial information can be obtained from the fragile bits.
We find that the locations of fragile bits tend to be consistent
across different iris codes of the same eye. We present a metric,
called the fragile bit distance, which quantitatively measures
the coincidence of the fragile bit patterns in two iris codes.
We find that score fusion of fragile bit distance and Hamming
distance works better for recognition than Hamming distance
alone. To our knowledge, this is the first and only work to use
the coincidence of fragile bit locations to improve the accuracy
of matches.

Index Terms—Iris biometrics, fragile bits, score fusion.

I. INTRODUCTION

RELIABLE identification of people is required for many
applications such as immigration control, aviation secu-

rity, or safeguarding of financial transactions. Research [2] and
experience to date in actual applications [3] have demonstrated
that the texture of a person’s iris is unique and can be used
as a means of identification. Improving the accuracy and
reliability of iris recognition is the goal of many current
research endeavors [4].

The canonical iris recognition system involves a number
of steps [4]. First, a camera acquires an image of an eye.
Next, the iris is located within the image. The annular region
of the iris is “unwrapped”, or transformed from raw image
coordinates to normalized polar coordinates. A texture filter
is applied to a set of locations on the iris, and the filter
responses are quantized to yield a binary iris code. Finally, the
iris code is compared with a known iris code in the gallery,
and a similarity or distance score is reported. In an identity-
verification application, the system uses the reported score to
decide whether the two compared iris codes are from the same
subject or from different subjects.

A. Fragile Bit Masking

Not all bits in the iris code are consistent across different
images of the same iris. The concept that some bits in the
iris code are less consistent than others was first published by
Bolle et al. [5]. Since then, there has been a number of papers
investigating fragile bits [1], [6]–[10].
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We now give a brief introduction to the concept of fragile
bits. Readers interested in a more detailed analysis may refer
to our previous work [7]. In creating an iris code, a traditional
iris biometrics system applies Gabor filters to a number of
locations on an iris image and obtains a complex-valued filter
response for each location. Each complex number is quantized
to two bits; the first bit is set to one if the real part of the
complex number is positive, and the second bit is one if the
imaginary part is positive. Consider multiple images of the
same iris. A filter applied to one location on the iris produces a
complex value. Across all images, the complex values for that
location will be similar, but not exactly the same. Similarly,
the bit from the binary quantization could be the same across
all iris codes, or it may differ in some of the codes. A bit
in a subject’s iris code is consistent if it assumes the same
value for most images of that subject. A bit is fragile if it
varies in value some substantial percent of the time. For a
filter applied to a specific location in a single image, if the
real part of the complex number has a large magnitude, then
the corresponding bit will likely be consistent. On the other
hand, if the real part is close to zero (or close to the vertical
axis of the complex plane), the corresponding bit is fragile.
Similar logic applies to the imaginary bits.

To illustrate this concept, we took 54 images of the same
iris, and for each image, looked at the filter response for one
particular spot on the iris. The resulting 54 complex numbers
are shown in Figure 1. For this spot on the iris, all of the
filter responses had a positive real value, but the imaginary
part was positive about half of the time and negative the other
half of the time. Therefore, the corresponding real bit in the
iris code was consistent, and the corresponding imaginary bit
was fragile.

In discussing fragile bits in the iris code, it is important
to note that we are not saying that parts of the iris itself
are unstable. The iris structure is generally considered highly
robust, changing very little over time. Instead, bit fragility
occurs when the inner product between a filter and a particular
part of the iris produces a result with small magnitude, or
with a phase close to the quantization boundary. Therefore,
the consistency of each bit in the iris code is dependent upon
a combination of (1) the iris texture at a certain position, (2)
the filter used to analyze that texture, and (3) the quantization
method for the filter response. If the iris texture at a particular
point happens to have locally odd symmetry, for example,
then its projection onto a cosine-phase wavelet may be close
to zero, so the corresponding bit in the iris code may be
determined by noise. A small change in the local coordinate
system (due to segmentation uncertainty) can then easily flip
the even bit, but not the odd bit. Thus, it is the result of how
phase is encoded by the wavelets that is sensitive to sensor
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Fig. 1. These 54 complex numbers, each from the same region on 54 different
images of the same subject’s eye, all correspond to the same location on the
iris code. Each complex number is mapped to two bits. This particular part of
the iris code had a highly consistent real bit, and a highly fragile imaginary
bit. (Figure reprinted from Hollingsworth et al., IEEE Transactions on Pattern
Analysis and Machine Intelligence [7] c©2008 IEEE.)

Fig. 2. The consistency of each bit in the iris code is dependent upon
a combination of the iris texture at a certain position and the filter used to
analyze that texture. These two fragile bit patterns both correspond to the same
iris, but a different filter has been used, and consequently, different fragile bit
patterns emerge. Black regions represent fragile bits in the iris code, and white
regions represent consistent bits.

noise or to minor coordinate system variation, not the iris or
iris texture itself that is fragile.

In a previous paper [7], we used two different filters to
create two different iris codes from the same eye. The iris
codes were different for the two different filters, and similarly,
the locations of fragile bits were different. This situation is
illustrated in Figure 2. In this figure, we applied two different
filters to the same iris and examined the fragile bit patterns. All
factors were kept constant between the two analyses, except
for the filter used. The two fragile bit patterns are clearly
different. Similar experiments on other irises show the same
phenomenon. Based on our previous experiments [7], we see
that any type of filter, when used with a quantization technique
like the one described above, would result in some bits being
less consistent than others, and that the locations of the fragile
bits would occur on the quantization boundaries. A different
quantization technique would produce different patterns of
fragile and consistent bits.

This concept suggests a simple optimization to iris recog-

nition algorithms. Assume a traditional quantization method,
meaning quantization based on the four quadrants of the
complex plane. When generating an iris code, we sort the
real parts of the complex numbers, and identify a fraction
of numbers with the smallest magnitude. Daugman suggested
rejecting the lowest quartile of values [11]. The corresponding
bits in the iris code are masked, or not considered when
computing distance scores. The bits corresponding to the
smallest imaginary values are likewise masked. With this
modification, the final score in a comparison is based on
fewer bits, but each bit used is more consistent. We call this
modification fragile bit masking.

B. Motivation of Proposed Method

When using fragile bit masking [7], we mask a significant
number of bits because the filter response produced an output
with small magnitude. Rather than completely ignoring all
information from those locations, we would like to find a way
to make some beneficial use of those bits. We know that the
values (zero/one) of those bits are not stable. However, the
physical locations of those bits should be stable and might be
used to to improve our iris recognition performance.

We call the physical locations of fragile bits a fragile

bit pattern. Figure 3 shows some iris images and Figure 4
shows the corresponding fragile bit patterns. Figure 4(a) and
Figure 4(b) both show subject number 2463, and Figure 4(c)
and Figure 4(d) both show subject 4261. The fragile bit
patterns in Figure 4(a) and Figure 4(b) are more similar to
each other than the fragile bit patterns in Figure 4(a) and
Figure 4(c).

To compute the Hamming distance between two iris codes,
we first take the logical AND of the masks for the two iris
codes. Figure 5 shows the fragility masks obtained by ANDing
pairs of fragility masks together. For example, Figure 5(a) is
the comparison mask obtained by combining Figure 4(a) and
4(b). Figure 5(a) and 5(b) both show masks obtained when
computing the Hamming distance for a match comparison
(same subject). Figure 5(c) and 5(d) show masks for nonmatch
comparisons. The fragile bit patterns for the match compar-
isons coincide more closely than the fragile bit patterns for the
nonmatch comparisons. By looking at how well two fragile bit
patterns align, we can make a prediction on whether those two
irises are from the same subject or from different subjects.
We can fuse that information with the Hamming distance
information and get an improved prediction over using the
Hamming distance alone.

C. Organization of paper

The rest of this paper is organized as follows. In section II
we talk about related research. Section III describes the data
set used for our experiments. Section IV defines a new metric,
the fragile bit distance (FBD), which quantifies the difference
between two fragile bit patterns. In section V, we present
graphs of the distributions of FBD and Hamming distance. In
section VI we talk about how to fuse Hamming distance with
FBD. In section VII we show that the proposed method results
in a statistically significant improvement over using Hamming



(a) 02463d1910 (b) 02463d1912

(c) 04261d1032 (d) 04261d1034

Fig. 3. Example images from our data set. These images were captured
using an LG4000 iris camera.

(a) 02463d1910: 1116 fragile bits

Masks

(b) 02463d1912: 1128 fragile bits

(c) 04261d1032: 1098 fragile bits

(d) 04261d1034: 1118 fragile bits

Fig. 4. These are the fragile bit patterns (imaginary part) corresponding to
the images in Figure 3. Black pixels are bits masked for fragility. Dark blue
pixels on the bottom of each rectangle are regions masked for occlusion. We
use 4800-bit iris codes and mask 25% of the bits (or 1200 bits) for fragility.
Some of the bits are masked for occlusion, and so slightly less than 1200 bits
are masked for fragility.

(a) Match comparison: 1706 fragile bits masked

Comparisons Between Pairs of Masks

(b) Match comparison: 1738 fragile bits masked

(c) Nonmatch comparison: 1957 fragile bits masked

(d) Nonmatch comparison: 1978 fragile bits masked

Fig. 5. These are comparisons of fragile bit patterns, each obtained by
ANDing two fragile bit masks together. For example, Figure 5(a) is the
comparison mask obtained by combining Figure 4(a) and 4(b). Black pixels
show where the two fragility masks agreed. Light blue pixels show where
they disagreed. White pixels were unmasked for both iris codes. There is
more agreement in same-subject comparisons than there is when comparing
masks of different subjects.

distance alone. Section VIII presents experiments showing the
effect of changing the amount of fragile bit masking used.
Finally, section IX shows how our method performs when
using smaller template sizes.

II. RELATED WORK

For a broad survey of the iris biometrics field, readers
may look at [4]. To see papers that evaluate different dis-
tance metrics for use in biometrics, we refer readers to [12]
and [13]. Boult [12] shows how robust distance measures
can improve performance, and Ross and Govindarajan [13]
employ Thresholded Absolute Distance and Euclidean distance
to compare two biometric templates. In this section, we review
some specific iris biometrics papers that relate closely to our
work. We mention papers that (1) use portions of the iris code
for specific tasks, (2) fuse Hamming distance with additional
information, (3) extend the iris code to store additional phase
information, or (4) investigate fragile bits in the iris code.

A. Using portions of the iris code for specific tasks

When searching a large database of iris codes, Hao et
al. [14] compare small segments of iris codes instead of the en-
tire code. They require three small segments to match exactly
before taking the time to retrieve from disk and compare the
entire iris code or record. This strategy allows them to achieve
a 300-times speedup over an exhaustive search of 632,500 iris
codes, with only a slight drop in performance. Mukherjee et
al. [15] also present a method of improving response time
when searching an iris database. They examine the structure
of the iris code for clustering and indexing purposes.

Gentile et al. [16] also look at subsets of pixels in the
iris code. Their full-length iris code was 5760 bytes. By
subsampling rows in their iris code, they obtained a “short-
length iris code” of 450 bytes (not including the mask). Short-
length iris codes had the advantage of reducing the matching
time per pair. The iris codes we use in this paper are 600 bytes
long.

These papers are similar to ours in that they present some
analysis of the structure of the iris code, but they differ in that
they aim to reduce the time required for matching, while our
work aims to improve recognition performance.

B. Research on fusing Hamming distance with added infor-

mation

A small subset of iris biometrics research investigates com-
bining Hamming distance with other information. A work by
Sun et al. [17] aims to characterize global iris features using
the following feature extraction method. First, they introduce
a local binary pattern operator (LBP) to characterize the iris
texture in each block of the iris image. The image block
information is combined to construct a global graph. Finally,
the similarity between two iris images is measured using
a graph matching scheme. They fuse the LBP score with
Hamming distance using the sum rule. They report that using
Hamming distance alone yields an equal error rate (EER) of
0.70%, but the score fusion of Hamming distance with their
LBP method yields an EER of 0.37%.



As an alternative to the sum rule, Sun et al. [17] state that the
LBP score could be combined with Hamming distance using
cascaded classifiers. Since their LBP method is slower than
computing the Hamming distance, they suggest calculating the
Hamming distance first. If the Hamming distance is below
some low threshold, the comparison is classified as a match.
If the Hamming distance is above some high threshold, the
comparison is classified as a nonmatch. If the Hamming
distance is between those two thresholds, use the LBP score
to make the decision.

Vatsa et al. [18] characterize iris texture using Euler num-
bers. They use a Vector Difference Matching algorithm to
compare Euler codes from two irises. Vatsa et al. combine
Hamming distance and Euler score using a cascaded classifier.

Zhang et al. [19] use log-Gabor filters to extract 32 global
features characterizing iris texture. To compare the global
features from two iris images, they use a weighted Euclidean
distance (WED) between feature vectors. Zhang et al. use cas-
caded classifiers to combine the global WED with a Hamming
distance score. However, unlike Sun et al. [17] and Vatsa et
al. [18], they propose using their global classifier first, and
then using Hamming distance. In their experiments, using
Hamming distance alone gave a false accept rate (FAR) of
8.1% when the false reject rate (FRR) was 6.1%. The fusion
of WED and Hamming distance gave FAR = 0.3%, FRR =
1.9%.

Park and Lee [20] generate one feature vector using the
binarized directional subband outputs at various scales. To
compare two binary feature vectors, they use Hamming dis-
tance. A second feature vector is computed as the blockwise
normalized directional energy values. Energy feature vectors
are compared using Euclidean distance. To combine scores
from these two feature vectors, Park and Lee use a weighted
average of the two scores. Using the binary feature vectors
alone gives an EER of 5.45%; the energy vectors yield an
EER of 3.80%; when the two scores are combined, the EER
drops to 2.60%.1

All of the above mentioned papers combine Hamming
distance scores with some other scores at the matching score
level to improve iris recognition. Sun et al. [17] combine
scores by summing. Three of the papers [17], [18], [20] use
cascaded classifiers. Park and Lee [20] use a weighted average.
Our work is similar to these papers in that we also consider
combining two match scores to improve performance. We
differ from these other works in that we are the first to use a
score based on the location of fragile bits in two iris codes.

C. Extending the iris code to store additional information

Rather than designing a new type of feature extraction
method, Kong et al. [21] extended the traditional method of
creating a binary iris code. The traditional method, proposed
by Daugman [2] coarsely quantizes each filter response to one
of four values – 00, 01, 10, or 11 – based on the phase of the

1These EERs are not as good as some EERs reported in other iris papers
(e.g. [17]). It is not clear from the paper why these EERs are worse, but it is
possible that their segmentation routine was not as robust as others, or their
data set was more challenging.

complex number. Kong et al. [21] quantized the plane more
finely. They tried using six regions in the complex plane and
encoding the responses as one of six values – 000, 100, 110,
111, 011, or 001. They also considered using eight or ten
regions. They found that a more precise phase representation
improved performance, at the cost of requiring a larger iris
code and consequently, a slightly slower matching speed.

Our work is similar to Kong’s in that we essentially divide
the complex plane into five regions – the four traditional
regions, and a fifth region containing the axes of the complex
plane. While each region in Kong’s representation is treated
equally, our method assigns a heavier value to the four
traditional regions, and a lighter value to the region around
the axes.

D. Research on Fragile Bits

Research on fragile bits is a more recent trend in iris bio-
metrics literature. One of our previous papers, [7], presented
evidence that not all bits in the iris code are of equal consis-
tency. We investigated possible causes of fragile bits including
small inconsistencies in segmentation and granularity of image
alignment during matching. We also considered the effect of
different filters on bit fragility; we used 1D log-Gabor filters
and multiple sizes of a 2D Gabor filter, and found that the
fragile bit phenomenon was apparent with each filter tested.
The largest filter tended to yield fewer fragile bits than the
smaller filters. With both types of filters, the fragile bits
came from filter responses near quantization boundaries. We
performed an experiment comparing (1) no masking of fragile
bits (baseline) with (2) masking bits corresponding to complex
filter responses near the axes of the complex plane. We masked
fragile bits corresponding to the 25% of filter responses closest
to the axes. Using a data set of 1226 images from 24 subjects,
we found that fragile bit masking improved the separation
between the match and nonmatch score distributions.

Other researchers have also begun to investigate the effects
of masking fragile bits. Barzegar et al. [8] investigated fragile
bit masking using different thresholds. They compared (1) no
fragile bit masking to (2) fragile bit masking with thresholds
of 20%, 30% and 35%. They found that using a threshold of
35% produced the lowest error rates on the CASIA-IrisV3 data
set. Our own initial investigations have shown that the optimal
fragility threshold may depend partly on the quality of the iris
images being used; therefore, we feel that further investigation
into the proper fragility threshold would be worthwhile.

Dozier et al. [9] also tried masking fragile bits and found an
improvement in performance. However, they used a different
method than Hollingsworth et al. [7] and Barzegar et al. [8].
Hollingsworth et al. [7] and Barzegar et al. [8] approximated
fragile bit masking by masking filter responses near the axes
of the complex plane. In contrast, Dozier et al. used a training
set of ten images per subject to find consistency values for
each bit in the iris code. Then for that subject, they only kept
bits that were 90% or 100% consistent in their training set, and
masked all other bits. In addition, they also considered only
those bits that had at least 70% coverage in their training set;
that is, if a bit was occluded by eyelids or eyelashes in four



or more of the training images, they masked that bit. Dozier
et al. tested their method on six subjects from the ICE data
set.

In a similar paper, Dozier et al. [10] again showed the
benefit of masking fragile bits. In this work, they used a
genetic algorithm to create an iris code and corresponding
mask for each subject. Once again, they used ten training
images per subject in generating their fragile bit masks.

Each of the above mentioned papers showed the benefit of
masking fragile bits, but in every case, they simply discarded
all information from the fragile bits. None of them considered
employing the locations of fragile bits as an extra feature to
fuse with Hamming distance.

The only paper that showed a benefit from using the
locations of fragile bits is the earlier version of this paper [1].
In that earlier work, we introduced the idea of comparing
fragile-bit-locations between two irises, and tested our idea on
a data set of 9784 images. In this paper, we have more than
doubled the size of our data set. We have further analyzed
the distribution of fragile bit distance, added statistical tests
evaluating our proposed method, and investigated the effect
of varying the amount of fragile bit masking used.

III. DATA AND SOFTWARE

We acquired a data set of 19,891 iris images taken with
an LG4000 iris camera [22] at the University of Notre Dame.
Some example images are shown in Figure 3 and the camera
is shown in Figures 6 and 7. The images are 640 pixels by 480
pixels. All images in this set were acquired between January
2008 and May 2009. A total of 686 different people attended
acquisitions sessions, so there are 1372 different eyes in the
data set. Each subject attended between one and eighteen
acquisition sessions. At each session, we usually acquired
three left eye images and three right eye images. The minimum
number of images for any one subject is four (two of each iris),
and the maximum is 108 (54 of each iris).

For our experiments, we used the current version of our
in-house iris biometric software. This software is based on
the IrisBEE software [23]. It uses one-dimensional log-Gabor
filters for extracting the iris texture from the segmented and
unwrapped iris image. The frequency response of the log-
Gabor filter is

G(f) = exp

(

−(log(f/f0))2

2(log(σ/f0))2

)

(1)

where f0 is the center frequency and σ gives the bandwidth
of the filter [24]. Our software uses a center wavelength of 12
pixels, and a filter bandwidth of 0.5 [25]. One modification
that we made to the IrisBEE software is that our software
now uses active contours for segmentation. Additionally, we
added fragile bit masking to the software; we use a default
fragile bit masking threshold of 25% [7]. In section VIII of this
paper, we investigate the effects of changing this threshold. A
third modification involves the size of the iris code. We took
the default 240 by 20 normalized iris image, and averaged
neighboring rows to create a smaller image to use when
generating the iris code. We averaged pixel values from rows
one and two, three and four, and so forth, so that the final

Fig. 6. Images in our data set were captured using this LG4000 iris
camera [22].

Fig. 7. The LG4000 iris camera captures images of both eyes at the same
time.

normalized iris image was reduced to a 240 by 10 image.
This row-averaging resulted in a smaller iris code, with no
loss in performance [25]. From each pixel in the normalized
image, we get two bits in the iris code, so the final iris code
size is 240 by 10 by 2, or 4800 bits. In addition, we store one
4800-bit matrix with occlusion information and one 4800-bit
matrix with fragility information.

IV. FRAGILE BIT DISTANCE

Figure 5 provides some indication of what we should
expect when comparing two fragile bit patterns. In a genuine
comparison, the locations of the fragile bits coincide. In an
impostor comparison the locations of the fragile bits do not.
When we compare two iris codes, we mask any bit that is
fragile in either of the two fragile bit patterns. Therefore,
we expect more bits to be masked for fragility in impostor
comparisons than in genuine comparisons.

We can theoretically predict how many bits will be un-
masked in an impostor comparison. In this analysis, we make



the assumption that the fragility of bits is independent of
position and that each position is independent of all other
positions. Consider the iris code for a single, unoccluded
image. We mask 25% of bits for fragility, and leave 75% of
bits unmasked. Now consider a comparison of two unoccluded
images from different subjects. We expect (75%)(75%) =
56.25% of the bits to be unmasked, and 43.75% of the bits to
be masked.

In contrast, a genuine comparison will have fewer masked
bits. In two identical images, the fragile bits will coincide
exactly and the comparison will have 75% unmasked bits
and 25% masked bits. However, two different images of the
same iris are not identical because of differences in lighting,
dilation, distance to the camera, focus, or occlusion. Therefore,
on average, more than 25% of the bits will be masked in a
genuine comparison.

We define a metric called the fragile bit distance (FBD) to
measure how well two fragile bit patterns align. In order to
compute fragile bit distance, we need to store occluded bits
and fragile bits separately. Therefore, each iris template will
consist of three matrices: an iris code i, an occlusion mask m,
and a fragility mask f . Unmasked bits are represented with
ones and masked bits are represented with zeros. Specifically,
unoccluded bits and consistent bits are marked as ones, while
occluded and fragile bits are zeros. We do not want FBD to
be affected by occlusion, so we consider only unoccluded bits
when computing the FBD.

Take two iris templates, template A and template B. The
FBD is computed as follows:

FBD =
‖mA ∩ mB ∩ fA ∩ fB‖

‖mA ∩ mB‖
(2)

where ∩ represents the AND operator, and the line over
fA ∩ fB represents the NOT operator. The norm (‖‖) of a
matrix tallies the number of ones in the matrix.

In above equation, fA ∩ fB is a matrix storing all bits
masked for fragility. mA ∩ mB is a matrix marking all bits
unoccluded by eyelashes and eyelids. The FBD expresses
the fraction of unoccluded bits masked for fragility in the
comparison. This metric is large for impostor comparisons,
and small for genuine comparisons.

Our theory predicts that we will have an average FBD of
0.4375 for impostor comparisons, and an average FBD of
somewhere between 0.25 and 0.4375 for genuine comparisons.
We tested these predictions on our data set of 19,891 images.
The average FBD for genuine and impostor comparisons
are reported in Table I, with standard deviations reported in
parentheses.

Table I: Average FBD for Genuine and Impostor Comparisons (std dev)

Avg. Genuine FBD Avg. Impostor FBD

Theoretical value between 0.25 & 0.4375 0.4375
LG4000 images 0.4047 (0.0149) 0.4397 (0.0097)

The average impostor FBD was within one standard devi-
ation of the theoretical prediction. Also, the average genuine
FBD was less than the average impostor FBD.
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Fig. 8. Score distributions for fragile bit distance.
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Fig. 9. Score distributions for Hamming distance.

V. SCORE DISTRIBUTIONS FOR HAMMING
DISTANCE AND FRAGILE BIT DISTANCE

We graphed the genuine and impostor score distributions
for fragile bit distance (FBD) from all possible comparisons
in our 19,891-image data set. Figure 8 shows the result. In
comparison, Figure 9 shows the genuine and impostor score
distributions for Hamming distance. There is more separation
between the genuine and the impostor score distributions for
Hamming distance than there is for FBD. The means, standard
deviations, and d’ values for both HD and FBD are given in
Table II.

Table II: Distributions of FBD and HD

Metric Match Nonmatch d’
µ (σ2) µ (σ2)

HD 0.1798 (0.0705) 0.4440 (0.0179) 5.1406
FBD 0.4047 (0.0149) 0.4397 (0.0097) 2.7857

Figure 10 shows the joint distribution of FBD and Hamming
distance. Figure 13 shows the same joint distribution, zoomed-
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Fig. 10. Joint score distributions for Hamming distance and FBD. Genuine
scores are shown in blue. Impostor scores are shown in red.

in on the area of the graph where the genuine and impostor
score distributions meet. Each blue point in these figures
represents at least 0.003% of the 247,872 match comparisons
in our experiment, and each red point represents at least
0.003% of the 197,229,390 nonmatch comparisons. Selecting a
single threshold of Hamming distance (e.g. HD = 0.35) would
separate genuine and impostor comparisons better than any
threshold we might choose for FBD. Using FBD, we achieve
an equal error rate of 6.34 × 10−2 on this data set. Using
Hamming distance, the equal error rate is 8.70 × 10−3.

VI. FUSING FRAGILE BIT DISTANCE WITH
HAMMING DISTANCE

Even though the FBD is not as powerful a metric as the
Hamming distance, we can combine the features to create a
better classifier than Hamming distance alone. To combine
Hamming distance and FBD, we first tried a weighted average
technique, using the same approach as [20]. We combined the
two scores using the equation,

ScoreW = α × HD + (1 − α) × FBD. (3)

We varied the parameter α in steps of 0.1 from 0 to 1, and
calculated the equal error rate for each run. Figure 11 shows
how the equal error rate changes as α varies. The lowest equal
error rate was 8.02 × 10−3, which was obtained using an α
value of 0.6.

The benefit of using a weighted average can be seen visually
in Figure 13. This figure shows the joint distribution of
Hamming distance and FBD scores. The vertical line marked
“HD = constant” shows how using Hamming distance would
separate the genuine and impostor scores. The diagonal line
marked “0.6HD + 0.4FBD = constant” shows that a better
separation between genuine and impostor scores is achieved
using the weighted average.

Multiplication can be used as an alternative method of score
fusion:

ScoreM = HD × FBD. (4)
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Fig. 11. We fused FBD and HD using the expression, α×HD +(1−α)×
FBD. We found that an α value of 0.6 yielded the lowest equal error rate.

When using multiplication, the equal error rate was 7.99 ×
10−3. Fusing by multiplication and fusing by weighted average
yielded similar results.

An ROC curve showing the results of these tests is shown
in Figure 12. The weighted average method (red line) and
the multiplication method (blue line) perform similarly, so
the corresponding ROC curves are overlapping. Both fusion
methods are clearly performing better than the baseline (black
line). This figure shows 95% confidence intervals for multiple
points on the graph. To create the confidence intervals, we
used a bootstrapping method. For each bootstrap, we sampled
the 686 subjects with replacement to form a set of test subjects
to use for a probe, and compared irises of these subjects to
all gallery images. From the resulting scores we formed an
ROC curve. Given an ROC curve for each of 50 bootstraps,
we computed the mean true accept rate and corresponding
standard deviation for multiple false accept rates. Then we
used these values to construct the 95% confidence limits for
each point. The confidence intervals for the baseline method
do not overlap with the confidence intervals for the fusion
methods at low false accept rates (0.001 to 0.003). At higher
false accept rates, there is some overlap in the confidence
intervals. At a false accept rate of 0.02, the mean performance
for the fusion methods equals the upper limit of the baseline
confidence interval.

Table III shows summary statistics of these experiments
including the equal error rate (EER) and the false reject rate at
an operating point of FAR=0.001 (FRR at FAR=0.001). These
error rates were computed over the entire data set (without
bootstrapping).

Table III: Fusing FBD with Hamming distance

Method EER FRR at FAR=0.001

HD (baseline) 8.70 × 10−3 1.40 × 10−2

0.6HD + 0.4FBD 8.02 × 10−3 1.25 × 10−2

HD × FBD 7.99 × 10−3 1.23 × 10−2

Based on the values in Table III, we see that both methods
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Fig. 12. Fusing Hamming distance with FBD performs better than using
Hamming distance alone. Fusing by multiplying and fusing by weighted
averaging yield similar results.

of fusing Hamming distance with FBD performed better than
using Hamming distance alone. By incorporating FBD, we
improved the accuracy of our iris matcher.

One caveat with using FBD is that in order to compute
FBD, we have to store the fragility mask separately from the
occlusion mask. Therefore, our iris template is 50% larger than
it would be if we did not use FBD.

VII. TESTS OF STATISTICAL SIGNIFICANCE

The proposed fusion between Hamming distance and FBD
works better than the baseline of Hamming distance alone. We
performed a statistical test to determine whether this difference
was statistically significant. The null hypothesis for this test
is that there is no difference between the baseline Hamming
distance method and the proposed fusion of Hamming distance
and FBD. The alternative is that there is a significant differ-
ence. To test for statistical significance, we randomly divided
the subjects into ten different test sets. For each test set, we
measured the performance of using Hamming distance alone,
and of using fusion of Hamming distance and FBD. Then
we used a paired t-test to see whether the proposed method
obtained a statistically significant improvement. The results
are given in Table IV for weighted average fusion. Table V
shows the results for fusion using multiplication. The t-test
showed statistically significant improvement of the proposed
method over the baseline for both EER and false reject rate at a
false accept rate of 0.1% (FRR at FAR=0.001). Rerunning the
same experiment using different random test sets gave similar
results.

Table IV: Is 0.6HD + 0.4FBD better than HD alone?

Method Avg. EER Avg. FRR at FAR=0.001

HD (baseline) 8.68 × 10−3 1.52 × 10−2

0.6HD + 0.4FBD (proposed) 8.08 × 10−3 1.33 × 10−2

p-value 3.83 × 10−3 1.44 × 10−3

Table V: Is HD × FBD better than HD alone?

Method Avg. EER Avg. FRR at FAR=0.001

HD (baseline) 8.68 × 10−3 1.52 × 10−2

HD × FBD (proposed) 8.00 × 10−3 1.33 × 10−2

p-value 6.43 × 10−3 1.90 × 10−3

Recall that when we performed fusion using a weighted
average, we used the equation,

ScoreW = α × HD + (1 − α) × FBD (5)

and we found that using a weight value of α = 0.6 worked
best. We tested whether performance using this value of alpha
was statistically different from performance using other values
of alpha. For this test, we again divided the subjects randomly
into ten different test sets. We varied the parameter α in steps
of 0.1 from 0 to 1. For a given value of α, we computed the
equal error rate for each of the test sets, then found the average
equal error rate for this value of α across all test sets. The
results are shown in Table VI. Next, we performed a paired
t-test to determine whether the given value of α produced
significantly different results than using α = 0.6. The p-values
for these tests are also shown in Table VI. We found that at a
significance level of p=0.05, values of α between 0.4 and 0.7
were not significantly different from α = 0.6. However, other
values of α were significantly different.

Table VI: Is αHD + (1 − α)FBD statistically significantly
different from 0.6HD + 0.4FBD?

α Avg. EER p-value Yes/No?

0 6.28 × 10−2 2.81 × 10−8 Yes
0.1 2.09 × 10−2 1.75 × 10−6 Yes
0.2 1.16 × 10−2 1.79 × 10−4 Yes
0.3 8.98 × 10−3 1.24 × 10−2 Yes
0.4 8.21 × 10−3 4.29 × 10−1 No
0.5 8.08 × 10−3 9.62 × 10−1 No
0.6 8.08 × 10−3 - -
0.7 8.19 × 10−3 1.18 × 10−1 No
0.8 8.37 × 10−3 2.56 × 10−2 Yes
0.9 8.56 × 10−3 5.25 × 10−3 Yes
1.0 8.68 × 10−3 3.68 × 10−3 Yes

VIII. EFFECT OF MODIFYING THE FRAGILE BIT
MASKING THRESHOLD

Recall that fragile bit masking ignores the bits correspond-
ing to complex filter responses close to the axes of the complex
plane (see section I-A). In the experiments presented up to this
point, we masked 25% of bits in each iris code for fragility.
We used 25% because it is the value used in previous work [7]
and recommended by Daugman [11]. In this paper, we wanted
to study how changing the threshold would affect our results.

We ran experiments varying the threshold used for fragile bit
masking. First we ran one test with 0% fragile bit masking.
We ran an all-vs-all test (comparing all images to all other
images in the data set) and computed the performance using
Hamming distance alone. The equal error rate for that test was
8.26 × 10−3.
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Fig. 13. A zoomed-in view of the joint score distributions for Hamming distance and FBD. Genuine scores are shown in blue. Impostor scores are shown
in red. Each point represents at least 0.003% of the comparisons.

Next, we varied the threshold from 5% to 30% in increments
of 5%. At each threshold, we ran three all-vs-all tests. The
first test was using Hamming distance alone. The second test
was using the a weighted average of Hamming distance and
fragile bit distance: 0.6HD+0.4FBD. The third test used the
multiplication of Hamming distance and fragile bit distance:
HD × FBD.

At low levels of fragile bit masking, we would not expect
fragile bit distance to be as powerful a metric because there is
less fragile bit information available. However, the weighted
average fusion method is robust enough that we could expect
0.6HD + 0.4FBD to still achieve good performance. Mul-
tiplication is considered a less robust fusion method, in the
sense that outliers of one of the factors in the multiplication
can dramatically alter the product. The experimental results
of using 5% fragile bit masking for all three tests are shown
in Figure 14. As expected, the weighted average method
still performed well. In fact, the Hamming distance test and
the weighted average test gave very similar results, with
the weighted average being marginally better than Hamming
distance. The multiplication method did not perform well at
this level of masking.

At 15% fragile bit masking, the multiplication fusion
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Fig. 14. We considered the effect of masking only 5% of the bits in the
iris code for fragility. Using this value, we compared the performance of (1)
Hamming distance (HD) with performance of (2) fusing HD and FBD with
a weighted average (0.6HD + 0.4FBD) and (3) fusing HD and FBD with
multiplication (HD × FBD). At this low levels of fragile bit masking, the
multiplication method performs poorly. In contrast, the difference between
HD and the weighted average method is small, and the ROC curves for these
two methods overlap.
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Fig. 15. Using 15% fragile bit masking, the difference between HD and a
weighted average method (0.6HD +0.4FBD) is larger than at lower levels
of fragile bit masking. The multiplication method (HD×FBD) is also much
improved at this level of fragile bit masking.

method did much better; performance matched the perfor-
mance of Hamming distance alone. The weighted average
method still performed the best (Figure 15). Between 20%
and 30% fragile bit masking, performance of the multiplication
method matched performance of the weighted average method,
and both noticeably outperformed Hamming distance (See
Figures 16, and 17). The general trend showed that at higher
levels of fragile bit masking, the difference between using
Hamming distance and using one of the two fusion methods
was larger (see Figures 15, 16, and 17). The ROC curves in
Figures 14, 15, 16, and 17 all show 95% confidence intervals
for a number of points on the curve.

The best performance using Hamming distance alone was
achieved using 5% fragile bit masking; at this threshold, the
equal error rate was 8.15×10−3. The best performance using
the weighted average of Hamming distance and FBD was
achieved using a 25% fragile bit threshold; the equal error rate
on this test was 8.02 × 10−3. The best performance for the
multiplication of Hamming distance and fragile bit distance
was 7.99 × 10−3, and this was achieved using a 25% fragile
bit masking threshold.

We observe that the fusion of Hamming distance and fragile
bit distance has greater benefit when a higher level of fragile
bit masking is used. We only tested fragile bit masking
thresholds up to 30% on our data set because for our data
and software, our experiments indicate that increasing the
fragile bit masking further would not improve performance.
On the other hand, other researchers have found that fragile
bit masking of 35% worked best on the CASIA version 3
data set [8]. We postulate that any system that uses a fragile
bit masking level of 15% or higher could benefit from using
fragile bit distance in addition to Hamming distance.

IX. EFFECT OF USING A SMALLER IRIS CODE

In our iris recognition software, we averaged rows in the
240 by 20 normalized image to create a smaller normalized
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Fig. 16. Using 25% fragile bit masking, the weighted average method
(0.6HD+0.4FBD) and the multiplication method (HD×FBD) are both
clearly better than HD alone.
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Fig. 17. Using 30% fragile bit masking, the weighted average method
(0.6HD+0.4FBD) and the multiplication method (HD×FBD) are both
clearly better than HD alone.

image of size 240 by 10, thus reducing the size of our iris code
to 240 by 10 by 2, or 4800 bits. We can further reduce the
size of the iris code by subsampling columns. Our approach
to subsampling columns is different that our treatment of rows
in the template creation. To reduce the number of rows, we
averaged rows in the normalized image. In contrast, to reduce
the number of columns, we first created a larger iris code, then
subsampled the columns.

Using our most recent version of our iris recognition soft-
ware which uses column subsampling to create a 2400 bit iris
code, we reran our experiments to see if FBD could still be
helpful when using a smaller template size. With the newer,
optimized software, the improvement was not as large, but our
proposed technique still achieved superior performance when
compared to the baseline of using Hamming distance alone
(Table VII).



Table VII: Fusing FBD with Hamming distance
when using a smaller iris code

Method EER FRR at FAR=0.001

HD (baseline) 2.98 × 10−3 3.69 × 10−3

0.6HD + 0.4FBD 2.90 × 10−3 3.57 × 10−3

HD × FBD 2.97 × 10−3 3.56 × 10−3

X. CONCLUSION

In this paper, we defined a new metric, the fragile bit

distance (FBD) which measures how two fragile bit masks
differ. Low FBDs are associated with genuine comparisons
between two iris codes. High FBD are associated with impos-
tor comparisons.

Fusion of FBD and Hamming distance is a better classifier
than using Hamming distance alone. Fusion can be done either
by using a weighted average of FBD and Hamming distance,
or by multiplying. The multiplication of FBD and Hamming
distance reduces the EER of our iris recognition system by
eight percent – from 8.70×10−3 to 7.99×10−3 – a statistically
significant improvement.

Fusing FBD and Hamming distance has a greater benefit
when higher levels of fragile bit masking are used. At low
levels of fragile bit masking, fusion had similar results to using
Hamming distance alone on our data. When using fragile bit
masking thresholds of 15% or greater, fusion had superior
performance.
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