
 

 

 

Abstract 
 

It has been widely accepted that iris biometric systems 

are not subject to a template aging effect. Baker et al. 

[1] recently presented the first published evidence of a 

template aging effect, using images acquired from 2004 

through 2008 with an LG 2200 iris imaging system, 

representing a total of 13 subjects (26 irises). We report 

on a template aging study involving two different iris 

recognition algorithms, a larger number of subjects (43), 

a more modern imaging system (LG 4000), and over a 

shorter time-lapse (2 years). We also investigate the 

degree to which the template aging effect may be related 

to pupil dilation and/or contact lenses. We find evidence 

of a template aging effect, resulting in an increase in 

match hamming distance and false reject rate.  

1. Introduction 

The assumption that the appearance of the iris is stable 

throughout a person’s lifetime has been accepted by the 

research community since the beginnings of iris 

biometric research. Daugman’s statement, “As an 

internal (yet externally visible) organ of the eye, the iris 

is well protected and stable over time” [2], has been 

echoed in similar form in many publications [5-9]. In 

this paper we report results of an experiment similar to 

that of Baker et al. [1] designed to test whether a 

template aging effect occurs in iris biometrics. 

It is important to make a distinction between the terms 

“template aging effect” and “iris aging effect.” A 

template aging effect occurs when the quality of the 

match between an enrolled biometric sample and a 

sample to be verified degrades with increased elapsed 

time between the two samples. In our experiment, we 

test for the presence of a template aging effect over an 

approximately two-year time lapse, and find that one 

does exist. An “iris aging effect,” on the other hand, 

would be some definite change in the iris texture pattern 

due to human aging. An iris aging effect would generally 

imply a template aging effect in the field of iris 

biometrics. However, observing a template aging effect 

would not necessarily imply that an iris aging effect  

 

exists. For example, if the average pupil dilation changes 

over time, this might affect the observed iris texture in a 

way that causes, at least partially, a template aging 

effect. We explore the possibility of a template aging 

effect both including and independent of dilation as well 

as several other factors.  

1.1. Related work 

Baker et al. [1] present evidence of a significant effect 

of time-lapse between images on iris recognition. Their 

experiments used images taken by an LG 2200 camera 

[3] from data acquisitions in 2004 through 2008, 

acquired approximately weekly throughout the semester. 

The dataset used in their experiments contains images 

from only 13 different subjects, or only 26 irises. They 

use statistical tests on the means of their Hamming 

distance distributions to make their analyses, but do not 

present false reject rates over a range of feasible decision 

thresholds. The LG 2200, which at the time of their data 

acquisition may have been considered a state-of-the-art 

system, is no longer marketed. Also, because of the 

technology used in the system, as Bowyer and Flynn 

[14] document, there is a possibility of interlace artifacts 

in the images taken if there is significant subject motion 

during image acquisition.  

Our experiments improve on these aspects of the 

report by Baker et al. [1]. We test our data on two 

different segmentation and matching algorithms. We use 

an LG 4000 system which is currently state-of-the-art 

and is based on more modern technology than the LG 

2200. Our dataset contains over three times the number 

of subjects as that of [1]. We present the false reject rates 

at a fractional Hamming Distance decision threshold 

ranging from 0.28 to 0.34 and VeriEye match scores 

between 30 and 120. We also use statistical tests 

analogous to their methods and compare images with 

approximately two years time-lapse rather than four.  

Finally, we treat other possible factors for degradation 

of match quality in a different manner than Baker et al. 

[1]. In their work, they reported no correlation between 

the mean change in hamming distance from short to long 

time-lapse and the mean change in dilation difference of 
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match comparisons from short to long time lapse. 

Instead of looking at correlation between dilation 

difference and hamming distance, we screen for dilation 

difference by analyzing a subset of images with small 

dilation difference. Baker et al. also cite the effects of 

contact lenses on the match distribution, but simply 

report the number of subjects with or without contacts. 

We analyze a subset of images containing only those 

subjects who did not wear contacts in any session. 

 

2. Experimental Materials 
 

The images used in this experiment were all acquired 

using the same LG 4000, in the same laboratory, 

following the same image acquisition procedure. Images 

from 43 participants, or 86 irises, were used. Of these 

subjects, 22 were male and 21 were female, and 39 were 

Caucasian, 2 were Asian, 1 was Hispanic, and 1 did not 

provide information on ethnicity. The ages of subjects 

ranged from 21 to 63 years as of 2010, with an average 

of 31. Images were taken approximately weekly during 6 

sessions in the spring semester of 2008 and 

approximately biweekly during 4 sessions in the spring 

semester of 2010. Of 1830 total images, 1042 were 

acquired in 2008 and 788 in 2010.  

We use two different iris recognition systems. The 

first is our own implementation of software based on 

IrisBEE [16], using a Canny edge detector, Hough 

transform, and 1-D log-Gabor filters to segment and then 

analyze the texture of the iris. The software also contains 

improvements described in [17,18]. The second software 

implementation is the VeriEye SDK, developed by 

Neurotechnology [19]. 

 The calculation of the accuracy of a comparison of 

two iris images differs between the two algorithms. 

IrisBEE generates fractional Hamming distances (HDs), 

which range from 0 to 1, with 0 being a perfect match. 

VeriEye generates a match score ranging from 0 to 3235, 

with 3235 being a perfect match and 0 being a non-

match comparison.  

 

3. Experimental Method 
 

We define a long time-lapse comparison as a 

comparison between one image from 2008 and one from 

2010. A short time-lapse comparison is a comparison 

between two images from the same year. Images of the 

same iris taken on the same day are not compared 

against each other. The dates of acquisition are such that 

the short time-lapse comparisons range from 5 to 51 

days apart, and the long time-lapse comparisons range 

from 665 to 737 days apart. 

 

 

 

 
 

Figure 1: Subject 02463 enrollment image from 2008. 

 

 
 

Figure 2: Subject 02463 verification image from 2008. The 

short time-lapse comparison with the image in Figure 1 

resulted in a normalized HD of -0.0126378 and a VeriEye 

match score of 933. 

 

 
 

Figure 3: Subject 02463 verification image from 2010. The 

long time-lapse comparison with the image in Figure 1 

resulted in a normalized HD of 0.0447158 and a VeriEye 

match score of 775. 



 

 

3.1. Analysis of false reject rates 
 

The image dataset is analyzed to generate match and 

non-match distributions for both the short time-lapse 

case and the long time-lapse case. For each subset 

described below, there are N1 comparisons in the match 

distribution for the short time-lapse case and N2 

comparisons in the match distribution for the long time-

lapse case. There are N3 comparisons in the non-match 

distribution for the short time-lapse case and N4 

comparisons in the non-match distribution for the long 

time-lapse case. These four values can be found in Table 

1. We calculate the false reject rates for the two different 

match distributions over a range of possible decision 

threshold values. These false reject rates are tabulated to 

show their difference between the short time-lapse case 

and the long time-lapse case.  

 

3.2. Screening on difference in pupil dilation 
 

The degree of dilation of an eye affects the distribution 

of match scores [11, 15]. A comparison of two images of 

high dilation ratios produces a higher HD than a 

comparison of two images of small dilation ratios. A 

comparison of two images of large delta, or difference in 

dilation, will have a higher HD than that of small delta. 

We create a subset of the original set of data, eliminating 

comparisons with a delta greater than 0.1. In the small 

delta subset, three iris subjects were eliminated due to a 

lack of long time-lapse comparisons within the subject, 

leaving this subset with 83, rather than 86, iris subjects.  

While it may be possible to control for dilation during 

enrollment, it is likely impractical to attempt to control 

this during verification. Analyzing a subset of matches 

that correspond to only those with small difference in 

dilation does not correspond to actual operation of any 

iris biometric system that we are aware of.  Nor are we 

proposing that this is a practical restriction to enforce for 

typical applications.  Our goal is simply to investigate 

the degree to which a change in the difference in pupil 

dilation may be involved in the template aging effect. 
 

3.3. Screening on presence of contact lenses 
 

Contact lenses have been shown to degrade match 

quality [12]. In our dataset, 29 subjects did not wear 

contacts in any session. Nine wore contacts in all 

participating sessions for both years, two of which 

changed contact type between years. Five subjects wore 

contacts in some sessions but not others. We also 

analyze subsets of the previously mentioned datasets 

with only those subjects who did not wear contacts in 

any session. We note in this case also that it would be 

difficult in a real-world implementation of an iris 

recognition system to control for the presence of contact 

lenses. 

Table 1: Match and non-match comparison counts. 

 

3.4. Adjustment for number of iris code bits 

used 
 

In order to account for the number of bits used in 

comparisons of two iris codes, we implement 

Daugman’s square root score normalization technique 

across all sets of data [13]. Some very low raw hamming 

distances can become negative after normalization, as 

shown in Figures 4 and 6. The scaling parameter for this 

dataset, the average number of bits used per comparison, 

was 904. Note that this adjustment only applies for the 

IrisBEE data, and not the VeriEye data.  

 

3.5. Statistical tests on the means 
 

The tabulation of false reject rates across a range of 

feasible decision thresholds is a more practically useful 

result, but it is important to consider how this is related 

to results of statistical tests such as those of Baker et al. 

[1]. These tests follow the experimental method used by 

Baker et al. [1]. The tests are performed using the same 

methodology for both IrisBEE and VeriEye data, but so 

as not to be redundant, we will describe our methods 

only in terms of Hamming Distance and not the VeriEye 

match score. We consider the null hypothesis that the 

fractional Hamming Distance (HD) for matches between 

long time-lapse images is not greater than that for 

matches between short time-lapse images, and the 

alternative that the HD for long time-lapse comparisons 

is greater than that of short time-lapse comparisons. We 

take the average match HDs for each subject from the 

short time-lapse and subtract them from those of the long 

time-lapse.  We perform a sign test on these differences 

with the null hypothesis that a positive difference occurs 

as often as a negative difference, and the alternative that 

a positive difference occurs more often than a negative. 

When the data is found to be approximately normal 

using a chi-square goodness-of-fit test, we also perform 

a t-test on the differences of means with the null 

hypothesis that the differences come from a distribution 

with mean zero, and the alternative that the distribution 

has a mean greater than zero.  
 

 

 



 

 

4. Results 
 

4.1. Original dataset 
 

 
Figure 4: The match distribution for the long time-lapse is 

clearly shifted right on the short lapse distribution, while the 

non-match distributions have no apparent difference. 
 

4.1.1. IrisBEE The match and non-match distributions 

for our original short time-lapse and long time-lapse 

datasets are plotted in Figure 4. There is no discernible 

difference in the non-match distributions. However, 

there clearly is a difference in the match distributions. 

The false reject rates for the two distributions, computed 

for a range of decision thresholds from 0.28 to 0.34, are 

in Table 2. The FRR for the short time-lapse distribution 

varies from 1.9% at a threshold of 0.28 to 0.4% at 0.34. 

In comparison, the FRR for the long time-lapse 

distribution varies from 4.9% at 0.28 to 1.5% at 0.34. 

The increase in FRR from short to long time-lapse 

ranges from approximately 157% at 0.28 to 305% at 

0.34. This increase is relatively stable between 

thresholds of 0.30 to 0.32, varying between 215% and 

210%. From these results, it is clear that there is a 

sizeable increase in false reject rate between the short 

and long time-lapse distributions over the entire range of 

feasible decision threshold values. Thus, Figure 4 shows 

clear evidence of a template aging effect for iris 

biometrics. 

 
Figure 5: The match distribution for long time-lapse is clearly 

shifted to the left of the short time-lapse distribution. For 

VeriEye, higher scores indicate a better match between images.  

Table 2: False reject rates of all sets of images for both short and long time-lapse, using the IrisBEE algorithm. 
 

Threshold HD Original Short Original Long % Increase 
No Contacts 

Short 

No Contacts 

Long 
% Increase 

0.28 0.0192 0.0493 156.8 0.0230 0.0601 161.3 

0.29 0.0152 0.0393 158.6 0.0176 0.0475 170.0 

0.30 0.0102 0.0321 214.7 0.0115 0.0386 235.7 

0.31 0.0081 0.0255 214.8 0.0090 0.0300 233.3 

0.32 0.0068 0.0211 210.3 0.0073 0.0246 236.7 

0.33 0.0053 0.0179 237.7 0.0053 0.0202 281.1 

0.34 0.0038 0.0154 305.3 0.0036 0.0168 466.7 

Threshold HD 
Small Delta 

Short 

Small Delta 

Long 
% Increase 

No Contacts 

Small Delta 

Short 

No Contacts 

Small Delta 

Long 

% Increase 

0.28 0.0167 0.0366 119.2 0.0205 0.0433 111.2 

0.29 0.0131 0.0295 125.2 0.0157 0.0343 118.5 

0.30 0.0086 0.0245 184.9 0.0103 0.0278 169.9 

0.31 0.0069 0.0198 187.0 0.0083 0.0218 162.7 

0.32 0.0060 0.0167 178.3 0.0072 0.0182 152.8 

0.33 0.0046 0.0143 210.9 0.0052 0.0149 186.5 

0.34 0.0031 0.0130 319.4 0.0035 0.0131 274.3 

 



 

 

Table 3: False reject rates of all sets of images for both short and long time lapse, using the VeriEye algorithm. 
 

Threshold 

Score 

Original 

Short 

Original 

Long 
% Increase 

No Contacts 

Short 

No Contacts 

Long 
% Increase 

30 2.32E-04 9.17E-04 194.7 0 0 nan 

40 2.32E-04 0.0010 238.6 0 1.37E-04 inf 

50 2.32E-04 0.0010 238.6 0 1.37E-04 inf 

60 2.32E-04 0.0010 238.6 0 1.37E-04 inf 

70 2.32E-04 0.0011 282.4 0 2.73E-04 inf 

80 2.32E-04 0.0011 282.4 0 2.73E-04 inf 

90 2.32E-04 0.0015 457.9 0 8.20E-04 inf 

100 3.48E-04 0.0022 443.3 1.56E-04 0.0018 940.6 

110 5.81E-04 0.0029 291.2 4.67E-04 0.0025 326.4 

120 6.97E-04 0.0040 370.2 6.23E-04 0.0038 414.2 

Threshold 

Score 

Small Delta 

Short 

Small Delta 

Long 
% Increase 

No Contacts 

Small Delta 

Short 

No Contacts 

Small Delta 

Long 

% Increase 

30 2.37E-04 0.0012 289.1 0 0 nan 

40 2.37E-04 0.0013 343.5 0 1.75E-04 inf 

50 2.37E-04 0.0013 343.5 0 1.75E-04 inf 

60 2.37E-04 0.0013 343.5 0 1.75E-04 inf 

70 2.37E-04 0.0013 343.5 0 1.75E-04 inf 

80 2.37E-04 0.0013 343.5 0 1.75E-04 inf 

90 2.37E-04 0.0017 506.5 0 7.00E-04 inf 

100 3.56E-04 0.0025 488.4 1.59E-04 0.0018 899.3 

110 5.93E-04 0.0031 321.7 4.78E-04 0.0025 313.0 

120 7.12E-04 0.0037 325.4 6.37E-04 0.0032 294.7 

 

4.1.2. VeriEye The match distributions for the original 

short and long time-lapse datasets are plotted in Figure 5. 

The non-match distributions are not plotted because over 

80% of the data have scores of 0, and do not show on the 

graph. A clear shift in the match distributions is visible. 

The false reject rates for the two distributions over a 

match score threshold ranging from 30 to 120 are 

compiled in Table 3. The FRR for short time-lapse varies 

from 0.02% at a threshold of 30 to 0.07% at 120. The 

FRR for long time-lapse varies from 0.09% at 30 to 

0.4% at 120. The increase in FRR from short to long 

time-lapse ranges from 195% at a threshold of 30 to 

370% at 120, with a maximum of 457% at 90. It is clear 

that there is a significant increase in false reject rate 

between short and long time-lapse distributions over the 

range of feasible threshold values. 
 

4.2. Dataset screened on pupil dilation 
 

4.2.1. IrisBEE The false reject rates for the short time-

lapse distribution ranged from approximately 1.7% at a 

decision threshold of 0.28 to 0.3% at 0.34. 

Comparatively, the long time-lapse FRRs ranged from 

3.7% to 1.3% across that span. The increase in FRR 

from short to long time-lapse varies from 119% at 0.28 

to 319% at 0.34. Like the original set in section 4.1, the 

increase in FRR for the set experienced relative stability 

between thresholds of 0.30 and 0.32, varying between 

178% and 187%. The plots of the match and non-match 

distributions for both short and long time-lapse can be 

found in Figure 6. 

 
Figure 6: Again, the non-match distributions lie on top of each 

other while the match distributions are clearly separated. 



 

 

4.2.2. VeriEye The false reject rates for short time-lapse 

ranged from approximately 0.02% at a threshold of 30 to 

0.07% at 120. In comparison, the long time-lapse FRRs 

ranged from 0.1% at 30 to 0.4% at 120. The increase in 

FRR from short to long time-lapse varied from 289% at 

30 to 325% at 120, with a maximum of 507% at a 

threshold of 90. The plots of the match distributions for 

short and long time-lapse are displayed in Figure 7. 
 

 
Figure 7: The long time-lapse distribution for the small delta 

dataset is shifted significantly to the left of the short time-lapse 

distribution. 

 

4.3. Dataset screened on contact lenses 
 

4.3.1. IrisBEE The false reject rates for the short time-

lapse case for this dataset ranged from 2.3% at a 

threshold of 0.28 to 0.4% at a threshold of 0.34. The 

long time-lapse false reject rates ranged from 6.0% to 

1.7%. The increase in FRR from short to long time-lapse 

varies from 161% at 0.28 to 467% at 0.34. Similar 

increases in false reject are observed between thresholds 

of 0.30 and 0.32, varying between 233% and 237%. The 

match distribution plots for this and future cases, for 

both IrisBEE and VeriEye, are similar to the previous 

datasets, and are not included due to space limits. 

 

4.3.2. VeriEye The false reject rates for the short time-

lapse ranged from 0.02% at a threshold of 100 to 0.06% 

at 120. No match comparisons had a score of 90 or 

below. The long time-lapse FRRs ranged from 0.01% at 

40 to 0.4% at 120, with no match comparisons yielding a 

score of 30 or below. The measurable increases in FRR 

for thresholds of 100, 110 and 120 were 941%, 326%, 

and 414%, respectively.  

 

4.4. Dataset screened on dilation and contacts 

 

4.4.1. IrisBEE The false reject rates for the final dataset 

ranged from 2.1% at a decision threshold of 0.28 to 0.4% 

at a threshold of 0.34 in the short time-lapse case. The 

long time-lapse FRRs varied between 4.3% at 0.28 to 

1.3% at 0.34. The observed increase in FRR differs 

between 111% and 274%. Between thresholds of 0.30 

and 0.32, where relative stability has been noted in 

previous sections, the FRRs ranged from 153% to 170%.  

 

4.4.2. VeriEye The false reject rates for the short time-

lapse case ranged from 0.02% at a threshold of 100 to 

0.07% at 120. No match comparisons had a score of 90 

or below. The FRRs for long time-lapse ranged from 

0.02% at 40 to 0.3% at 120, with no match comparisons 

yielding a score of 30 or lower. The measurable 

increases in FRR for thresholds of 100, 110, and 120 

were 899%, 313%, and 295%, respectively.  

 

4.5. Statistical tests on the means 
 

The results of the statistical tests described in Section 

3.6 are as follows. For IrisBEE, all four datasets rejected 

the null hypothesis of the sign test. Of the two whose 

distributions of mean HDs were found to be 

approximately normal, both also rejected the null 

hypothesis of the t-test. The p-values of those statistical 

tests, as well as the overall mean HDs of the 

distributions, can be found in Table 4. Similar results 

were found for the tests using VeriEye. In the sign test, 

all four datasets rejected the null hypothesis. None of the 

distributions were found to be normal, so t-tests were not 

performed. These results can be found in Table 5. 

 

Table 4: Results of statistical tests for each dataset, using IrisBEE. 
 

 

 Match Comparison HD Non-match Comparison HD # Irises w/ p-values 

Dataset Short Long Change Short Long Change Increased HD Sign Test T-Test 

Original 0.0900 0.1250 0.0350 0.4481 0.4482 0.0001 84/86 9.67E-23 N/A 

Small Delta 0.0884 0.1113 0.0229 0.4483 0.4483 0.0000 79/83 4.00E-19 N/A 

No Contacts 0.0964 0.1317 0.0353 0.4483 0.4483 0.0000 56/58 1.19E-14 7.91E-14 

No Cont., Sm. Del. 0.0950 0.1177 0.0227 0.4486 0.4485 -0.0001 52/55 1.54E-12 7.67E-11 

 



 

 

5. Summary and discussion 
 

We report on the results of an experimental 

investigation of template aging in iris biometrics. Here, a 

“template aging effect” is defined as an increase in the 

false reject rate with increased elapsed time between the 

enrollment image and the verification image. We find 

that a template aging effect does exist. We also consider 

controlling for factors such as difference in pupil dilation 

between compared images and the presence of contact 

lenses, and how these affect template aging, and we use 

two different algorithms to test our data.  

While our experimental results support those of Baker 

et al. [1] in concluding that a template aging effect does 

exist in iris biometrics, our work is distinguished from 

that of Baker et al. [1] in several respects. First, our iris 

image dataset represents a larger number of different 

subjects and irises (86 irises vs. 26), and is acquired 

using a more modern iris imaging system (LG 4000 vs. 

LG 2200). Second, we consider an elapsed time interval 

that is shorter than that considered by Baker et al. (~2 

years vs. ~4 years). Thirdly, we take a different approach 

to handling potential confounding factors such as pupil 

dilation and contact lenses. We create data subsets with 

only those comparisons with a difference in dilation 

between images of 0.1 or less, whereas Baker et al. 

simply report that there is no linear correlation between 

dilation difference and hamming distance across time-

lapse. We also create subsets with only those subjects 

who did not wear contact lenses in any session; Baker et 

al. only report the number of contact wearers. Finally, 

we use two different algorithms, IrisBEE and VeriEye, 

to test our data. 

Our primary experimental result involves an image 

dataset representing 86 different irises. For each iris, 

match and non-match distributions were created for a 

short time-lapse case (5 to 51 days elapsed) and a long 

time-lapse case (665 to 737 days elapsed). We observe 

no significant difference in the non-match distribution 

between the short time-lapse data and the long time-

lapse data. However, we do observe a shift in the match 

distribution, such that there is an increase in false reject 

rate across the range of potential decision threshold 

values. Using a threshold fractional Hamming Distance 

of 0.32 for the experiments run using IrisBEE, the 

observed false reject rate increases by 210% from the 

short time-lapse match distribution to the long time-lapse 

match distribution. The increase in false reject rate 

ranges from 157% at a threshold of 0.28 to 305% at 0.34. 

Note that the false reject rate is in the area in the tail of 

the match distribution, so it naturally decreases as the 

decision threshold moves further toward the tail. 

Because the amount of data in the tail of the distribution 

also decreases with increased values of the decision 

threshold, we can expect that the estimated magnitude of 

increase in false reject rate between the two match 

distributions is more subject to noise. The experiments 

run using the VeriEye algorithm yielded similar results. 

The observed false reject rate increases from short to 

long time-lapse by 195% at a threshold of 30 and up to 

457% at a threshold of 100. As described above, the tail 

of the distribution, in this case lower scores, is subject to 

noise due to limited data, however, it is clear from these 

results that a template aging effect is present. 

Following this initial result, we investigated factors 

that could possibly contribute to the observed increase in 

false reject rate. One possible confounding factor is the 

difference in pupil dilation between two images in a 

comparison. We found that for IrisBEE, restricting the 

dataset to image comparisons that had only a small 

difference in pupil dilation resulted in a smaller increase 

overall in FRR. The results from VeriEye showed a 

slightly larger increase in FRR overall. Thus, depending 

on the algorithm, pupil dilation may or may not be a 

significant confounding factor for measuring a template 

aging effect. Another potential factor is the presence of 

contact lenses. We found that after using only those 

subjects who did not wear contacts in any session, the 

results of both algorithms showed a larger increase in 

false reject rate than the original dataset. However, this 

comparison involved a large decrease in the number of 

irises represented, and both the sets controlling for 

contacts and those controlling for dilation experienced a 

large decrease in the number of match comparisons, 

which may make these sets of results less reliable.  

Based on the above results, we conjecture that iris 

biometric systems that are able to restrict comparisons to 

images with a small difference in dilation may be subject 

Table 5: Results of statistical tests for each dataset, using VeriEye. 
 

 



 

 

to a somewhat smaller template aging effect. Also, 

screening for this factor as well as the presence of 

contact lenses is partially additive; that is, restriction to 

small dilation difference and the absence of contact 

lenses lead to slightly better performance across a longer 

time lapse than pupil dilation alone. 

It is not possible from our current results to give a 

precise estimate of the magnitude of the template aging 

effect to expect in a practical application or a specific 

correlation between template aging and elapsed time for 

iris biometrics in general. The observed increase in false 

reject rate naturally varies with a number of factors. 

These include, likely among other important reasons, the 

decision threshold of the system, the inherent accuracy 

of the segmentation algorithms, the variation in pupil 

dilation, and the presence of contact lenses. A better 

estimate of the magnitude of the general template aging 

effect and of all its underlying causes requires additional 

research using larger datasets.  

The existence of a template aging effect should not 

prevent iris biometrics from practical use. Much like 

other identification methods such as drivers’ licenses are 

renewed after a set period of time, a subject could be re-

enrolled into the system, once an acceptable time frame 

is determined. Further research on the changes in iris 

texture over time will also increase our understanding of 

both the nature and location of such changes. In some 

sense, these findings place iris biometrics on equal 

ground with other biometric areas in which the existence 

of a template aging effect has already been 

acknowledged. We know of no studies that present any 

conclusion about the relative speed of template aging in 

different biometrics.  
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