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Abstract—An algorithm is proposed for 3D face recognition in the presence of

varied facial expressions. It is based on combining the match scores from

matching multiple overlapping regions around the nose. Experimental results are

presented using the largest database employed to date in 3D face recognition

studies, over 4,000 scans of 449 subjects. Results show substantial improvement

over matching the shape of a single larger frontal face region. This is the first

approach to use multiple overlapping regions around the nose to handle the

problem of expression variation.

Index Terms—Biometrics, face recognition, three-dimensional face, facial

expression.
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1 INTRODUCTION

FACE recognition using 3D shape is believed to offer advantages
over the use of intensity images [1], [2], [3]. Research on face
recognition using 3D shape has recently begun to look at the
problem of handling the variations in shape caused by facial
expressions [4], [5], [6], [7], [8]. Various approaches might be
employed for this purpose. One is to concentrate on regions of the
face whose shape changes the least with facial expression [9], [10].
For example, one might ignore the lips and mouth, since their
shape varies greatly with expression. Of course, there is no large
subset of the face that is perfectly rigid across a broad range of
expressions. Another approach is to enroll a person into the gallery
using a set of different expressions. However, the probe shape may
still be an expression different than those sampled. A third
approach is to have a model of 3D facial expression that can be
applied to any face shape. However, there likely is no general
model to predict, for example, how each person’s neutral
expression is transformed into their smile. A smile is different
for different persons and for the same person at different times. A
fourth approach is to try to compute an expression-invariant
representation of the 3D face shape [11], [12].

Given that there is no fully “correct” approach to handling
varying facial expression, one question is which approach(es) can be
most effectively used to achieve desired levels of performance. In
this work, we explore an approach that matches multiple, over-
lapping surface patches around the nose area and then combines the
results from these matches to achieve greater accuracy. Thus, this
work seeks to explore what can be achieved by using a subset of the
face surface that is approximately rigid across expression variation.

2 BASELINE PCA AND ICP PERFORMANCE

We first establish “baseline” performance levels for 3D face
recognition on the data set used in this work. Images are obtained
using a Minolta 900/910 sensor that produces registered
640� 480 range and color images. The sensor takes several
seconds to acquire the data and subject motion can result in

artifacts [7]. Images with noticeable artifacts result in recognition
errors. See Fig. 1 for examples of the various facial expressions. For
the baseline algorithms, we use a PCA approach similar to
previous work [1], [13], [14] and an iterative closest point (ICP)
approach similar to previous work [2], [10], [15]. More sophisti-
cated approaches have appeared in the literature [3], [4], [5], [6],
[7], [8]. These “baseline” approaches are simply meant to represent
common known approaches. See Fig. 2 for examples of the frontal
face regions used for these baseline algorithms. A total of
546 subjects participated in one or more data acquisitions, yielding
a total of 4,485 3D scans as summarized in Table 1. Acquisition
sessions took place at intervals over approximately a year and, so,
a subject may have changes in hair style, weight, and other factors
across their set of images. Among the 546 subjects, 449 participated
in both a gallery acquisition and one or more probe acquisitions.
The earliest scan with a neutral expression is used for the gallery
and all later scans are used as probes. The neutral-expression
probe images are divided into nine sets, based on increasing time
lapse between acquisition sessions. There are 2,349 neutral-
expression probes, one or more for each of the 449 neutral-
expression gallery images. The nonneutral-expression probe
images fall into eight sets, based on increasing time lapse. There
are 1,590 nonneutral probes, one or more for each of 355 subjects
with neutral-expression gallery images.

Results for the PCA baseline are created using manually-
identified landmark points to register the 3D data to create the
depth image. The training set for the PCA algorithm contains the
449 gallery images plus the 97 images of subjects for whom only one
good scan was available. Results for the ICP baseline use the
manually-identified landmark points to obtain the initial rotation
and translation estimate for the ICP matching. In this sense, the
baseline represents an idealized level of performance for these
approaches. There is a significant performance decrease when
expression varies between gallery and probe, from an average
91 percent to 61.5 percent for the ICP baseline, and from 77.7 percent
to 61.3 percent for the PCA baseline. The higher performance
obtained by the ICP baseline is likely due to the fact that ICP handles
pose variation between gallery and probe better than PCA. These
results agree with previously reported observations: one, that ICP
approaches outperform PCA approaches for 3D face recognition
[10], [16], and, two, that expression variation degrades recognition
performance [4], [5], [6], [7], [8], [17].

3 MULTIPLE NOSE REGION MATCHING

Beginning with an approximately frontal scan, the eye pits, nose
tip, and bridge of the nose are automatically located. These
landmarks are used to define, for a gallery face shape, one larger
surface region around the nose; and for a probe face shape,
multiple smaller, overlapping surface regions around the nose. For
recognition, the multiple probe shape regions are individually
matched to the gallery and their results combined.

3.1 Preprocessing and Facial Region Extraction

Preprocessing steps isolate the face region in the scan. Considering
the range image as a binary image in which each pixel has or doesn’t
have a valid measurement, isolated small regions are removed using
a morphological opening operator (radius of 10 pixels). Then,
connected component labeling is performed, and the largest region
is kept; see Fig. 3. Outliers, which can occur due to range sensor
artifacts, are eliminated by examining the variance in Z values. A
3D point is labeled as an outlier when the angle between the optical
axis and the point’s local surface normal is greater than a threshold
value (80 degrees). Next, the 2D color pixels corresponding to these
3D points are transformed into YCbCr color space and used for skin
detection. The 3D data points in the detected skin region are
subsampled keeping the points in every fourth row and column.
(On average, there are more than 11,000 points in the face region,
about 3,000 points in the gallery surface, and 500 to 1,000 points in
the probe surfaces.) This reduces computation in later steps and
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initial smaller experiments indicated that it does not significantly
affect recognition.

3.2 Curvature-Based Segmentation and Landmark
Detection

We compute surface curvature at each point, create a region
segmentation based on curvature type, and then detect landmarks
on the face. A local coordinate system for a small region around
each point is established prior to the curvature computation,
formed by the tangent plane (X-Y plane) and a surface normal
(Z axis) at the point. Using a PCA analysis of the points in the local
region, the X and Y axes are the eigenvectors of two largest
eigenvalues and Z axis is the smallest eigenvector, assumed to be
the surface normal. Once the local coordinate system is established,
a quadratic surface is fit to the local region. After the coefficients for
the fit are found, partial derivatives are computed to estimate mean
curvature, H, and Gaussian curvature, K. The curvature type is
labeled based on H and K and points with the same curvature type
are grouped to form regions.

Fig. 4 illustrates the steps to detect the nose tip (peak region),
eye cavities (pit region), and nose bridge (saddle region). A nose
tip is expected to be a peak (K > TK and H < TH ), a pair of eye
cavities to be a pair of pit regions (K > TK and H < TH ) and the
nose bridge to be a saddle region (K < TK and H > TH ), where
TK ¼ 0:0025 and TH ¼ 0:00005. Since there may be a number of pit
regions, a systematic way is needed to find those corresponding to
the eye cavities. First, small pit regions (< 80 points) are removed.

Second, a pair of regions that has similar average value in both Y

and Z is found. Third, if there are still multiple candidate regions,

the ones with higher Y values are chosen. The nose tip is found

next. Starting between the eye landmark points, the search

traverses down looking for the peak region with the largest

difference in Z value from the center of the pit regions. Last, the

area located between the two eye cavities is searched for a saddle

region corresponding to the nose bridge.

3.3 Extracting Gallery/Probe Surface Patches

The pose is standardized in order to help make probe surface

extraction more accurate. Pose correction is performed by aligning

an input surface to a generic 3D face model. A circular region around

the nose tip is extracted as a probe C, see Fig. 5b. Surface registration

is performed between a probe C and a model surface. One reason to

use a probe C rather than a whole facial region is to improve the

registration in the presence of hair obscuring part(s) of the face. The

input data points are then transformed using this registration.
For ICP-based matching, the probe surface should be a subset of

the gallery surface, see Fig. 5a. For a probe, three different surfaces

are extracted around the nose peak. These probe surfaces are

extracted using predefined functions that are located on each face

by the automatically-found feature points. For example, probe

surface N is defined by a rectangle (labeled as 1 in Fig. 5c) based on

the automatically-found nose tip and eye pit landmarks, with parts

cut out based on four predefined ellipse regions (labeled as 2, 3, 4,

and 5). Each of the elements is defined by constant offset values

from the centroids of the facial landmark regions. Considering

several different probe surfaces provides a better chance to select

the best match among them. For instance, the probe N excludes the

nostril portion of the nose while the probe I contains more of the

forehead thus capturing more profile information of the nose. The

definitions of these three probe surfaces were determined a priori

based on considering results of earlier work [10].
Our curvature-based detection of facial landmark regions is fully

automatic and has been evaluated on 4,485 3D face images of

546 people with a variety of facial expressions. The accuracy of the

facial feature finding method is measured based on the degree of

inclusion of the nose area in the probe C. The landmarks (eye cavities,

nose tip, and nose bridge) were successfully found in 99.4 percent of

the images (4,458 of 4,485). In those cases where the landmark points

are not found correctly, a recognition error is almost certain to result.
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Fig. 1. Example images in 2D and 3D with different facial expressions.

Fig. 2. Example of the large frontal face regions used with the baseline algorithms.

For the ICP-baseline, note that the probe face is intentionally smaller than the

gallery face, to ensure that the all the probe surface has some corresponding part

on the gallery surface.



4 EXPERIMENTAL RESULTS

Table 2 gives rank-one recognition rates for the individual probe

surfaces. As described earlier, the ICP baseline that matches a

larger frontal surface achieves 91.0 percent rank-one recognition in

matching neutral expression probe shapes to neutral expression

gallery shapes. Interestingly, each of the three nose region surfaces

individually achieves 95-96 percent rank-one recognition in neutral

expression matching. The fact that using less of the face can result in

more accurate recognition may at first seem contradictory. However,

even if a subject is asked to make a neutral expression at two

different times, the 3D face shape will still be different by some

amount. Also, difficulties with hair over the forehead, or with

noise around the regions of the eyes, are more likely with the larger

frontal face region. Our result suggests that such “accidental”

sources of variation are much less of a problem for the nose region

than for larger face regions.

In the case of expression variation, the ICP baseline using the
frontal face resulted in 61.5 percent rank-one recognition. As shown
in Table 2, an individual nose region surface such as probe N
achieves nearly 84 percent. Probe C has lower performance, possibly
because it contains points in regions where more frequent
deformation was observed. We next consider recognition from
combining the results obtained from multiple nose region surfaces.

4.1 Performance Using Two Surfaces for a Probe

We considered three rules for combining similarity measurements
from multiple probe surfaces: sum, product, and minimum. All
three showed similar performance when matching a neutral
expression probe to a neutral expression gallery: 96.59 percent
average for product, 96.57 percent for sum, and 96.5 percent for
minimum. However, in the presence of expression variation the
product and sum achieved 87.1 percent and 86.8 percent, whereas
the minimum rule achieved only 82.9 percent. Thus, we selected
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TABLE 1
Description of the Data Set Used in This Study

Fig. 3. Illustration of steps in face region extraction.

Fig. 4 Steps involved in the facial landmark region detection process.



the product rule, although its results are not significantly different
from using the sum rule.

The results for using different combinations of the individual

probe surfaces are shown in Table 3. When matching neutral

expression to neutral expression, the information in the different

nose region surfaces is somewhat redundant. Comparing Table 3 to

Table 2, the performance improvement is less than one percent.

However, when there is expression change between the probe and

the gallery, combining results from multiple nose region surfaces has

a larger effect. In this case, the best individual probe surface resulted

in 83.5 percent rank-one recognition and the best pair of surfaces

resulted in 87.1 percent. Interestingly, while the combination of three

surfaces improved slightly over the best combination of two surfaces

in the case of matching neutral expressions, the combination of three

did not do as well as the best combination of two in the case of

matching varying expressions. In the end, the best overall

performance comes from the combination of probe surfaces N and

I. One surprising element of this work is that we can achieve such

good performance using only a small portion of the face surface.

However, there still exists an approximate 10 percent performance

degradation, from roughly 97 to 87 percent, in going from matching

neutral expressions to matching varying expressions.

The Receiver Operating Characteristic (ROC) curve in Fig. 6
reports results for a verification scenario. The equal-error rate
(EER) is the ROC point at which the false accept rate is equal to the
false reject rate. The EER for our approach goes from approxi-
mately 0.12 for neutral expressions to approximately 0.23 for
varying expressions. The EER for the ICP baseline shows a much
greater performance degradation in going from all neutral
expressions to varying facial expression. This indicates that our
new algorithm is effective in closing part of performance gap that
arises in handling varying facial expressions.

A verification scenario implies 1-to-1 matching of 3D shapes,
whereas a recognition scenario implies matching one probe against
a potentially large gallery. ICP-based matching of face shapes can be
computationally expensive. Our current algorithm takes approxi-
mately one second to match one probe shape against one gallery
shape. Techniques to speed up 3D shape matching in face
recognition are a topic of current research [18], [19].

The results in Fig. 7 show the effect on recognition rate of varying
the number of enrolled subjects. We begin with probe set #1,
randomly select one half of probe set #1 to generate a reduced-size
probe set, and do this multiple times. To account for variations in
subject pool, the performance shown for each reduced data set size is
the average of 10 randomly selected subsets of that size. There is a
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Fig. 5. Matching surface extraction for a gallery and three probe surfaces. (a) A gallery surface, (b) probe C (probe surface in general center face area, (c) probe N (probe

surface in a nose region), and (d) probe I (probe surface in an interior nose region).

TABLE 2
Rank-One Recognition Rates for Individual Probe Surfaces



trend toward higher observed rank-one recognition rate with

smaller gallery size. This effect is much more prominent when

expressions are varied. However, the degree of decrease in

recognition rate that accompanies a doubling in gallery set size is

much less here for 3D than has been reported by others for 2D [20].

5 SUMMARY AND DISCUSSION

We consider the issue of facial expression variation in 3D face

recognition. Results of our new approach are compared to results

from PCA and ICP-based approaches similar to previous work.

Our new approach uses multiple overlapping surfaces from the

nose area since this area appears to have relatively low shape

variation across a range of expressions. Surface patches are

automatically extracted from a curvature-based segmentation of

the face. We consider using as many as three overlapping probe

surface patches, but find that three does not improve performance

over using two. Our approach substantially outperforms the ICP

baseline that uses a frontal face region and manually identified

landmark points. However, there is more to be done to solve the

problem of handling expression variation, as there is about a

10 percent drop in rank-one recognition rate when going from

matching neutral expressions to matching varying expressions.

One possible means to better performance is to use additional

probe regions. For example, surface patches from the temples and/

or from the chin may carry useful information about face shape

and size. Algorithms to use such larger collections of surface

patches will need to deal with missing patches, and make

comparisons across probes that may use different numbers of

patches in matching. The work of Cook et al. [3] may be relevant in

this regard. They experimented with an approach to 3D face

recognition that uses ICP to register the surfaces, then samples the

distance between the registered surfaces at a number of points and

models the intra versus interperson distribution of such feature

vectors. It may be possible to adapt this approach to deal with

expression variation, either by registering parts of the face surface

individually, or by detecting elements of interperson variation

caused by change in facial expression.
There has been substantial work in dealing with expression

variation in 2D face recognition. Yacoob et al. suggested “that there

is need to incorporate dynamic analysis of facial expressions in

future face recognition systems to better recognize faces” [21]. This

seems promising for future work, but sensors for 3D face imaging

are currently not as mature as 2D camera technology [17]. Martinez

has also worked on 2D face recognition in the context of facial

expressions and noted that “different facial expressions influence

different parts of the face more than others” [22]. He developed a

strategy for “giving more importance to the results obtained from

those local areas that are less affected by the current displayed

emotion” [22]. This general motivation is similar to that in our work.

Also, Heisele has done work looking at “components” of the face

[23]. He experimented with 14 local regions, or components, of

2D face appearance using 3D morphable models, and presented “a

method for automatically learning a set of discriminatory facial

components” in this context [23]. The automatic learning of useful

local regions of the 3D face shape is an interesting topic for future

research.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and the
anonymous reviewers for their helpful suggestions to improve this
paper. Biometrics research at the University of Notre Dame is
supported by the US National Science Foundation under grant
CNS-013089, by the Central Intelligence Agency, and by the
US Department of Justice under grants 2005-DD-BX-1224 and
2005-DD-CX-K078. The data set used in this work is available to
other research groups through the Face Recognition Grand
Challenge program [24]. An early version of this work was
presented at the Workshop on Face Recognition Grand Challenge
Experiments [4].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006 5

TABLE 3
Rank-One Recognition Rates Using Multiple Probe Surfaces

Fig. 6. ROC performance on neutral and non-neutral expression probe sets.
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Fig. 7. Rank-one recognition rate with varying sata set size. (a) Neutral expression probes and (b) varying expression probes.


