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Abstract.  The second phase of the Noisy Iris Challenge Evaluation attracted participation by 67 
research groups from around the world.  In contrast to all current commercial iris biometrics 
technology, the NICE competitions focus on performing iris biometrics on visible-light images.   
Whereas NICE.I focused on segmentation, NICE.II focused on performance in feature extraction 
and matching.  The eight top-performing algorithms from NICE.II are considered, and 
suggestions are made for lessons that can be drawn from the results. 
 

I. Introduction 
Biometrics is typically defined as the study of methods of making measurements of 

physical, biological or behavioral attributes that can be used to identify a person.  Within the 
field of biometrics, fingerprint, face and iris are often thought of as the current major general-
purpose methods.  This perception is reinforced by the fact that the Unique ID, or “Aadhaar”, 
project currently in progress in India aims to acquire face, ten-print fingerprint and both irises for 
all of the approximately 1.2 billion residents of India.  At the time of this writing, the Unique ID 
project has already enrolled over 100 million persons [1].  For context, this is larger than the 
population of the United Kingdom, where plans for a biometric-enabled national identity card 
program were abandoned [2].  

The NICE competition is concerned with methods that use the texture pattern of the iris as 
a means to recognize a person.  Whereas commercial iris biometrics technology, such as that 
employed in India’s Unique ID program, uses near-infrared illumination of the eye, the NICE 
competition looks at what level of performance can be obtained using color images taken under 
already-existing illumination.  The second phase of the NICE competition evaluated the 
performance of algorithms for feature extraction and matching. 

 
II. A Brief Overview of the Current State of Iris Biometrics 

Most researchers in the field of biometrics are aware that the development of the field has 
been hugely influenced by the work of John Daugman.  While the basic concept patent for iris 
biometrics was awarded to Flom and Safir in 1987 [3], it was Daugman who introduced a 
compelling plan for practical implementation that was awarded a patent in 1994 [4].  Since that 
time, Daugman has introduced a number of improvements to his original approach (e.g., [5,6,7]).  
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Throughout the 1990s and into the early 2000s, the level of research activity in the field of iris 
biometrics was low.  However, the volume of research activity in iris biometrics has increased 
dramatically in recent years.  The first comprehensive survey of the iris biometrics research 
literature appeared in 2008 [8], listing approximately 180 references, and the number of 
published papers in the area has more than doubled since that time [9].  One of the trends that 
was identified in the 2008 survey [8], and which continues to be one major focus in iris 
biometrics research, is the desire for image acquisition under less controlled circumstances.  
There are various factors that enter into the concept of less controlled circumstances, and many 
of these are captured to some degree in the NICE competitions.  

 One element of less-controlled circumstances is the degree to which the user must actively 
cooperate with the sensor.  The standard approach still predominates in commercial iris 
biometric technology – the user must stand still, look directly at the sensor, and actively 
cooperate with the sensor’s prompts to move closer to, or farther away from, the sensor.  The 
“Iris On the Move” (IOM) system [10] developed by Sarnoff Corporation was the earliest to 
demonstrate that iris images of sufficient quality to be usable for iris biometrics could be 
obtained while the user was walking at normal speed and without explicitly posing.  However, 
the near-infrared illuminators for this sensor were still located very close to the user, built into 
the frame of the portal that the user walks through.  Also, if the user did not look forward at all 
during the moment of walking through the portal, there would be a failure to acquire.  In general, 
if iris images are acquired while the person is “on the move” and without explicit cooperation in 
posing, the images may be less in focus, and have a more off-angle view of the iris, among 
possibly other complications. 

 

The “active” illumination of the eye with near-infrared illuminators is another element in 
the concept of desiring less-controlled circumstances.  The reason that near-infrared illumination 
is used for iris biometrics is that it allows the iris texture of both “light” and “dark” eyes to be 
well visualized.  In effect, under appropriate near-infrared illumination, there are only “light” 
eyes with readily visualized iris texture.  (See Figure 1.)  If iris images are acquired under normal 

         

Figure 1 – Example of a “Dark” Iris In Visible and Near-Infrared Illumination. 

The image on the left is taken with a standard color camera under normal room lighting.  
The image on the right is of the same eye, taken within minutes of the first image, but 
taken with a commercial iris biometric sensor that uses near-infrared illumination. 
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visible light conditions, then the images may have highly variable contrast, are subject to less 
controlled specular highlights, and “dark” eyes may not have readily visualized iris texture, 
among other complications. 

A third element in the concept of less-controlled circumstances is image quality.  Iris 
biometric systems are typically filtering an input image stream to select a candidate image from 
which to compute an iris code.  Candidate images are filtered based on image blur, degree of the 
iris that is occluded, and possibly other factors.  When images are acquired under less controlled 
circumstances, it may not be feasible to filter out images that do not meet particular thresholds of 
image quality.  There is more of an emphasis on making use of images that are of less than ideal 
quality. 

The Iris Challenge Evaluation is a series of projects managed and conducted by the 
National Institute of Standards and Technology in the 2004-2007 time frame. Unlike the NICE 
competitions discussed in this paper, the ICE competitions used near-infrared illuminated iris 
images obtained from a standard commercial iris sensor. Self-reported results from ICE 
participants were presented at the ICE 2005 workshop [11] and results on sequestered data were 
presented in the ICE 2006 report [12].  As described on the NIST web pages for the ICE program 
[13], “The ICE 2005 was a technology development project for iris recognition.  The ICE 2006 
was the first large-scale, open, independent technology evaluation for iris recognition. The 
primary goals of the ICE projects were to promote the development and advancement of iris 
recognition technology and assess its state-of-the-art capability.  The ICE projects were open to 
academia, industry and research institutes”.   A dataset of nearly 70,000 iris images resulting 
from the ICE competitions is available to the research community [14]. 

 
III. The Noisy Iris Challenge Evaluation Competitions 

The NICE competitions can be viewed as a reaction to the ICE program, specifically 
intended to focus on iris images acquired under visible light rather than under near-infrared 
illumination, and also to focus on “noise” of the type that occurs in more flexible image 
acquisition conditions.  The NICE competitions got started with NICE.I in 2007 [15]. As 
explained in connection with NICE.I [16] - “It is highly probable that image capturing on less 
constrained conditions (either at-a-distance, on-the-move, with minor users' cooperation and 
within dynamic imaging environments) lead to the appearance of extremely heterogeneous 
images and with several other types of data in the captured iris regions (e.g., iris obstructions due 
to eyelids or eyelashes, reflections, off-angle or motion blurred images). For the terms of this 
contest, all these factors are considered as noise.” 

The NICE.I competition focused on iris image segmentation.  It required participants to 
provide an executable implementation that would process a visible-light eye image and produce 
a binary image that represents the iris region segmented from the rest of the image. Images used 
in the evaluation were manually given a classification of the noise-free / noisy iris pixels in each 
image.  Based on comparison to the manual classification of image pixels, the pixel-level results 
of a segmentation algorithm were classified as true positive, true negative, false positive or false 
negative.  A number of groups entered the NICE.I competition, and the best eight entries, in the 
sense of the lowest error rate for classifying pixels as noise-free iris or not, are described in a 
special issue [16]. 
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The Noisy Iris Challenge Evaluation - Part II follows on the results of the NICE:I 
competition.  As explained on the competition web page, “It also operates on iris images similar 
to the ones of the UBIRIS.v2” and “It is exclusively focused in the signatures encoding and 
matching stages of degraded visible wavelength iris images previously segmented, according to 
the segmentation method that outperformed in the segmentation contest (NICE.I)”.  (The 
UBIRIS database of images is described in detail in [27].) Participants supplied an executable 
algorithm to the competition that takes as input two iris images and their corresponding 
segmentation masks.  (See Figure 2.)  The masks were created using the top-performing 
segmentation algorithm from the NICE.I competition.  The result of the matcher for the 
competition is a dissimilarity metric.  Algorithm performance was ranked based on the 
decidability value, d’, representing the difference in the means of the intra- and inter-class 
comparisons, divided by the square root of the average variance of the two classes.  The NICE.II 
web pages list 67 algorithms registered for the competition.  Papers describing the eight best-
ranked algorithms are presented in this special issue.  A brief overview of these algorithms is 
given in the next section. 

 

 

IV. The Best-Ranked Algorithms In the NICE.II Competition 

The paper “Reliable Iris Recognition Algorithm Based on Reverse Biorthogonal Wavelet 
Transform” [18], by Robert Szewczyk, Kamil Grabowski, Malgorzata Napieralska, Wojciech 
Sankowski, Mariusz Zubert and Andrzej Napieralski from the Technical University of Lodz in 
Poland, describes the algorithm that earned eighth place in the NICE.II competition.  Perhaps the 
most remarkable element of this approach is that the iris code used is only 384 bits in length.  
This is much smaller than the 2048-bit iris code used in the standard commercial implementation 
of Daugman’s approach. They first considered a range of possible wavelet decompositions for 

	  	   	  

	  
Figure	  2	  –	  Illustration	  of	  the	  Inputs	  and	  Output	  for	  a	  NICE.II	  Matcher.	  	  
(diagram	  from	  the	  NICE.II	  competition	  web	  site.)	  
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use in analyzing the iris image.  Based on looking at d’ and equal error rate results from initial 
experiments, they selected the reverse biorthogonal 3.1 wavelet for use in their approach.  Their 
segmentation algorithm generates a rectangular iris image of size 512x256.  From the original 
color image, represented in red-green-blue color space, they create a monochrome image by 
averaging the red and green planes only.  The 512x256 image is cropped to 256x256 “to remove 
influence of eyelashes on iris pattern and further decrease in computation of the signature 
encoding” and a histogram equalization step is performed.  For the 256x256 image, the level-
four wavelet decomposition results in 324 coefficients.  A 324-bit binary code is created with a 
bit of the code set to 0 if the corresponding coefficient is less than the median of the coefficients, 
and 1 if it is greater.  The difference between two 324-bit iris codes resulting from this approach 
is computed as the fractional Hamming distance between the codes. 

The paper “Iris Recognition in Non-ideal Imaging Conditions” [19], by Peihua Li and 
Hongwei Ma from Heilongjiang University in China, describes the algorithm that earned seventh 
place.  They estimate an ellipse for the limbic boundary of the iris region, and observe that this 
gives a more accurate boundary than a circular Hough transform.  Their approach then creates a 
64x256 rectangular image for the iris region.  This image is considered as a set of non-
overlapping sub-images of size 16x16.  Matching of the iris codes for two images is then done as 
matching of the codes for the corresponding sub-images.  Sub-images are matched allowing for a 
translation of the center of one sub-image within an 8x8 region relative to the other to minimize 
the Hamming distance.  A search was performed over a set of candidate 2D Gabor filters to 
select the particular ones to be used in creating the iris code.  The approach described in this 
paper is compared to Daugman’s 1993 algorithm – “We compare the proposed algorithm with 
the original Daugman’s algorithm (Daugman, 1993)” [19] – and found to perform better.  
However, Daugman’s 1993 algorithm would not be expected to be competitive with today’s state 
of the art; for example, it assumes circular limbic and pupillary boundaries.  Segmentation using 
iris boundaries that are more general than circles has previously been described by a number of 
researchers [8].  

The paper “Noisy Iris Recognition Integrated Scheme” [20], by Michele Nappi, Maria De 
Marsico and Daniel Riccio from the Università di Salerno in Italy, describes the algorithm that 
earned sixth place.  Their approach to iris texture matching combines local binary patterns and 
discriminable textons, called “blobs”.  They fit circles to the pupillary and limbic boundaries of 
the iris region and create a 40x360 rectangular iris image.  The LBP and blob features are viewed 
as capturing complementary elements of the iris texture, with the LBP capturing “the textural 
regularities present in the iris, and blob identification for coding lighter or darker spots”.  The iris 
region is considered as having five horizontal bands and a LBP histogram is computed for each 
band. This sequence of five LBP histograms then effectively becomes an “iris code” for the iris, 
though not obtained as, or structured as, a Daugman-like code.  Dark and light blobs are found 
using a Laplacian-of-Gaussian operator at different scales and binarizing the result.  Thus the iris 
code obtained for the blob analysis has a spatial structure that is somewhat more Daugman-like 
than the code for the LBP analysis.  The name LBP-BLOB is given to the fusion of the two 
approaches, done by averaging the two scores.  Results show that the combination of the two 
approaches performs better than either alone, and that the most useful scale for the blob analysis 
is different if the blob analysis is used alone versus used in combination with the LBP analysis.   

The paper “Weighted Co-occurrence Phase Histogram for Iris Recognition” [21], by 
Peihua Li, Xiaomin Liu, and Nannan Zhao from Heilongjiang University in China, describes the 
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algorithm that earned fifth place.  The co-occurrence histogram considers the phase angle at a 
given pixel along with that of each pixel at a distance of d pixels from the given pixel.  
Experiments are conducted with a training set to select the values of important parameters of the 
approach.  Based on these experiments, the value of d is set at 2.  Based on the parameter tuning 
experiments, it appears that the performance of the method decreases quickly with d greater than 
3.  So the co-occurrence relations captured are fairly local in nature.  Also, with phase angle 
divided into 6 bins, the feature vector is of length 62 = 36.  Larger feature vectors did not result in 
any noticeable performance increase.  The weighting aspect of the algorithm is that a pixel 
contributes to more than a single bin of the histogram, based on the difference between the phase 
value at the pixel and the range of near bins.  The weighting factor is also tuned on the training 
set.  The co-occurrence histogram is computed separately for each of a number of non-
overlapping regions of the iris, with the intention to provide some robustness to alignment 
problems. 

The paper “New Iris Recognition Method for Noisy Iris Images” [22], by Kwang Yong 
Shin, Gi Pyo Nam, Dae Sik Jeong, Dal Ho Cho, Byung Jun Kang, Kang Ryoung Park, and Jaihie 
Kim, from four different institutions in the Republic of Korea, describes the algorithm that 
earned fourth place.  This approach employs an interesting sequence of classifier steps leading to 
a fusion of iris codes from the red, green and grayscale versions of the iris image.  The first step 
uses cues from the eyelash distribution and specular reflections to classify the image as 
representing a left iris, a right iris, or undetermined.  Eyelash density and specular reflection 
density both are generally greater near the medial canthus (corner of the eye near the nose) than 
near the latreal canthus (outer corner of the eye).  Classification of the eye in the probe image is 
used to restrict the set of gallery images that are matched against.  A second step uses differences 
between the two images’ iris region color distributions based on color spaces.  The final step 
computes Hamming distances for iris codes based on each of the red and green color planes and 
the grayscale version of the image, and a weighted sum rule to fuse the distances.  One 
interesting aspect of this approach is that its performance was good even though the left/right 
classification and color distribution classification steps sometimes made errors.  

The paper “A Fusion Approach to Unconstrained Iris Recognition” [23], by Gil Santos and 
Edmundo Hoyle from the University of Beira Interior in Portugal, describes the algorithm that 
earned third place.  Their approach is a multi-biometric fusion of five component algorithms.  
Both 1D wavelet and 2D wavelet zero-crossing maps are used as representations of iris texture. 
Another representation of iris texture used is based on the typical iris code resulting from 2D 
Gabor filters, but viewed as a binary “map” of the image and analyzed in a “comparison map” 
approach involving 16 sub-regions.  For information extracted from the ocular region around the 
iris, two types of features are used.  One is an LBP representation of the texture, and the other is 
based on a scale-invariant feature transform (SIFT) points.  A logistic regression approach is 
used to fuse the five component results.  Experiments were done to verify that the fusion result 
performs better than any of the individual components.   Of the individual components, the zero-
crossing based on 1D wavelets showed good performance, whereas the SIFT-based component 
showed the poorest performance.  

The paper “Adaboost and Multi-Orientation 2D Gabor-based Accurate Noisy Iris 
Recognition” [24], by Qi Wang, Xiangde Zhang, Mingqi Li, Xiaopeng Dong, Qunhua Zhou and 
Yu Yin from Northeastern University in China, describes the algorithm that earned second place.  
They look at the concept of “noisy iris” partly in terms of whether or not the inner iris boundary 
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is accurately detected.  The authors observe that, with their approach to iris segmentation, the 
outer boundary is generally localized well, but that the inner boundary can still be difficult to 
distinguish and localize.  This work uses the standard rubber-sheet transform in cases where the 
inner and our boundaries are both well detected, but uses a simpler rubber-sheet transform in 
cases where only the outer boundary is well detected.  Part of the surprise in this work is that 
using a simplified rubber sheet transform based on only the outer iris boundary could lead to 
good performance.  This work also considers iris codes generated for the whole iris and for local 
regions of the iris.  The local regions are defined by considering top, right, bottom and left 
quadrants of the iris, and also either three or four concentric bands of the iris.  Three bands are 
considered when both boundaries of the iris are used, and four bands are considered when only 
the outer boundary of the iris is used.  Also, the Gabor filters are used at multiple orientations for 
the whole iris and for the local regions.  Of the local regions considered, they find that features 
from the outer, lower region generally perform best.  Features from regions of the iris nearest the 
pupil were not among the best-performing in either the case of a well-localized inner boundary 
or a not-well-localized inner boundary.  

Finally, the paper “Noisy Iris Image Matching by Using Multiple Cues” [25], by Tieniu 
Tan, Xiaobo Zhang, Zhenan Sun, and Hui Zhang from the Chinese Academy of Sciences, 
describes the algorithm that placed first in the competition.  Their approach is distinguished from 
most of the approaches described above by being a strongly multi-biometric approach that 
exploits multiple sources of information available in both the iris region and the surrounding 
ocular region.  They use two iris-based sources of information: iris texture representation using 
ordinal measures as previously described by the CASIA research group, and iris color based 
matching.  They also use two ocular-based sources of information: a texton-based matching of 
skin texture in the ocular region, and “semantic information” based on geometrical asymmetry of 
the eyelash distribution.  Fusion of the four sources of matching information is done using a 
weighted sum of scores.  The use of two sources of ocular information is an especially 
interesting aspect of this paper, as ocular biometrics has recently become a hot topic.  Even more 
interesting is the use of two different types of ocular information, including one based on the 
eyelashes. 
 

V. Discussion  
The NICE.II competition has been quite successful overall, as evidenced in, for example, 

the large number of participants.  It has focused attention on what can be achieved in iris 
biometrics using normal visible-light color images rather than the near-infrared illumination that 
is standard for current commercial systems.  The d’ value for the top-performing algorithm in 
NICE.II is 2.6.  Relative to iris biometrics performed using near-infrared illumination under 
more controlled conditions, this is clearly modest performance.  This result serves to highlight 
the challenging nature of the NICE.II problem, and suggests that there is still much room for 
possible improvement through future work. 

Considering the papers in this special issue as a whole, several general themes are apparent 
for how to achieve improved performance in iris biometrics.  One theme is fusion of multiple 
information sources.  Using more than one type of texture feature extraction on the iris region 
and fusing the results improves performance relative to any one of the iris texture features.  
Using features extracted from the iris region and features extracted from the ocular region 
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improves results relative to using just the features from the iris region.   The top-performing 
algorithm uses two sources of information from the iris region and two from the ocular region.  
Because the top-ranked algorithms seem to have relatively distinct technical approaches, it is 
likely that a fusion of the top algorithms would result in further performance improvement. 

The fact that several of the top-performing algorithms use ocular features seems especially worth 
noting.  The attention to ocular biometrics is relatively recent, with the topic having been 
popularized by Michael King’s presentation at the 2007 IEEE International Conference on 
Biometrics Theory, Applications and Systems.  The ocular features used in papers in this special 
issue go beyond simple texture features of the skin region around the eye.  They include features 
related to the density of the eyelashes and to the density of specular highlights in the corners of 
the eye. These are feature sources that have not been widely exploited in ocular biometrics to 
date. 

Another theme for improved performance is the fusion of results from multiple regions of 
the iris.  This is sometimes motivated as a way to deal with inaccuracies in alignment, or a way 
to deal with inaccuracies in segmentation.  In any case, computing feature vectors separately for 
parts of the iris region, matching them separately, and fusing the results has been used by several 
research groups as a means to improve performance. 

Another theme that is evident applies specifically to the use of color images.  The authors 
that explicitly considered the use of red, green and blue components of a color image seem to 
uniformly agree that the blue component of a red-green-blue color image is not useful for iris 
biometrics. 

Several of the papers in this special issue mention the “lifetime stability” of the iris.  It was 
once believed that iris texture was stable throughout adult life in a way that meant that there was 
no template aging effect. Mansfield and Wayman [26] define template aging as – “Template 
ageing refers to the increase in error rates caused by time related changes in the biometric 
pattern, its presentation, and the sensor”.   Recent studies have shown that iris biometrics is in 
fact subject to a template aging effect.   For example, Fenker and Bowyer [27] worked with a 
dataset involving two years of images for 86 irises and found that “there is an increase in false 
reject rate across the range of potential decision threshold values.”  

All researchers interested in iris biometrics should find something useful and valuable in 
the results of the NICE competitions and in this collection of papers detailing the top-performing 
algorithms in NICE.II. 
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