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Use of multiple images of a face appears to improve recognition accuracy

regardless of the type of images that are taken.
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ABSTRACT | This work examines face recognition using normal

intensity images, infrared images, three-dimensional shape,

and combinations of these. We compare the performance

improvement obtained by combining three-dimensional or

infrared with normal intensity images (a Bmultimodal[ ap-

proach) to the performance improvement obtained by using

multiple intensity images (a Bmultisample[ approach). Com-

bining results from different types of imagery gives signifi-

cantly higher recognition rates than are obtained by using a

single intensity image. However, significantly higher recogni-

tion rates are also obtained by combining results from multiple

intensity images. Overall, initial results indicate that, using an

Beigen-face[ recognition algorithm and weighted score fusion,

multisample techniques can result in a performance increase

comparable to that of multimodal techniques.

KEYWORDS | Biometrics; face recognition; information fusion;

infrared; multimodal; three-dimensional

I . INTRODUCTION

The vast majority of face recognition research assumes

that an attempt to recognize a person is made using a
single intensity image of the type taken by standard

cameras. A recent broad survey of such face recognition

research is given by Zhao [1]. However, evaluations such

as the 2002 Face Recognition Vendor Test (FRVT) [2]

have shown that the accuracy of face recognition is not yet

sufficient for the more demanding applications. Compli-

cations that arise from variations in pose, lighting, and

facial expression are among the various factors that
contribute to decreased performance. This has led some

researchers to investigate the use of three-dimensional

(3-D) shape information for face recognition [3]–[8].

Some motivations for using 3-D shape are that shape is

defined independent of lighting, and that acquiring 3-D

shape should allow for accurate pose correction. Other

researchers have investigated the use of infrared (IR)

images for face recognition [9]–[12]. A major motivation
for using IR images is that they are relatively unaffected by

changes in lighting. Examples of these different types of

face image appear in Fig. 1.

In addition to exploring the use of 3-D shape and IR

images as alternatives to normal intensity images,

researchers have developed approaches to combining the

recognition results from either a 3-D shape model or an IR

image with the results from an intensity image. These
approaches that combine different types of information

for face recognition are commonly, although perhaps

imprecisely, referred to as multimodal. A general meaning

of the term multimodal is simply that different properties

are sensed. A more specific possible meaning is that dif-

ferent sensors are used in acquiring the data. Some

sensors that give integrated 3-D shape and intensity image
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data might not be considered multimodal in this more

restricted sense.

Publications in the area of multimodal face recogni-

tion have uniformly reported that the combination of 3-D

shape with intensity images, or the combination of IR

images with intensity images, improves performance
over the intensity image alone. However, the comparison

has generally been made between a system that employs:

1) one normal intensity image plus one additional 3-D

shape or IR image and 2) a system that employs one

normal intensity image. It has been noted [3] that this

type of comparison is biased in favor of seeing a greater

recognition accuracy from the multimodal approach, and

that a more fair comparison would be between using:
1) one normal intensity image plus one additional 3-D

shape or IR image versus 2) two different intensity images

of the person. The use of more than one normal intensity

image to represent a person will be referred to in the

sequel as a multisample approach.

One exception to the above general characterization of

previous work is that of Socolinsky et al. [11] dealing with

face recognition from infrared and intensity images. They
show results of several experiments in which a person is

represented by multiple images in the gallery, and then

verified from a single image. For multisample intensity,

multisample infrared or multimodal, the equal-error-rate

decreases with additional images used to represent a

person, up to a six-image maximum. An overall similarity

with the work reported here is that multisample intensity

with enough samples can achieve performance similar to

that of multimodal fusion of intensity and infrared.

This paper considers issues of multimodal face re-

cognition involving the combination of infrared and 3-D
with normal intensity images, and the comparison to

multisample recognition using normal intensity images.

We explore these issues using different instantiations of

the same core Beigen-face[ recognition algorithm with

each type of image. We use an experimental dataset

which has intensity, infrared and 3-D images of the same

persons. Our results suggest that, at least for the recog-

nition algorithm and score fusion method used here, a
multisample approach using traditional intensity images

can be competitive with multimodal face recognition

using 3-D or infrared in combination with traditional

intensity images.

II . BACKGROUND: CATEGORIES OF
BIOMETRIC FUSION

Before going into the details of the experiments reported

here, it may be useful to place them in the more general

context of biometrics and biometric fusion. (Some of the

discussion in this section follows that in [13].) The simple

approach to biometrics is to sense a single sample (image)

Fig. 1. Examples of intensity images, range images representing 3-D shape, and IR images. All images are of the same person. The images

along a row are from different acquisition sessions, with one or more weeks of elapsed time between sessions. The images in a column

are taken in the same acquisition session. Note the variations between the images in the different modalities and across time.

Bowyer et al. : Face Recognition Using 2-D, 3-D, and Infrared: Is Multimodal Better Than Multisample?

Vol. 94, No. 11, November 2006 | Proceedings of the IEEE 2001



of a biometric source (body part) from a person and then
process that to obtain a recognition result. The vast ma-

jority of face recognition research has implicitly assumed

this framework. The term Bmultimodal biometrics[ is used

in the literature with various meanings. Perhaps the least

ambiguous example of multimodal biometrics would be

two different sources on a person, say face and fingerprint,

sensed by different sensors. Two different properties, say

infrared and reflected light, of the same biometric source,
say the face, would be another unambiguous example of

multimodal. An ambiguous example might be two

different biometric sources, say face and ear [14], imaged

by the same sensor. Another ambiguous example might be

two different properties, say 3-D shape and reflected light,

of the same source, say face, sensed by the same sensor. An

expansive view would consider all of these variations as

Bmultimodal,[ and consider Bmultibiometric[ as an
equivalent term.

A. Multialgorithm Biometrics
One step beyond a simple biometric is what we might

call a multialgorithm approach. This approach still

employs a single sensor, and acquires a single biometric

sample. Two or more different algorithms process the

single sample, and the individual results are fused to obtain

an overall recognition result.

The multialgorithm approach would seem to be

attractive, both from an application point of view and
from a research point of view. From an application

perspective, it appears to minimize sensor and sensing

cost, since there is only one sensor and only one sample

sensed in order to obtain a recognition result. Relatively

little work has been done in this area. As one example, the

Supplemental Report to the 2002 Face Recognition

Vendor Test documented increased performance in two-

dimensional (2-D) face recognition by combining the
results of different commercial recognition systems [15].

More recently, Gokberk et al. have looked at combining

multiple algorithms for 3-D face recognition [16]. Xu et al.
[17] have also combined different algorithmic approaches

for 3-D face recognition.

A variation of the multialgorithm approach builds an

ensemble of multiple instances the same basic type of

algorithm, with intentional random variation between
instances. For example, Chawla et al. used the random

subspaces concept to create an ensemble and obtain im-

proved recognition rates from an eigen-face algorithm

[18], [19].

B. Multisample Biometrics
Another approach might be called Bmultisample[ or

Bmulti-instance.[ Multiple samples of the same biometric

are sensed, the same algorithm processes each of the

samples, and the individual results are fused to obtain an

overall recognition result. Multisample approaches were

investigated in the 2002 FRVT [2] and more recently in the
Face Recognition Grand Challenge [20]. In this paper, we

use a multisample approach with 2-D face images for

comparison against a multimodal combination of 2-D, 3-D,

and infrared imagery.

A multisample approach has advantages and disad-

vantages in comparison to the multialgorithm approach.

The use of multiple samples may overcome poor perfor-

mance due to one sample that has unfortunate properties.
For example, a person might be blinking in one face image,

and this might present problems for the recognition

algorithm; if multiple samples in time are used, it is un-

likely that the person is blinking in all of them. However,

the acquisition of multiple samples requires either

multiple copies of the sensor, or that the user be avail-

able for sensing over a longer period of time. When

compared to multialgorithm approaches, multisample
techniques would seem to require either greater expense

for sensors, greater cooperation from the user, or a com-

bination of both.

C. Multimodal Biometrics
We will discuss multimodal approaches in three ca-

tegories. We will call these Borthogonal,[ Bindependent,[
and Bcollaborative.[ These are not standard terms, but are
perhaps useful because they point up differences in the

fusion of results from the individual modes.

One common category of multimodal biometrics can

be called Borthogonal.[ By Borthogonal[ we mean the use

of biometric sources that involve different parts of the

body. An example would be face and fingerprint matching

used together. The most publicly visible use of multi-

modal biometrics is perhaps the (prospective) use of face
and fingerprint planned in the BUS VISIT[ program [21].

In a speech about this program in 2003, an official

actually mentioned face, fingerprint, and irisVBWe’ll do

so through a minimum of two biometric identifiersV
initially, fingerprints and photographs; later, as the

technology is perfected, additional forms such as facial

recognition or iris scans may be used as well[ [22].

In this category, there appears to be little or no
opportunity for interaction between the individual bio-

metrics. For instance, it is difficult to see how the in-

termediate processing of either face or fingerprint could

be used to help the other. As a result, the individual bio-

metrics are combined at the Bdecision level[ or the Bscore

level.[ In decision-level fusion, a recognition decision is

made for each individual biometric, and the individual

decisions vote to obtain the overall decision. In score-level
fusion, a matching score is obtained for each individual

biometric, and the scores are combined to obtain the

multimodal decision. Researchers in multimodal bio-

metrics have generally found that score-level fusion

performs at least as well as decision-level fusion. In ge-

neral, score-level fusion must involve a method to nor-

malize the scores from the individual biometrics, followed
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by a method to combine the scores. In the multimodal
results presented in this paper, we use score-level fusion.

Another category of approach to multimodal bio-

metrics might be called Bindependent.[ By Bindependent[
we mean to indicate that the individual biometrics are

processed independently of each other. It would seem

that orthogonal biometrics are processed independently

by necessity. But when the biometric source is the same

and different properties are sensed, then the processing
may be independent, but there is at least the potential for

gains in performance through collaborative processing.

As with most multimodal face recognition research to

date, the results that we report in this paper fall into the

category of independent multimodal biometrics.

A less common approach to multimodal biometrics

might be called Bcollaborative.[ By Bcollaborative[ we

refer to interaction between the intermediate results of
processing the individual biometrics. There are some

examples in the literature of what might be called weakly

collaborative approaches. Husken et al. [23] describe an

approach to multimodal 2-D þ 3-D face recognition that

locates the feature points (e.g., eyes) on the face in the 2-D

image, and then transfers these locations over to the

registered 3-D data to process the features there.

Socolinsky et al. [11] follow a similar approach in their
multimodal infrared and visible-light face recognition.

Their sensor is able to obtain registered images from the

two modes, and they find the eye location in the visible-

light image and transfer the locations over to the infrared

image. These approaches are collaborative in the sense that

intermediate results of processing in one modality are used

to assist the processing in the other modality. But the

degree of collaboration in these examples is not extensive,
and is only in the direction of 2-D to the other modality.

One can imagine that much more extensive collabora-

tive processing might be possible. Consider the example of

2-D þ 3-D face recognition. Artifacts occur in both types of

images, and it may be possible to exploit the ease of finding

a certain type of artifact in one mode to improve the

reliability of processing the other mode. For example, if

specular highlights are found in the 2-D face image, this
might inform the processing of the 3-D shape of the face,

since specular highlights in 2-D often result in artifacts in

the 3-D image. Also, once something of the general shape

of the face is known, it may be possible to use this to

consistently interpret regions of the 2-D image as affected

by shadows. In this way, the intermediate results of

processing each modality might be used to improve the

reliability and accuracy in processing the other. It seems
that the area of Bcollaborative[ processing among multi-

modal biometrics, although relatively less explored

currently, could hold potential for important gains.

There are some approaches which do not fit neatly

into this independent/collaborative categorization. For

instance, Papatheodorou and Reuckert [24] approached

multimodal 2-D þ 3-D face recognition by treating the

data as points in a four-dimensional (4-D) space of (x, y, z,
intensity). They were then able to use a 4-D iterative

closest point (ICP) algorithm for the matching stage.

Thus, the two properties of the face are treated in an

integrated manner in the matching, so that it is not quite

independent, but also certainly not collaborative in the

sense that we want to suggest here. In contrast to the

approaches above that generally use decision-level or

score-level fusion, this approach might be said to use Bdata
level[ or Bfeature level[ fusion.

III . EXPERIMENTAL METHODS
AND MATERIALS

This section details the image dataset and the recognition

algorithm used to generate the experimental results. The

image dataset was acquired at the Computer Vision

Research Lab at the University of Notre Dame, and is

available to the research community. The approach po-

pularly known as Beigen-faces[ was used as the core
recognition algorithm with each image modality, and

the implementation used is one that is available to the

research community [25].

A. Image Dataset
At a given image acquisition session, the intensity,

IR, and 3-D images of a subject were all acquired within

a period of a few minutes. The intensity images and the

3-D images were both acquired using a Minolta Vivid

900 range sensor [26]. This sensor produces a 640 � 480

sampling of range data, taking a few seconds to ac-

quire a scan. It also acquires a 640 � 480 color intensity
image just after sensing the range data. Infrared images

were acquired with a Merlin uncooled long-wavelength

IR camera, which produces a 240 � 320 IR image, with

12 bits of measurement resolution per pixel. During image

acquisition, the subject stood approximately 1.5 m from the

sensor, against a plain gray background, in a lab equipped

with studio lighting. Subjects were asked to have a neutral

facial expression, BFA[ in FERET terminology [27], and to
look directly at the sensor.

A total of 191 subjects participated in one or more

image acquisition sessions held at weekly intervals over a

period of several months. For purposes of the experiments

presented in this paper, the image dataset can be consi-

dered in three parts. Thirty-five subjects had good quality

images in all three modalities in only one of the acquisition

sessions. The images from these subjects are used only as
part of the Btraining set[ to create the Bface space[ used in

the eigen-face method. Another 29 subjects had good

images in all three modalities in each of four different

acquisition sessions. The images from these subjects are

used for a Btuning set[ in creating the face spaces, as

described later. Another 127 subjects participated in more

than one acquisition session, and the images from these
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persons are the data for the reported recognition
performance results, the Btest data.[ The images from

the earliest acquisition session for each person are used as

Bgallery[ images in the recognition experiment, and the

images from later sessions are used as the Bprobe[ images.

For each modality, there are 297 probe images in the

recognition experiment, with as little as one week and as

many as thirteen weeks time lapse between the gallery

and the probe.

B. Eigen-Face Recognition Algorithm
The eigen-face algorithm [28], [29] is used for the

recognition experiments with each of the three image

modalities. One reason for using this algorithm is that it is

readily adapted for use with infrared images and with the

range image representation of the 3-D data. Another

reason is that there is a standard implementation available
[25] that has been widely used in the face recognition

research community as a Bbaseline[ for evaluating other

algorithms [2], [20]. This choice also simplifies the issue of

score fusion in the multimodal results, since the scores

from the different modalities are naturally scaled to the

same range.

We made the methodological decision to use the same

core recognition algorithm with each modality, and to use
a Btuning set[ of images to separately tune the algorithm

for each modality. The Btuning[ performed here involves

selecting an appropriate set of dimensions from the eigen-

space for use as the Bface space.[ This is one approach to

making a fair comparison between different image

modalities. A different approach to a comparison could

be to use the current best recognition algorithm for each

modality, and so let the core recognition algorithm vary
between the different types of images. However, there is

no general consensus on the current best algorithm for

each modality. Also, there would not necessarily be a

standard open implementation of the different algorithms.

A variation of this approach is to relax the concern to

identify the best algorithm for each modality, and to simply

use an algorithm for each modality that has been shown to

be better than some Bbaseline[ performance. There are
numerous possible combinations of algorithms that might

be used in this type of comparison.

In the context of evaluating face recognition perfor-

mance, there is a set of gallery images and a set of probe

images. The gallery images represent the persons enrolled

into the system in order to be recognized. Each probe

image or gallery image corresponds to a point in the face

space. Face recognition systems can be used in two
different application scenarios: 1) a recognition scenario,

also referred to as identification and 2) a verification

scenario, also referred to as authentication. In a recogni-

tion scenario, to decide the identity for a given probe, the

distance is computed from the probe point in face space to

each of the gallery points, and the closest gallery point

indicates the identity of the probe. In a verification

scenario, the probe comes with a claimed identity, and so
the distance is computed just between the probe point in

face space and the gallery point for the claimed identity.

The claimed identity is then Bverified[ if the distance is

small enough, or rejected otherwise. We use the

Mahalanobis angle metric as the distance metric between

two points in face space. We have found, as have others,

that this metric gives better recognition performance than

other metrics such as the Euclidean or Mahalanobis
distance [29].

C. Tuning a Face Space for Each Modality
In the eigen-face approach to recognition, a Btraining

set[ of images is used to create a Bface space[ and

individual face images are then represented as points in

that space. It is common for the face space to have a

reduced dimensionality relative to the eigen-space.
Dimensions of the eigen-space corresponding to some

number of the smaller magnitude eigen-values may be

discarded on the basis of having minimal value for the

recognition process. One or more dimensions of the eigen-

space corresponding to the largest eigen-values may also be

discarded, on a similar basis. While the larger eigen-values

do represent dimensions of large variation between the

images, these variations may have nothing to do with
identity of the persons in the images. For example, the

largest dimension of variation may be due to variations in

lighting across the set of images.

We separately create an intensity image face space, a

range image face space, and infrared image face space.

For each modality, first the corresponding eigen-space is

created from a training set of images. The training set for

each modality has the same set of persons represented in
its images. Then, for each modality, we determine the

dimensions of the eigen-space to be kept in the face

space by using a tuning set. The tuning data set consists

of a gallery set of single images of 29 distinct subjects

and a probe set of three images of the same 29 subjects in

the gallery set for each modality. Dimensions of the

original eigen-space are first dropped from those

corresponding to smaller eigen-values until the rank-
one recognition rate on the tuning set begins to decrease.

Dimensions of the original eigen-space are then dropped

from the larger eigen-value end, again until the rank-one

recognition rate on the tuning set begins to decrease. The

resulting intensity image face space has four large eigen-

vector dimensions discarded and zero small eigen-vector

dimensions discarded. The range image face space had

one large eigen-vector dimension discarded and four
small eigen-vector dimensions discarded. The infrared

image face space also had one large eigen-vector

dimension discarded and four small eigen-vector dimen-

sions discarded. We have no reason to believe that the

similar choices in tuning the range image face space and

the infrared image face space are anything other than a

coincidence.
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Fig. 2 shows the first seven dimensions for each face
space. It seems clear that the types of variation represented

in the different face spaces are quite different.

D. Image Preprocessing
Face images are preprocessed before being used to

create the face space. The example images shown in Fig. 1

reflect the results of this preprocessing. The preprocessing

is meant to minimize image variations that are unrelated to
identity, and so to focus the approach on variation between

individuals. The images are masked to suppress the back-

ground and leave only the face region. The face region is

also scaled to fill a standard size frame, 130 � 150 pixels

in the implementation used. Additional mode-specific

normalization is also performed.

The preprocessing of the intensity and infrared images

is very similar, but the preprocessing of the 3-D shape to
obtain the range image is more complicated. Both 2-D and

IR images are normalized for pose variation only around

the Z axis, the optical axis. The eigen-face software uses

two landmark points (the eye centers) for geometric

normalization to correct for rotation, scale, and position of

the face. However, while histogram equalization is applied

to normalize the brightness level in 2-D images, only

geometric normalization is applied to IR images. For the
results in this paper, the eye center landmark points are

manually marked in each image, so that there are no

catastrophic failures due to landmark location.

In the case where 3-D shape information is acquired,

there is the opportunity to correct for pose variation

around the X, Y, and Z axes. A transformation matrix is

first computed based on the surface normal angle dif-

ference in X (roll) and Y (pitch) between manually
selected landmark points (two eye tips and center of lower

chin) and predefined reference points of a standard face
pose and location. Each point defined in 3-D space for a

range image has a depth value along the Z axis. Only the

geometric normalization is needed to correct the pose va-

riation. Pose variation around the Z axis (yaw) is

corrected by measuring the angle difference between

the line across the two eye points and a horizontal line. At

the end of the pose normalization, each person’s data is

translated to have the nose tip at the same point in 3-D
relative to the sensor, and rotated to have the same

orientation of the triangle formed by the eye tips and chin

point to the camera.

Also in the case where 3-D shape information is

acquired, there are some particular potential artifacts that

do not occur with intensity or infrared images. The two

most common artifacts with the 3-D sensor that we used

are called Bholes[ and Bspikes.[ A hole in the data is a
point where no 3-D measurement is made. This can

happen when the projected light stripe is not imaged for

some reason. A spike is a point where the computed 3-D

measurement lies far from the actual surface in the scene.

This can happen when, for example, there is interreflec-

tion of the projected light stripe in the scene. These

problems are addressed by a preprocessing step that

attempts to remove spikes by median filtering in a local
window and attempts to fill holes by linear interpolation

from points on the border of the hole.

IV. EXPERIMENTAL RESULTS FOR
INDIVIDUAL MODALITIES

In this section, we present the experimental results for

eigen-face recognition using each of the individual image
modalities. We report experimental results in two formats.

Fig. 2. Eigen-face images of first seven dimensions in each face space.
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One is a cumulative match characteristic (CMC) curve.
This form of the results is relevant to a recognition

scenario, in which a probe image is matched against each

of a set of gallery images in order to select the best match

in the gallery as representing the identity of the probe. The

rank-one recognition rate is the single number often

quoted based on the CMC curve. This is the percentage of

the probes for which the closest match in the gallery is the

correct identity.
The other form of the experimental results is the re-

ceiver operating characteristic (ROC) curve. This form of

the results is relevant to a verification scenario, in which a

probe image is presented with a claimed identity, the

image is matched against the gallery image for the

claimed identity, and the claimed identity is considered

as verified if the match is within some threshold. One

common format of the ROC curve plots the false alarm
rate (FAR) against the false reject rate (FRR). The equal

error rate (EER) is the single number typically quoted

from the ROC curve. This is the point at which the FAR is

the same as the FRR.

We present both ROC curves and CMC curves in the

results in this paper. It should be noted that the ROC

curves allow a more sound comparison with results in

other papers than do the CMC curves. This is because ROC
curves are inherently less dependent on the gallery size.

Because the CMC curve is more dependent on the gallery

size, it is problematic to compare CMC style results in the

literature that come from different size datasets. However,

with either ROC or CMC style results, comparisons are

still often problematic because different datasets of the

same size can vary greatly in difficulty due to background,

lighting, pose, and facial expression.
The CMC curve and the ROC curve for the individual

modalities are presented in Fig. 3. In the case of both the

ROC curve and the CMC curve, we find that recognition

with the 2-D images performs slightly better than with

with range images, and that both perform better than with

the infrared images. The EER in the verification scenario is

2% for the intensity images, 3% for the range images, and

6% for the IR images. McNemar’s test at the 0.05 level was
used to test for statistical significance of the observed

differences in the rank-one recognition rates [30]. The

observed difference in rank-one recognition rates between

2-D and 3-D is not statistically significant. However, IR

shows statistically significantly lower performance than

either 2-D or 3-D.

There are a number of caveats to consider before

drawing general conclusions about the inherent relative
power of the different image modalities for face recog-

nition. One is that the state of the art in 3-D sensors

seems not nearly as well developed as that in normal

cameras for capturing intensity images [4]. Artifacts occur

in 3-D sensing that seemingly cause greater problems

than the artifacts that occur in intensity images. Also,

while 3-D shape is defined independent of lighting or

pose, current sensors do not, practically speaking, acquire

3-D shape descriptions independent of lighting conditions

or pose [4]. A change in the lighting conditions can

induce a change in the sensed shape. Also, surfaces that

are nearly tangent to the line of sight of the sensor are not
sensed as well as surfaces that are more perpendicular to

the line of sight.

The performance of the commercial algorithm FaceIt

[31] for the intensity images is shown primarily to give a

sense of how easy or difficult the dataset might be con-

sidered to be. A direct comparison of the FaceIt perfor-

mance to that of the other algorithms is complicated by

several factors. For the eigen-face algorithms used here,
the set of training images includes the gallery images of the

persons to be recognized. A commercial off-the-shelf

Fig. 3. ROC and CMC curves for the individual modalities.
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package such as FaceIt is of course is not able to focus on
the particular set of persons in this way.

There are several points to be made with regard to the

relative power of infrared face recognition. One is that the

controlled indoor lighting conditions used in the data

acquisition for this experiment are naturally well suited to

normal intensity images. If images are acquired outdoors

under highly variable lighting conditions, then infrared

images can be expected to give better performance relative
to intensity images. On the other hand, while infrared

sensing is relatively independent of lighting conditions,

the infrared pattern generated by a particular face does

naturally vary with physiology, emotion, and other factors.

Additional discussion of considerations in comparing

infrared and normal visible images for face recognition

can be found in [10]–[12].

V. MULTIMODAL EXPERIMENTAL
RESULTS

There are many possible ways to combine recognition

results from different algorithms. We first discuss the

choices in the method of combination and then present

experimental results of multimodal recognition.

A. Fusion Method
In our experiments, using the eigen-face approach

with the cosine of the Mahalanobis angle as the distance

metric, the raw score for a match between two points in

face space ranges between �1 and þ1. Given that fusion

of results is done at the score level, there is still a choice

of how to combine the scores. Researchers have consi-
dered a variety of methods for normalizing the scores

prior to combination, including linear, logarithmic, expo-

nential, logistic, etc. [32]. Normalizing the scores to a

common range is important, but the particular range used

for the normalization seems less essential. The normal-

ized scores can be combined in any of several possible

ways, including majority vote, sum, product, median, and

min. Depending on the noise properties in the scores, a
certain combination rule might be better than another.

Many researchers have found that the sum and product

rule provide generally good results in biometric applica-

tions [32]–[34].

We experimentally compared the use of linear,

logarithmic, exponential, and a weighted linear normali-

zation of scores from the individual modalities, in

combination with sum, product, and min for combination
of the normalized scores. The weighted linear normaliza-

tion is described below. A summary of the recognition

rates resulting from these various choices of score nor-

malization and combination are listed in Table 1. It

seems that combining the scores by choosing the mini-

mum of the three scores is a poorer choice than com-

bining by the sum or the product. It also seems that

exponential normalization is a poorer choice than the
other options considered. Other than these poor choices,

the various options perform essentially equally well. The

difference between the three entries in Table 1 that have

100% recognition and the three that have 99.7% recog-

nition is just a difference in result for one probe. Any

real differences between these combination methods are

masked by the Bceiling effect[ of the recognition rates

approaching 100%.
Based on these results, we chose to linearly normalize

the scores from each face space to the same range. The

range used was 0 to 100, but the particular range is not

essential. We also chose to use the weighted sum com-

bination. The weight for the score from a given face space

is based on the distribution of the top three ranks in that

space. The motivation of the weighting is that a larger

distinction between the first and second ranked matches
implies a greater certainty that the first ranked match is

correct. For each face space, a weight is computed using

the first three rank scores as follows:

Weight ¼ score2 � score1

score3 � score1
:

Scorek is the kth closest distance from a gallery point to the

given probe point. A plain sum rule would add the scores

for each gallery subject across the three face spaces and
select the subject with the smallest sum. The weighted rule

sums the weighted scores.

B. Experimental Results
The ROC and CMC curves for the multimodal

recognition results are shown in Fig. 4. Results are given

for the different pairs of modalities as well as for the

combination of all three. For comparison purposes, the

individual results are also carried over to this figure.

Based on the ROC curve, the EER for the combination

of intensity plus 3-D is 0.5%. The EER for 3-D plus IR is

0.7%. And the EER for intensity plus infrared is 1.3%.
Based on the CMC curve, the rank-one recognition rate for

intensity plus 3-D is 98.7%. The rank-one recognition rate

for IR plus 3-D is 98%. And the rank-one recognition rate

for intensity plus IR is 96.6%.

Table 1 Rank-One Recognition Rates 2-D þ 3-D þ IR for Various Fusion

Methods
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One Bnull hypothesis[ underlying this experiment

might be stated asVthere is no significant difference in

performance between individual biometrics and multi-

biometrics. Using McNemar’s test for significance of the

difference in rank-one recognition rate between using two

modalities versus using one modality, we find that the

recognition rate from two modalities is statistically
significantly greater. Therefore, we would reject the null

hypothesis.

The experimental results from combining all three

modalities are better than those for any pair of modalities.

The ROC curve shows an EER of 0.1% and the CMC curve

shows a rank-one recognition rate of 100%. The dif-

ference in recognition rate between three modalities

versus two modalities is clearly not statistically signifi-

cant. Given the experimental dataset used here, the re-
cognition rates for two modalities are already so high as to

make it difficult to find a statistically significant im-

provement if one exists. Examples of some images that

were incorrectly recognized in one of the individual mo-

dalities but correctly recognized in the three-modality

results are shown in Fig. 5.

Results for the commercial face recognition system

FaceIt (Version G3) are included in the ROC curve in
Fig. 4. This is simply to give an indication of the relative

difficulty of the image dataset used here in comparison to

commercial face recognition technology. However, we

should also note that the current commercial release of

FaceIt is now at least version G5.5.

VI. MULTISAMPLE INTENSITY
VERSUS MULTIMODAL

As mentioned earlier, in evaluating multimodal recog-

nition results, it is important to compare to the use of

multiple samples of a single modality. It is known that

combining results from multiple samples of the same

modality can improve performance over using a single

sample of that modality [3], [33], [35]. In the context of

face recognition, proposals for multimodal recognition
generally anticipate adding another modality together

with 2-D intensity images. Therefore, it is useful to com-

pare the improvement from adding samples of other

modalities to the improvement from using multiple in-

tensity images.

In the same image acquisition sessions outlined earlier,

each person also had four different intensity images

acquired with a Canon Powershot G2 digital camera. These
four images varied in lighting condition and facial

expression. Two lighting conditions were used, one with

three studio lights switched on and positioned one to

either side in front of the person, and the other with an

additional third studio light positioned straight ahead of

the person. The person was requested to make two

different facial expressions in each lighting condition, a

neutral expression and a smile. The two lighting conditions
are referred to as BLM[ and BLF,[ and the two facial

expressions are referred to as BFA[ and BFB[ [36]. So the

four image conditions are FALM, FALF, FBLM, and FBLF.

Example images that illustrate the expression and lighting

variation appear in Fig. 6.

The same eigen-face recognition algorithm, as tuned

for the intensity images in the experiments described

earlier, was used for experiments with this additional set of
intensity images. For this experiment, a person was

represented by either two, three, or all four of the images

taken in a given acquisition session. When a person is

represented by two images for the gallery, and also by two

images for the probe, each probe image is matched to each

gallery image, for a total of four matches. The sum of the

four match scores is then used as the overall score for

Fig. 4. Multimodal biometrics performance results in

ROC and CMC curves.
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matching this probe person to this gallery person.

Similarly, if each person is represented by three images

as a gallery entry or as a probe, then the overall match

score is a sum of nine matches. And with a person

represented by all four images, the overall match score is a

sum of 16 matches. Note that this approach to the overall

match score uses more image-to-image matches for one

person-to-person match than is possible with the multi-

modal matching. This is because in the multiple-sample

approach, each probe image of a person can be matched to
each gallery image of a person.

The experimental results of this multiple-sample eigen-

face recognition are shown in ROC curve form in Fig. 7.

Using two images, the FALM and the FALF imaging

conditions, to represent a person, the rank-one recognition

rate was 96.1%. Using three images, the FALM, FALF, and

FBLM conditions, the recognition rate was 98.4%. Using

all four image conditions, the recognition rate was 100%.
Thus, using four intensity images to represent a person,

with the images sampling different lighting and expression

conditions as described, achieves the same level of

recognition performance as three images that are each

drawn from a different modality.

VII. SUMMARY AND DISCUSSION

This is the only work to compare face recognition using

normal 2-D images, range images representing 3-D shape,

and infrared images, and also the only work to evaluate the

multimodal combination of the three types of images.

Experimental results are based on an image dataset that

has images of the same persons in each of the three
Fig. 6. Examples of expression and lighting variation in images for

multisample experiment.

Fig. 5. Example matches where multimodal recognition improves over individual. The three images on the left are the gallery of

each modality, and the three images on the right are the probe images.
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modalities. For a given person at a given acquisition

session, the 2-D, 3-D, and IR images are acquired over an

time interval of just a few minutes. This should allow the

training, gallery, and probe sets for each modality to

contain comparable images in the different modalities.

We used the same PCA-based recognition engine, with

the face space tuned individually for each modality, and

all landmark points marked manually for each modality.
We found that 3-D resulted in a higher rank-one re-

cognition rate than 2-D, but that the difference was not

statistically significant. We also found that the rank-one

recognition rate for IR imagery was statistically signifi-

cantly lower than that for 2-D or 3-D. However, the range

of lighting conditions used in the image acquisition was

typical of indoor office environments and this may not

show off the strength of IR sensing.
We also compared the performance of individual

modalities with multiple modalities. We found that each
of the multimodal performances improved over all of
the individual modalities, and that the multimodal 2-D þ
3-D þ IR technique performed best of all. The differ-
ences between the various multimodal performances
were found not to be statistically significant. However,
all of the multimodal performances were quite high, mak-
ing it difficult to reliably detect differences. Additional
investigation using a larger and more challenging dataset
might reveal performance differences that were not
detected here.

The comparison of multimodal performance versus

multisample performance raises interesting and difficult

issues. In general, it seems that it will be cheaper and

more practical to acquire several intensity images than to

acquire multiple image modalities. Also, for the experi-

ments described in this paper, which use the same basic

eigen-face algorithm and score-level fusion in comparing

multisample versus multimodal, the multisample ap-

proach with intensity images achieves performance

equivalent to the multimodal approach. However, using

four identical intensity images will result in the same

performance as using one image. The use of multiple

intensity images is of value only if there is some variation
between the individual images of a person. And very little

is known about how to build the Bright[ degree of

variation into a multisample approach. If the range of

variation that may appear in the probe images is known,

then it should be possible to determine the appropriate

number and type of image samples to use to represent a

person.
Lastly, to achieve the maximum possible performance,

it seems reasonable that the eventual solution could be
some combination of multisample and multimodal. Either
multisample alone or multimodal alone could be expected
to reach a plateau in performance at some number of
samples or modalities. Achieving performance greater than
this may required a combination of multiple samples of
multiple modalities. This effect is also suggested by the
work of Socolinsky et al. [11] in the context of multimodal
fusion of infrared and visible.

It is worth noting once more that the images used in

this study were all approximately frontal view and acquired

under reasonably good lighting conditions. In conditions of

very low light, infrared images can produce results where

normal intensity images could not. And in conditions of

extreme nonfrontal pose, 3-D face shape may be able to

produce useful results where normal intensity images

could not. h

Fig. 7. Multisample intensity image recognition results.
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