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Abstract.  The diversity of an ensemble can be calculated in a variety of 

ways.  Here a diversity metric and a means for altering the diversity of an 

ensemble, called “thinning”, are introduced.  We evaluate thinning algorithms 

on ensembles created by several techniques on 22 publicly available datasets.  

When compared to other methods, our percentage correct diversity measure 

algorithm shows a greater correlation between the increase in voted ensemble 

accuracy and the diversity value.  Also, the analysis of different ensemble 

creation methods indicates each has varying levels of diversity.  Finally, the 

methods proposed for thinning again show that ensembles can be made 

smaller without loss in accuracy. 
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1   Introduction 

Multiple classifier systems have created a lot of excitement in the Machine Learning 

community thanks to their potential to greatly increase classification accuracy [1-6].  

Many algorithms for generating multiple classifier systems can achieve this accuracy 

increase with a substantially reduced training time.  The cost of testing however is 

typically not reduced, and in most cases will grow relative to the number of classifiers 

included in the ensemble.  In applications where testing must be done very rapidly, or 

there is limited space to store the classifiers, this can present a problem.  In another light, 

it stands to reason that given many classifiers, some select subset may make for an even 

more accurate ensemble. 

 The boost in accuracy by using multiple classifiers is at least partially a result of 

diversity [4, 7] – examples that are misclassified by some classifiers are correctly 

classified by others in such a way that the voted accuracy is greater than that of any 

single classifier.  The work presented here extends our previous work [8] by testing 

additional thinning methods, using more datasets, and evaluating diversity and thinning 

algorithms on ensembles created by several different algorithms. 

2   Diversity 

Diversity is a property of an ensemble of classifiers with respect to a set of data.  

Diversity is greater when, all other factors being equal, the classifiers that make incorrect 

decisions for a given example spread their decisions more evenly over the possible 

incorrect decisions.  The more uniformly distributed the errors are, the greater the 
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diversity, and vice versa.  In a bias-variance decomposition, we are looking at the 

variance component when studying diversity [9]. 

Let S be the number of classes and N be the number of examples.  For two classifiers 

Cn and Cm, let Cij equal the number of examples that are predicted as classi by Cn and 

classj by Cm. Cii is therefore the number of examples for which both classifiers predicted 

classi.  The Kappa statistic from Dietterich [4], which measures the degree of similarity, 

Θ1, between two classifiers while subtracting for the probability that the similarity occurs 

by chance, Θ2, serves as an illustrative starting point for examining diversity.  Given Θ1 

and Θ2, as defined in (1)-(2), one can calculate κ (3).  Referring to Figure 1, the Kappa 

value can be plotted on the x-axis for each pair of classifiers, against the mean error for 

the pair on the y-axis. 
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A broad scatter of points along the x-axis indicates that the pairs of classifiers have 

significantly different levels of agreement.  Ideally, the best classifiers would be both 

individually accurate and comparatively diverse.  The average of each generated Kappa 

value could be used as a measure of ensemble diversity.  A drawback of using such a 

method would be the computational complexity associated with calculating diversity for 

each pair-wise combination.  The time complexity of this algorithm is Θ(L2(N+S2)) 

where L is the number of classifiers and N is the number of examples.   
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Kappa Diagram for Heart Dataset
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Figure 1.  A Kappa Diagram showing a large spread of Kappa and mean error scores 

Kuncheva and Whitaker [7] compare ten statistics that can be applied to the 

measurement of diversity.  They look at four statistics that are averaged pair-wise results, 

and six that are non-pair-wise results.  Since they found the importance of diversity 

unclear, they recommend the pair-wise Q statistic [10-12] based on the criteria that it is 

understandable and relatively simple to implement.  In this algorithm, classifications are 

compared as a function of correctness or incorrectness with regard to a validation or test 

set.  This differs from Dietterich’s Kappa algorithm where classifications are compared 

based strictly on the class.  Let a,b ∈ {0,1} represent an incorrect (0) or correct (1) 

prediction.  For two classifiers, Ci and Ck, let Nab equal the number of times Ci chose a 

and Ck chose b.  As every set of paired classifiers produces a Q value, the average, Qav, is 

used for the diversity value of the ensemble.  The Qav equation is shown in (4).  Taking 

into account there exists only two binary classes, the time complexity for this algorithm is 

Θ(L2N). 
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Dietterich’s Kappa statistic is a variant of the Inter-rater Agreement function (also 

known as Kappa).  Let l(zj) be the number of correct classifications for classifier j and p 

be the average classification accuracy across all classifiers.  In (5), the rate of coinciding 

classifications is generated while taking into account the probability that the agreement is 

based solely upon chance.  Like the Q statistic, κ does not take into account the actual 

classification but rather whether the classification was correct or incorrect.  The time 

complexity of the Inter-rater Agreement function is Θ(LN).  Since the algorithm 

computes diversity for an ensemble and not for each pairwise combination of classifiers, 

it is faster than either aforementioned method. 
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The approach closest to our diversity metric is the “measure of difficulty” [13].  This 

measure looks at the proportion of classifiers that correctly classify an example.  One can 

consider plotting a histogram of the proportions.  The variance of this histogram is 

considered to be a measure of diversity.  Our new approach, the percentage correct 

diversity measure (PCDM), measures the proportion of classifiers getting each example 

correct.  However, rather than build a histogram of proportions, we examine the percent 

correct per example. 

The PCDM algorithm [8] is shown in Figure 2.  It works by finding the test set 

examples for which Tlow to Thigh of the individual classifiers in the ensemble are correct.  

In this way, examples for which there is general consensus are not considered to be useful 

in the determination of ensemble diversity.  Likewise, difficult examples where few 

classifiers obtain correct predictions are also disregarded. Hence, if an example’s 



 6

classification is ambiguous, as indicated by having only some percentage of classifiers in 

the range above vote correctly, then the classifiers, for at least that example, are said to be 

diverse.  We use values of 10 and 90 for Tlow and Thigh.  These were chosen empirically 

because they cause the algorithm to yield a somewhat uniform distribution of PCDM 

values over an array of ensemble creation techniques.  Tighter bounds would place 

greater strictness on the examples deemed easy or difficult.  The use of tighter bounds 

might be appropriate if comparing two extremely diverse ensembles. 

 

Figure 2.  The Percentage Correct Diversity Measure algorithm 

For visualization purposes, let f(xi) be the percent of classifiers voting correctly on 

example xi  ∈ {x1, …, xN}, where N is the number of examples.  Sorting the list of N f(x) 

values and plotting them on a graph generates a monotonically increasing function 

showing the “spread” of diversity for different examples.  A single classifier, or a 

multiple classifier system where every classifier returns identical classifications, 

generates the graph shown in 3a which appears similar to a digital signal (0 or 1) with 

zero classifiers in between the 10% and 90% bounds.  Multiple classifiers outputting 

diverse classifications on the other hand cause different percentages of correct 

classifications to appear relative to the number of classifiers.  Diversity, in a sense, 

Tally = 0 
For each example 
 For each classifier 
 Classify example 
 Endfor 
 If Tlow ≤ % Classifiers Correct ≤ Thigh 
 Tally = Tally + 1 
Endfor 

ExamplesofNumber 

Tally
Diversity =  
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transforms the line from a discrete to a continuous function as in Figure 3b.  Greater 

numbers of examples appearing between 0.1 and 0.9 equate to greater PCDM values. 
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Figure 3.  After sorting the x-axis based on f(x) to create a non-decreasing graph, it is easy to visualize the 
number of examples that are diverse.  (a) shows a single classifier and (b) shows multiple classifiers having 
diversity 

3   Diversity Experiments 

We investigate the diversity metrics of the previous section on a variety of ensemble 

creation techniques.  The goal is to determine whether any metric can predict accuracy 

increases as a function of diversity increases.  In performing our experiments, we have 

modified C4.5 release 8 [14] to evaluate several ensemble creation techniques:  bagging, 

random forests, random subspaces, and random trees.   

Breiman’s “bootstrap aggregating”, known as “bagging” [2], creates classifiers by 

manipulating the original training set by successively resampling it with replacement to 

create many different training sets.  For every training set created (called a “bag”), a 

classifier is trained.  Prediction of an example by an ensemble uses an unweighted 

majority vote of all created classifiers. 
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Breiman introduced random forests, the concept of creating an ensemble of decision 

trees from bags of data in a non-deterministic way [5].  He discussed several methods of 

creating trees for the forests, one of which was to use bagging and randomly choose an 

attribute for a test at each node in the decision tree.  The best test possible for that 

attribute would then be chosen.  An ensemble of these trees is called a random forest.  He 

found that this approach was comparable in accuracy to AdaBoost [6].   

Ho’s random subspaces algorithm [15, 16] creates multiple training sets by picking 

fifty percent of the attributes at random and using only those attributes in the new training 

set.  Each training set consists of different attributes for the same examples.  A classifier 

is then created for each training set.   

Dietterich’s random trees method [1] works by analyzing the best twenty tests across 

all attributes, and choosing one at random as the test on which to split.  One continuous 

attribute can produce many tests, each of which is a candidate for the list of the twenty 

best splits.  A discrete attribute on the other hand can produce only one test. 

In performing these experiments we chose to build 1000 trees so that the resultant 

ensemble is almost certainly larger than necessary and we can better evaluate using 

diversity to remove trees.  Breiman shows, using the Strong Law of Large Numbers, that 

ensemble techniques do not suffer from overfitting as more classifiers are added [5].  Our 

experiments use a ten-fold cross validation.  We build 10,000 trees (1000 per fold) for 

each of 22 experimental datasets:  19 from the UC Irvine Repository [17], “Phoneme” 

and “Satimage” from the ELENA project [18], and “Credit-g” from the NIADD [19].  

The accuracy of unpruned and pruned ensembles (using the C4.5 default certainty factor 

of 25 for error-based pruning) is calculated for each dataset.  Appendix A Tables A.1-A.4 
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show the experimental results of the diversity algorithms in measuring the diversity of 

ensembles as well as the boost in accuracy when comparing average single classifier 

accuracy and voted accuracy.  Figures 4-7 plot the diversity value against the accuracy 

increase from voting each classifier in the ensemble and provide a linear regression best-

fit line.  Decreasing values of Q and Kappa correspond to higher diversity whereas 

PCDM increases as diversity increases. 
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Figure 4.  Accuracy boost versus diversity values for bagging
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Random Forests - PCDM
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Figure 5.  Accuracy boost versus diversity values for random forests 
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Random Trees - PCDM
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Figure 6.  Accuracy boost versus diversity values for random trees 
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Random Subspaces - PCDM
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Random Subspaces - Kappa
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Figure 7.  Accuracy boost versus diversity values for random subspaces 
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Table 1 
R2 values for each of the ensemble creation methods and diversity measures 
 

Ensemble Creation 
Technques 

PCDM Q K 

Bagging .6353 .5046 .1775 
Random Forests .6905 .6105 .2602 
Random Trees .5765 .5614 .2106 
Random Subspaces .6096 .5071 .3512 

 

Table 1 shows the R2 value, a measure for determining how well the linear regression 

fits the measured data, for each diversity algorithm.  For all four ensemble creation 

methods, the PCDM metric has a higher R2 value than does κ or Q.  For these datasets, 

PCDM is slightly better correlated with the accuracy increase in an ensemble.  Q has the 

second highest R2 in all four cases.  The Q metric however is capable of generating 

divide by zero errors in the event that any one of the classifiers in the ensemble is either 

100% or 0% accurate on the test set.  In order to compensate for Q generating a divide by 

zero error, we invalidate the fold since this can occur no matter how diverse the two 

classifiers are.  The Kappa algorithm does not show as strong a relationship between 

accuracy increase and diversity.  In terms of running time, both PCDM and Kappa are 

significantly faster than Q, while PCDM is only marginally faster than Kappa.  For 

example on a 2.53 GHz Intel P4 using the Letter dataset takes .008 seconds to calculate 

the PCDM, .018 seconds to calculate Kappa, and 111.133 seconds to calculate the Q 

value. 

Generally speaking, an ensemble of unpruned trees obtains a larger boost in accuracy 

by voting than a pruned ensemble.  In 15 out of 88 experiments, the accuracy boost for 

the ensemble of pruned trees is greater.  In 12 of these 15 cases the PCDM values for the 

pruned trees are greater than the unpruned trees, as would be expected despite the 
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inclination to say pruned trees are less diverse.  The Q value shows this 8 times and 

Kappa 6 times. 

Finally, Table 2 shows that of all the diversity methods used, the random subspaces 

method generates the most diverse trees.  This is a surprising result because a generic 

decision tree is built, though the number of attributes is reduced randomly in each 

training set.  Intuitively, random forests using only one randomly picked attribute would 

seem to be the most diverse since one can imagine the individual trees would be very 

different from each other.  It also suggests that more than 100 trees, the amount 

recommended by Ho [16], should be used, since more classifiers are often needed to cope 

with an ensemble of highly diverse, and often inaccurate, classifiers. 

Table 2 

The average diversity of each of the ensemble creation techniques is compared.  Low values of Q and κ 
correspond to high diversity.  High values of PCDM correspond to high diversity 

Ensemble Creation 
Techniques 

Average 
Accuracy 

Voted 
Accuracy 

Accuracy 
Boost 

Average 
κ 

Average 
PCDM 

Average 
Q 

Random Trees 84.43% 88.36% 3.93% 0.468 0.283 0.845 
Bagging 83.56% 88.16% 4.60% 0.434 0.329 0.821 
Random Forests 82.23% 88.97% 6.73% 0.359 0.392 0.744 
Random Subspaces 80.59% 89.07% 8.48% 0.330 0.439 0.686 

4   Thinning 

4.1   A Review of Other Methods 

By observing that classifiers obtain a diverse set of votes for an example, it is feasible to 

try to improve the ensemble by removing classifiers that cause misclassifications.  We 

reference the terminology described in [8] to describe the removal of decision trees from 

a forest.  Since this process can be likened to “thinning a forest”, we call it “thinning.”   
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In [20], thinning was performed by testing random subsets of neural networks from an 

ensemble and choosing the best subset based on its performance on a validation set.  

While the results of this method showed some increase in accuracy, it is not scalable for 

ensembles with a large number of classifiers.   

In [21] an ensemble is thinned by attempting to include the most diverse and accurate 

classifiers.  They create subsets of similar neural networks (those that make similar 

errors) and then choose the most accurate from each subset.  Since far fewer classifiers 

are used in neural network ensembles compared to typical decision tree ensembles, the 

time complexity was not prohibitive. 

In [22], the McNemar test was used to determine whether to include a decision tree in 

an ensemble.  This pre-thinning allowed an ensemble to be kept to a smaller size and is 

different from our “over-produce and choose” approach.  In the rest of this section, we 

will propose and describe four additional thinning methods 

4.2   Some New Thinning Approaches 

In Accuracy in Diversity (AID) thinning, the classifiers that are most often incorrect on 

examples that are misclassified by many classifiers are removed from the ensemble.  That 

is, if a classifier incorrectly classifies an example which 99% of the others get right, 

removal would have no effect, whereas if 50% of the other classifiers get the example 

correct, then it may be a candidate for removal.  We call the dataset that is used in 

analyzing these percentages the thinning set, and it is separate from the training and 

testing sets.  The thinning set is used as a validation set. 
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A key step in designing the algorithm is to set proper boundaries for the accuracy 

percentages on thinning examples to use in deciding which classifiers to remove.  The 

greater the diversity on a thinning set, the more variation can be expected on a test set, 

and setting an upper bound that is too low can result in misclassifying examples 

previously considered to be “easy.”  In setting a lower bound, we would like to exclude 

the examples that most classifiers get wrong because almost no selection of classifiers 

will allow us to get these correct.  The lower bound for the consideration of examples 

should be no smaller than the reciprocal of the number of classes which represents, at 

best, random guessing.  One can imagine that mean individual classification accuracy 

also plays a part in determining the bounds, since it and diversity are so fundamentally 

related. 

The equations in Figure 8 represent the fundamental characteristics chosen to 

effectively set the correct classifier percentage boundaries for AID thinning.  The 

maximum value of d is 1, however in no case would we want to consider examples as 

high as 100% correct, so we set the value of α to 0.9.  The AID thinning algorithm is 

shown in Figure 9.  Note that after each tree is removed, the accuracy on the thinning set 

is recalculated. 

 

Figure 8.  Boundary equations for AID thinning 

 

N

d1
dµLowerBound

−
+⋅=  

d)(1µdαUpperBound −⋅+⋅=  
 

µ = Mean individual classification accuracy 
α = Approximate maximum upper bound allowed
d = Percentage correct diversity measure 
N = Number of classes
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Figure 9.  The AID thinning algorithm 

We have created another thinning algorithm based on the correctness of both the 

ensemble and the classifier with regard to a thinning set.  A classifier is rewarded for 

obtaining a correct decision, and rewarded more for obtaining a correct decision when the 

ensemble is incorrect.  A classifier is penalized in the event both the ensemble and 

classifier are incorrect.  We call the algorithm Concurrency thinning and it is shown in 

Figure 10. 

 

Figure 10.  The Concurrency thinning algorithm 

Since greater diversity typically leads to larger boosts in the accuracy of the forest, we 

also have created a thinning algorithm that works off of the aforementioned Inter-rater 

Agreement function called Kappa thinning.  In Figure 11, we compare all possible 

ensembles of n-1 classifiers, and eliminate the classifier whose removal causes the 

diversity to increase the most. 

While number removed ≤ Maximum number to remove 
Recompute the LowerBound and UpperBound boundary points. 
Remove the classifier that has the lowest individual accuracy rate for the set of  

examples between the boundary points. 
Endwhile 

For each classifier Ci 
For each example 
 If Ensemble Incorrect and Classifier Incorrect 
 Metrici = Metrici -2 
 If Ensemble Incorrect and Classifier Correct 
 Metrici = Metrici + 2 
 If Ensemble Correct and Classifier Correct 
 Metrici = Metrici + 1 
Endfor 

Endfor 
Remove Ci with the lowest Metrici
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Figure 11.  The Kappa thinning algorithm 

Finally, we implemented a sequential backwards selection (SBS) approach to removing 

classifiers.  We calculate the voted accuracy after generating all possible ensembles of  

n-1 classifiers and remove the classifier which causes the accuracy to increase the most.  

The SBS algorithm shown in Figure 12 is similar to Kappa thinning except it looks at 

accuracy rather than diversity. 

 

Figure 12.  Thinning by sequential backwards selection 

4.3   Experimental Methodology 

To investigate the properties of these thinning algorithms, we performed a ten-fold 

cross validation, where 10% of the overall data was removed from the training data to 

create a thinning set.  One thousand trees were built on the training data in each fold.  

Classifiers were chosen for removal based on the thinning set until only 100 classifiers 

remained.  We compared various thinning methods against a randomly constructed 

ensemble of 100 classifiers, the number Brieman used in his forests [5], for both bagging 

and random forests.  Tables 3 and 4 show the results for random forests and bagging 

respectively.  They are sorted by the maximum gain in accuracy of the three methods.  

While number removed ≤ Maximum number to remove 
For each classifier Ci of ensemble C1…CN 

Calculate voted accuracy of ensemble C1…Ci-1, Ci+1…CN 
Endfor 
Remove classifier Ci causing the highest voted accuracy 

Endwhile 

While number removed ≤ Maximum number to remove
For each classifier Ci of ensemble C1…CN 

Calculate κ of ensemble C1…Ci-1 , Ci+1…CN 
Endfor 
Remove classifier Ci causing the lowest κ value. 

Endwhile 



 20

Bold face type indicates the algorithm with the highest accuracy.  We observe an increase 

in accuracy by using one of the selected thinning methods over the randomly constructed 

ensemble.  A summary of our findings, including a Borda count [23], is available in 

Table 5.  The Borda count is calculated by assigning “place” values to each of the 

ensemble creation methods (first place, second place, etc.).   The first place winner 

obtains A points, second place obtains A-1 points, third place obtains A-2 points, and so 

on, where A is the number of classification algorithms compared.  The sum of those 

values across all datasets is the Borda count value.  The highest value is an indicator of 

the best overall algorithm.   
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Table 3 
Thinning compared against randomly constructed random forests 
Dataset 
 
 

Pruning? 
 
 

Random 
Accuracy 
 

AID 
Over 
Random 

K Over 
Random 
 

SBS 
Over 
Random 

Concur. 
Over 
Random 

Iris Pruned 88.46% 3.54% 6.20% 4.20% 6.20% 
Iris Unpruned 89.21% 5.45% 5.45% 5.45% 5.45% 
Credit-g Pruned 69.92% 2.88% 4.38% 2.78% 4.58% 
Glass Unpruned 77.62% 1.43% 1.90% 0.95% 2.86% 
Glass Pruned 78.10% 0.95% 1.90% -1.90% 2.86% 
Credit-g Unpruned 74.09% 2.01% 1.91% 0.51% 1.61% 
Autos Pruned 87.00% 1.50% 2.00% 0.50% 1.50% 
Autos Unpruned 87.00% 0.50% 1.50% 1.00% 1.50% 
Heart-h Pruned 77.93% 0.69% 1.38% 0.69% 1.38% 
Heart-h Unpruned 77.93% 0.34% 1.03% 0.34% 1.38% 
Heart-c Unpruned 82.47% 1.19% 0.86% 0.19% 0.19% 
Ion Pruned 92.86% 0.57% 0.86% 0.57% 0.86% 
Ion Unpruned 93.14% 0.29% 0.86% 0.29% 0.57% 
Horse Colic Unpruned 84.32% 0.54% 0.81% 0.81% 0.00% 
Phoneme Unpruned 90.30% 0.04% 0.76% 0.20% 0.35% 
Phoneme Pruned 90.22% -0.11% 0.67% 0.07% 0.37% 
Segmentation Pruned 97.37% 0.34% 0.64% 0.34% 0.38% 
Led-24 Unpruned 74.78% 0.62% 0.32% 0.32% 0.02% 
Credit-a Unpruned 85.80% -0.58% 0.29% -0.43% 0.58% 
Waveform Unpruned 84.38% 0.56% 0.34% 0.06% 0.38% 
Horse Colic Pruned 82.43% 0.54% -0.27% 0.54% -0.54% 
Led-24 Pruned 74.63% 0.45% 0.51% 0.23% 0.39% 
Letter Pruned 94.55% 0.20% 0.49% 0.30% 0.40% 
Satimage Pruned 90.95% 0.39% 0.47% 0.41% 0.33% 
Oil Unpruned 96.17% 0.21% 0.32% 0.21% 0.43% 
Oil Pruned 96.17% 0.11% 0.21% 0.11% 0.43% 
Breast-y Unpruned 72.07% 0.34% -1.03% 0.00% 0.34% 
Waveform Pruned 84.41% 0.05% 0.09% -0.11% 0.29% 
Letter Unpruned 95.22% 0.22% 0.19% 0.13% 0.22% 
Segmentation Unpruned 97.77% 0.11% 0.15% 0.20% 0.15% 
Pendigits Pruned 98.79% 0.08% 0.19% 0.11% 0.02% 
Satimage Unpruned 91.62% 0.11% 0.17% 0.14% 0.14% 
Pendigits Unpruned 98.90% 0.13% 0.10% 0.08% 0.13% 
Page Pruned 97.93% 0.00% 0.04% 0.09% 0.05% 
Page Unpruned 97.97% 0.07% 0.02% 0.04% 0.02% 
Hypo Unpruned 99.56% 0.03% 0.06% 0.03% 0.06% 
Hypo Pruned 99.62% 0.00% 0.03% 0.00% 0.06% 
Anneal Pruned 99.78% 0.00% -0.11% -0.22% -0.22% 
Anneal Unpruned 100.00% 0.00% -0.11% 0.00% -0.11% 
Breast-w Pruned 97.86% 0.00% -0.29% 0.00% -0.14% 
Breast-w Unpruned 98.00% -0.43% -0.29% -0.43% -0.43% 
Credit-a Pruned 86.38% -0.43% -1.74% -0.43% -1.59% 
Breast-y Pruned 74.14% -1.03% -2.41% -1.03% -0.69% 
Heart-c Pruned 85.88% -2.88% -2.21% -2.88% -1.88% 
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Table 4 
Thinning compared against randomly constructed bagged ensembles 
Dataset 
 
 

Pruning? 
 
 

Random 
Accuracy 
 

AID 
Over 
Random 

K Over 
Random 
 

SBS 
Over 
Random 

Concur. 
Over 
Random 

Autos Unpruned 76.50% 1.50% 5.00% 0.00% 5.50% 
Autos Pruned 78.00% -0.50% 3.50% 0.00% 2.00% 
Glass Unpruned 70.48% 1.90% 1.90% 0.95% 3.33% 
Glass Pruned 70.95% 1.43% 2.86% -0.48% 3.33% 
Heart-c Unpruned 80.00% 1.43% 0.00% 1.43% 3.33% 
Heart-c Pruned 79.52% 1.43% 0.48% 2.86% 2.81% 
Breast-y Unpruned 68.62% 0.00% 1.72% 0.69% 2.07% 
Heart-h Unpruned 75.52% 1.38% 0.00% 1.38% 1.38% 
Horse Colic Pruned 84.86% 0.81% 1.35% 0.54% 0.81% 
Credit-g Pruned 76.50% -0.20% -0.40% -0.60% 1.20% 
Breast-y Pruned 72.07% 0.69% 1.03% -0.34% 0.00% 
Heart-h Pruned 75.52% -1.38% 1.03% -1.38% 0.69% 
Credit-g Unpruned 76.10% 0.20% 0.20% -0.60% 0.90% 
Letter Pruned 93.04% 0.11% 0.78% 0.11% 0.52% 
Iris Unpruned 94.00% 0.67% 0.00% 0.00% 0.67% 
Iris Pruned 94.00% 0.67% 0.00% 0.67% 0.67% 
Letter Unpruned 93.34% 0.05% 0.65% 0.03% 0.33% 
Credit-a Pruned 87.25% 0.43% 0.43% 0.58% -0.14% 
Segmentation Pruned 97.14% 0.39% 0.52% 0.30% 0.48% 
Segmentation Unpruned 97.32% 0.35% 0.30% 0.09% 0.52% 
Phoneme Pruned 89.31% 0.07% 0.46% 0.30% 0.46% 
Phoneme Unpruned 89.41% 0.20% 0.43% 0.39% 0.44% 
Credit-a Unpruned 86.96% -0.14% 0.14% 0.29% 0.43% 
Oil Pruned 95.85% 0.32% 0.21% 0.43% 0.00% 
Oil Unpruned 95.96% 0.32% 0.21% 0.11% 0.00% 
Ion Unpruned 94.57% -0.29% -0.29% -0.29% 0.29% 
Ion Pruned 94.57% 0.00% 0.00% 0.00% 0.29% 
Horse Colic Unpruned 85.95% -1.08% 0.00% 0.27% -0.54% 
Pendigits Pruned 98.22% 0.06% 0.24% 0.03% 0.17% 
Hypo Unpruned 98.83% 0.06% 0.06% 0.09% 0.19% 
Satimage Pruned 91.22% 0.18% 0.02% 0.07% -0.05% 
Pendigits Unpruned 98.36% -0.03% 0.17% -0.03% 0.03% 
Satimage Unpruned 91.22% 0.16% 0.02% -0.05% -0.32% 
Breast-w Pruned 96.14% 0.14% -0.29% 0.14% -0.57% 
Waveform Pruned 85.92% 0.10% 0.14% 0.14% 0.02% 
Page Unpruned 97.55% 0.07% 0.13% -0.02% 0.09% 
Hypo Pruned 98.89% 0.06% 0.03% 0.06% 0.13% 
Waveform Unpruned 86.02% -0.42% 0.10% -0.12% 0.12% 
Led-24 Unpruned 73.64% 0.12% -0.28% -0.34% 0.12% 
Led-24 Pruned 74.70% 0.00% 0.12% -0.08% 0.04% 
Anneal Pruned 98.78% -0.11% 0.11% -0.22% 0.11% 
Page Pruned 97.53% 0.02% 0.11% -0.02% 0.11% 
Anneal Unpruned 99.22% 0.00% 0.00% 0.00% 0.00% 
Breast-w Unpruned 96.00% -0.14% -0.29% 0.00% -0.14% 
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Table 5 

The total accuracy increase for each ensemble creation method compared to random construction of a 100 
member ensemble.  A Borda count is also provided. 

Total Accuracy Increase (%) Borda Count Ensemble Creation 
Method AID K SBS Concur. AID K SBS Concur. Random 
Random Forests 21.03 28.66 14.46 30.90 152 174 139 175 86 
Bagging 11.02 22.94 7.38 31.82 146 166 129 177 100 

4.4   Analysis of Results 

For the random forest method, AID thinning was better than random construction 33 

out of 44 times, Kappa thinning was better 35 times, SBS was better 32 times, and 

Concurrency thinning was better 35 times.  In many cases, thinning causes the difference 

in accuracy between the unpruned and pruned ensemble to decrease.  An ensemble of 

pruned trees on the “Credit-g” dataset, with an accuracy of only 69.92%, obtains an 

accuracy of 75.50% via Concurrency thinning; the unpruned trees increase from 74.09% 

to 75.70% after thinning.  Ensembles built on “Breast-w” show no accuracy increase for 

any thinning method.  This suggests either that the diversity was too great for only 100 

classifiers to overcome, or that the thinning set selection was poor.  Indeed all of these 

thinning algorithms will learn to overfit the thinning set, negatively affecting the 

generalization potential of the ensemble.  Figure 13 shows a small example of using a 

thinning set.  Thinning set accuracy continues to increase while the accuracy on the test 

set begins to decrease.  On larger datasets this can be more profound.  Accuracy on both 

the thinning set and the test set will be less once there are no longer enough trees to 

support an ensemble.  A potential solution to the overfitting problem is to use a validation 

set to determine the stopping point for the thinning algorithms. 
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Figure 13.  Thinning set versus test set accuracy 

 

SBS ties six times with the other methods in accuracy but is better only twice.  SBS is 

often outperformed despite the fact that it concentrates specifically on voted accuracy.  

Based on the knowledge of the importance of diversity, it is clear why this happens.  SBS 

does not consider diversity to be a factor, causing the generalization potential of the 

ensemble on new data to be poor.  This is born out in the Borda count where SBS is 

consistently the least performing thinning algorithm.   

For the bagging ensemble creation method, AID thinning was better than a randomly 

constructed ensemble 30 of 44 times, Kappa thinning was better 32 times, SBS was better 

24 times, and Concurrency thinning was better 34 times.  SBS continues to remain the 

least effective method, not able to keep up in wins/losses, average accuracy increase, or 

Borda count.  Concurrency thinning and Kappa thinning both perform well, having the 

highest accuracy increases and Borda counts. 

Overall, Kappa and Concurrency thinning are more accurate than AID thinning.  

However both also have a greater running time than AID thinning.  Kappa thinning runs 

for approximately 33% more time than AID thinning.  Concurrency thinning runs for 
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approximately 50% more time than Kappa thinning.  These distinctions in running time 

might play an important role as datasets become larger.  The method to use thus depends 

on the needed gain in accuracy and the CPU time available.  It should be noted that SBS 

has the greatest running time of all these methods since a majority vote, which takes 

longer to evaluate than average accuracy or the diversity calculations, must be computed 

multiple times before any classifier is removed.  A summary of all methods is provided in 

Table 5. 

Statistical significance tests did not show the small increases in accuracy to be 

significant; however, there is not a significant difference in accuracy even if 90% of the 

classifiers are removed because of the large variances between folds.  This is validated by 

comparing the original 1000 random classifiers with the 100 random classifiers.  With up 

to 90% of the classifiers removed from an ensemble, ensemble accuracy is clearly lower 

than the best accuracy.  However, there is still significant variation between folds and a 

significance test will not show the change in accuracy to be significant.  Despite the lack 

of statistical significance in the accuracy increases, the Borda count shows that the 

thinning algorithms are consistently more accurate than random assembly of the 

ensemble.   

5   Summary and Discussion 

The concept of diversity is of interest because its effects can easily be seen.  However, its 

quantification and manipulation are not quite well defined.  The percentage correct 

diversity measure allows for some degree of predictability in foreseeing how much of an 

increase in accuracy can be expected by increasing the diversity of the ensemble.  
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Furthermore, the PCDM is simple and more efficiently calculated than the Q statistic, and 

those are the grounds on which Kuncheva and Whitaker originally recommended Q over 

the other nine measures they considered.   

Removing classifiers that incorrectly classify examples for which there is a diverse 

vote shows how the diversity concept can be used to shrink ensembles while maintaining 

or improving accuracy.  Each thinning algorithm scores a higher Borda count and has a 

higher accuracy increase over random assembly.  Concurrency thinning shows this 

particularly well, besting the other algorithms in every category. 

Comparing the original 1000 randomly generated classifiers to the 100 thinned 

classifiers, the latter is slightly less accurate for most datasets, but obviously more 

accurate than the ensemble consisting of 100 randomly assembled classifiers.  In general, 

the thinning methods produce smaller, accurate ensembles.   

Finally, the algorithms presented here could be used to combine multiple different 

types of classifiers.  That is, decision trees, neural networks, etc., could all contribute 

classification boundary suggestions, the least diverse of which would be thinned away. 
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Appendix A 

Tables A.1 to A.4 are provided as a reference showing the experimental results for 

each of the diversity measures when used on ensembles created by bagging, random 

forests, random trees, and random subspaces.  The data generated in these tables was 

used to create the graphs in Figures 1—4 shown previously.  Decreasing values of Q and 

Kappa correspond to higher diversity whereas PCDM increases as diversity increases. 
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Table A.1 
Accuracy boost and diversity results for bagging ranked by the accuracy boost 

Dataset 
 

Pruning? 
 

Accuracy 
Boost 

PCDM 
 

K 
 

Q 
 

Led-24 Unpruned 14.02% 0.707 0.394 0.690 
Autos Pruned 12.63% 0.652 0.339 0.661 
Autos Unpruned 12.57% 0.648 0.342 0.667 
Glass Pruned 9.44% 0.677 0.371 0.636 
Waveform Unpruned 9.24% 0.644 0.270 0.571 
Waveform Pruned 9.13% 0.639 0.273 0.576 
Letter Unpruned 9.08% 0.316 0.440 0.850 
Letter Pruned 8.82% 0.311 0.446 0.856 
Glass Unpruned 8.58% 0.677 0.367 0.632 
Led-24 Pruned 8.34% 0.461 0.552 0.861 
Satimage Unpruned 6.74% 0.360 0.411 0.816 
Satimage Pruned 6.36% 0.342 0.426 0.831 
Credit-a Unpruned 6.15% 0.394 0.416 0.769 
Credit-g Unpruned 5.90% 0.726 0.302 0.571 
Credit-g Pruned 5.58% 0.634 0.371 0.674 
Heart-c Unpruned 5.31% 0.581 0.333 0.615 
Breast-y Unpruned 4.63% 0.683 0.357 0.632 
Heart-c Pruned 4.30% 0.545 0.365 0.659 
Phoneme Unpruned 4.28% 0.338 0.425 0.824 
Phoneme Pruned 4.22% 0.334 0.429 0.827 
Horse-Colic Unpruned 4.09% 0.324 0.516 0.845 
Breast-y Pruned 3.64% 0.397 0.570 0.849 
Ion Unpruned 3.30% 0.200 0.422 0.918 
Horse-Colic Pruned 3.15% 0.192 0.661 0.929 
Ion Pruned 3.15% 0.200 0.421 0.917 
Pendigits Unpruned 2.81% 0.111 0.348 0.903 
Credit-a Pruned 2.77% 0.272 0.527 0.871 
Pendigits Pruned 2.69% 0.109 0.354 0.907 
Breast-w Unpruned 2.63% 0.153 0.510 0.905 
Oil Unpruned 2.59% 0.109 0.453 0.922 
Oil Pruned 2.13% 0.100 0.487 0.939 
Heart-h Unpruned 2.01% 0.403 0.486 0.813 
Breast-w Pruned 1.96% 0.127 0.556 0.907 
Segmentation Pruned 1.74% 0.114 0.454 0.912 
Segmentation Unpruned 1.67% 0.116 0.450 0.909 
Heart-h Pruned 1.35% 0.377 0.520 0.841 
Page Unpruned 1.13% 0.061 0.589 0.979 
Page Pruned 0.91% 0.056 0.607 0.982 
Anneal Pruned 0.85% 0.037 0.285 0.974 
Anneal Unpruned 0.82% 0.035 0.291 0.979 
Iris Unpruned 0.64% 0.144 0.420 0.867 
Iris Pruned 0.53% 0.143 0.418 0.836 
Hypo Unpruned 0.43% 0.023 0.522 0.994 
Hypo Pruned 0.20% 0.013 0.600 0.992 
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Table A.2 
Accuracy boost and diversity results for random forests ranked by the accuracy boost 

Dataset 
 

Pruning? 
 

Accuracy 
Boost 

PCDM 
 

K 
 

Q 
 

Autos Pruned 20.55% 0.819 0.259 0.495 
Autos Unpruned 17.44% 0.781 0.273 0.515 
Led-24 Unpruned 15.35% 0.742 0.376 0.666 
Letter Unpruned 14.89% 0.440 0.355 0.742 
Letter Pruned 14.74% 0.436 0.358 0.746 
Glass Pruned 14.05% 0.777 0.302 0.547 
Glass Unpruned 13.75% 0.773 0.299 0.542 
Waveform Unpruned 11.50% 0.719 0.217 0.476 
Waveform Pruned 11.48% 0.716 0.219 0.480 
Credit-g Unpruned 10.16% 0.856 0.220 0.440 
Heart-c Unpruned 9.01% 0.623 0.299 0.570 
Breast-y Unpruned 8.99% 0.697 0.327 0.590 
Credit-a Unpruned 8.73% 0.558 0.331 0.663 
Led-24 Pruned 8.46% 0.446 0.546 0.856 
Satimage Unpruned 8.43% 0.395 0.367 0.767 
Horse-Colic Unpruned 8.33% 0.546 0.348 0.669 
Heart-c Pruned 8.15% 0.590 0.324 0.612 
Satimage Pruned 7.90% 0.380 0.382 0.784 
Ion Unpruned 6.31% 0.364 0.277 0.754 
Ion Pruned 6.21% 0.358 0.281 0.762 
Credit-g Pruned 6.05% 0.719 0.306 0.586 
Credit-a Pruned 5.41% 0.404 0.404 0.771 
Pendigits Unpruned 5.05% 0.179 0.227 0.765 
Pendigits Pruned 4.97% 0.176 0.230 0.771 
Breast-w Unpruned 4.91% 0.234 0.310 0.803 
Breast-y Pruned 4.68% 0.438 0.509 0.792 
Phoneme Unpruned 4.63% 0.353 0.411 0.811 
Phoneme Pruned 4.62% 0.350 0.414 0.814 
Breast-w Pruned 4.24% 0.189 0.342 0.818 
Segmentation Unpruned 4.18% 0.166 0.315 0.822 
Segmentation Pruned 3.98% 0.161 0.327 0.834 
Horse-Colic Pruned 3.86% 0.297 0.523 0.840 
Heart-h Unpruned 2.49% 0.433 0.431 0.748 
Oil Unpruned 2.15% 0.106 0.420 0.893 
Heart-h Pruned 1.58% 0.403 0.445 0.753 
Anneal Unpruned 1.45% 0.040 0.231 0.991 
Oil Pruned 1.43% 0.087 0.467 0.920 
Anneal Pruned 1.39% 0.040 0.291 0.989 
Page Unpruned 1.37% 0.078 0.517 0.965 
Page Pruned 1.19% 0.073 0.530 0.968 
Hypo Unpruned 0.70% 0.037 0.448 0.946 
Iris Unpruned 0.56% 0.133 0.394 ------- 
Iris Pruned 0.54% 0.133 0.383 ------- 
Hypo Pruned 0.45% 0.023 0.539 0.962 
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Table A.3 
Accuracy boost and diversity results for random trees ranked by the accuracy boost 

Dataset 
 

Pruning? 
 

Accuracy 
Boost 

PCDM 
 

K 
 

Q 
 

Led-24 Unpruned 13.48% 0.679 0.413 0.715 
Letter Unpruned 11.51% 0.360 0.352 0.776 
Letter Pruned 11.47% 0.361 0.355 0.778 
Autos Pruned 9.33% 0.529 0.383 0.687 
Autos Unpruned 8.83% 0.424 0.452 0.784 
Credit-g Unpruned 7.39% 0.775 0.277 0.535 
Glass Unpruned 7.16% 0.586 0.411 0.708 
Satimage Unpruned 7.13% 0.355 0.388 0.802 
Glass Pruned 7.10% 0.577 0.418 0.716 
Waveform Unpruned 6.73% 0.542 0.354 0.698 
Waveform Pruned 6.60% 0.536 0.359 0.705 
Satimage Pruned 6.07% 0.318 0.424 0.839 
Credit-a Unpruned 5.17% 0.417 0.444 0.792 
Breast-y Unpruned 5.11% 0.528 0.499 0.804 
Horse-Colic Unpruned 4.82% 0.419 0.454 0.804 
Heart-c Unpruned 4.44% 0.519 0.406 0.721 
Heart-c Pruned 4.16% 0.442 0.469 0.788 
Breast-w Unpruned 4.03% 0.214 0.364 0.842 
Breast-w Pruned 3.55% 0.181 0.432 0.744 
Ion Pruned 3.55% 0.219 0.433 0.916 
Ion Unpruned 3.24% 0.217 0.422 0.901 
Pendigits Unpruned 2.82% 0.104 0.280 0.876 
Led-24 Pruned 2.77% 0.239 0.736 0.963 
Pendigits Pruned 2.72% 0.101 0.293 0.885 
Credit-g Pruned 2.65% 0.471 0.502 0.812 
Segmentation Pruned 2.45% 0.103 0.385 0.906 
Segmentation Unpruned 2.38% 0.102 0.382 0.907 
Horse-Colic Pruned 1.73% 0.176 0.649 0.912 
Oil Unpruned 1.69% 0.090 0.507 0.941 
Credit-a Pruned 1.54% 0.228 0.576 0.900 
Breast-y Pruned 1.44% 0.321 0.673 0.915 
Phoneme Unpruned 1.30% 0.200 0.643 0.952 
Phoneme Pruned 1.24% 0.195 0.648 0.953 
Oil Pruned 1.09% 0.064 0.604 0.979 
Heart-h Unpruned 0.97% 0.263 0.649 0.915 
Anneal Pruned 0.92% 0.032 0.285 ------- 
Page Unpruned 0.90% 0.055 0.614 0.984 
Page Pruned 0.81% 0.049 0.634 0.987 
Iris Pruned 0.79% 0.100 0.423 0.933 
Anneal Unpruned 0.78% 0.025 0.190 ------- 
Heart-h Pruned 0.48% 0.210 0.690 0.929 
Hypo Unpruned 0.30% 0.021 0.587 0.992 
Hypo Pruned 0.26% 0.009 0.678 0.998 
Iris Unpruned -0.03% 0.114 0.458 0.806 
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Table A.4 
Accuracy boost and diversity results for random subspaces ranked by the accuracy boost 

Dataset 
 

Pruning? 
 

Accuracy 
Boost 

PCDM 
 

K 
 

Q 
 

Led-24 Unpruned 32.67% 0.935 0.140 0.304 
Led-24 Pruned 31.08% 0.938 0.169 0.344 
Letter Unpruned 19.77% 0.565 0.313 0.668 
Letter Pruned 19.04% 0.547 0.321 0.682 
Glass Unpruned 18.71% 0.818 0.264 0.500 
Glass Pruned 18.52% 0.818 0.269 0.508 
Credit-g Unpruned 11.82% 0.922 0.182 0.367 
Credit-a Unpruned 11.71% 0.710 0.231 0.506 
Waveform Unpruned 11.18% 0.716 0.235 0.498 
Waveform Pruned 10.88% 0.700 0.243 0.514 
Heart-c Unpruned 10.69% 0.765 0.224 0.433 
Horse-Colic Unpruned 10.58% 0.630 0.283 0.574 
Autos Pruned 10.07% 0.486 0.361 0.760 
Credit-a Pruned 9.69% 0.612 0.278 0.584 
Heart-c Pruned 9.67% 0.703 0.258 0.493 
Autos Unpruned 9.57% 0.448 0.398 0.807 
Credit-g Pruned 8.45% 0.777 0.273 0.532 
Horse-Colic Pruned 7.44% 0.503 0.376 0.695 
Heart-h Unpruned 7.38% 0.530 0.355 0.642 
Satimage Unpruned 6.99% 0.343 0.397 0.811 
Pendigits Unpruned 6.42% 0.222 0.205 0.694 
Heart-h Pruned 6.35% 0.467 0.391 0.679 
Pendigits Pruned 6.28% 0.215 0.212 0.707 
Satimage Pruned 6.24% 0.309 0.432 0.845 
Anneal Pruned 6.12% 0.213 0.188 0.803 
Anneal Unpruned 6.10% 0.212 0.160 0.810 
Iris Unpruned 5.63% 0.300 0.291 0.637 
Breast-y Unpruned 5.31% 0.655 0.346 0.606 
Ion Pruned 4.88% 0.242 0.331 0.838 
Segmentation Pruned 4.78% 0.203 0.317 0.801 
Segmentation Unpruned 4.65% 0.202 0.314 0.800 
Iris Pruned 4.57% 0.280 0.291 0.356 
Breast-w Unpruned 4.36% 0.213 0.336 0.730 
Ion Unpruned 4.23% 0.239 0.329 0.837 
Phoneme Unpruned 4.01% 0.438 0.427 0.753 
Phoneme Pruned 3.98% 0.432 0.438 0.767 
Breast-w Pruned 3.36% 0.180 0.383 0.735 
Breast-y Pruned 2.52% 0.407 0.573 0.839 
Page Unpruned 1.39% 0.078 0.520 0.966 
Oil Unpruned 1.36% 0.085 0.551 0.954 
Hypo Unpruned 1.27% 0.067 0.368 0.917 
Page Pruned 1.19% 0.070 0.547 0.972 
Oil Pruned 1.08% 0.063 0.614 0.970 
Hypo Pruned 1.04% 0.061 0.405 0.931 

 


