Network Robustness

Famim Talukder

Introduction

* Network Robustness — the
network’s structure plays a role
in its ability to survive

 Random failures
* Deliberate attacks

e Cascading failures

Motivations

* Biology: some mutations lead to
diseases while others do not

* Ecology: failure of an ecosystem
based on human activity

* Engineering: communication
systems, power grids, and
component failures

Military Communication Network

Example Networks

OO0

@

o

Communication Networks

STATION
(a) CENTRALIZED (b) DECENTRALIZED (c) DISTRIBUTED

Building Robustness

* Building robustness takes time

 How can we contain damages?
* Remove nodes/edges

* Network topology is paramount
in in network robustness

0.75 H

Peo

0.5

0.25

075

075

Peo

05

0.25

ATTACK -

RANDOM FAILURE -»

ATTACK =

RANDOM FAILURE -»

L
0 0.25

0.75 1

ATTACK =

RANDOM FAILURE =

S

s
0.75 1

Vulnerability Metrics

Centrality Metrics Robustness Measure

* Degree * Average path length

* Closeness e Efficiency (power grids)

* Centroid * Largest connected component

* Eccentricity

* Betweenness

* Eigenvector

Pseudocode — Brandes Algorithm

Algorithm 1: Betweenness centrality in unweighted graphs

Cplv] « 0,veV;

for s €V do

S « empty stack;

Plw] < empty list, w € V;

olt] = 0,teV; ofs] 1,

dlt] — —1,t€V; d[s] < 0;

Q — empty queue;

enqueue s — Q;

while @Q not empty do
dequeue v «+— @;

push v — S

foreach neighbor w of v do
// w found for the first time?
if d{w] < 0 then
enqueue w — Q;

dw] « d[v] + 1;

end

// shortest path to w via v?
if dlw] =d[v] + 1 then
o[w] o[w] + o[v];

append v — Plw];

end
end
end

0[v] <« 0, v € V;

// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w « S;

for v € Plw] do §[v] < &[v] + % - (14 d[w]);

if w # s then Cplw] « Cg[w] + §[w];

end

end

e Uses BFS for unweighted graphs

* Runtime: O(m™*n) on
unweighted

e Space: O(m+n)

* Weighted networks:
* Runtime: O(m*n+n?log(n))

Largest Connected Component

Algorithm 2: Largest Connected Component

Data: Graph G = (V. E)
Result: Largest Connected Component of unweighted graphs
Vis[v] < 0,v € V;

for v € V do
if Vis[v] == 0 then
| DF Suntil(v);
end
end

Data: Node v, Vis||, Graph G = (V, E)
v == 1 for u adjacent to v do
if Vis[u] == 0 then
| DFSuntil(u, Vis[], G);
end

end

Can be performed with either
BFS or DFS

Runtime: O(m+n)

10

Questions\Comments

