Chapter 1

Streaming Changes of Centrality of
UAV Networks

Contributed by Joshua Huseman

1.1 Introduction

The Dronology project is a system for controlling a fleet of multiple Unmanned Aerial Vehicles
(UAVs) in formation[2]. With the current iteration of the project, communication is established
as a direct serial over Radio Frequency (RF) link between the Ground Control Station (GCS) and
each UAV, necessitating a separate communication antenna connected to the GCS computer for
each UAV it controls. As the project progresses and expands to large fleets of UAVs, it is quickly
becoming necessary to de-centralize communication between the UAVs in a fleet. The planned
strategy is to use Wi-Fi direct links between UAVs to create a mesh network, with certain UAVs
functioning as intermediary “hubs” relaying instructions between the GCS and other UAVs. While
a simple solution would be to simply designate that each UAV should act as a “hub” and broadcast
messages to the entire network, this introduces many inefficiencies, such as unnecessary overhead
and bandwidth usage when passing messages that are not needed in certain parts of the network.
It is necessary to create an algorithm to determine an optimal layout of the network, in order to
establish an efficient line of communication between UAVs, as well as a heirarchy of decision making
for issues like collision avoidance and route planning.

Further, because the fleet of UAVs is constantly in motion, the shape of this network is likely to
change frequently, making evolution of the network layout very important. It will greatly improve
performance of the system if the layout of the network can be analyzed incrementally, rather than
re-building the network “from scratch” every time a UAV moves.

It will also greatly reduce strain on the network to distribute the computation of this algorithm
across the UAVs in the network, rather than on the central GCS, as information about the optimal
network layout will not have to be distributed through the entire network after every change. This
will allow more bandwidth to be used for faster communication of important information through
the network, rather than consumed by metadata about the network.

1.2 The Problem as a Graph

There are two aspects of this problem which can be expressed as graphs: the graph of possible data
links connecting the UAVs and the graph of the network generated for communication between the
1



Network Centrality

UAVs. The first graph would be the input to the algorithm developed here, which would generate
the second of these two graphs. The possible network connections can be expressed as an undirected
weighted graph. The nodes of the graph represent UAVs, with one specific node representing the
GCS, and the edges represent available data links between the UAVs (and the GCS), with the
weights of the edges representing the “cost” of the link. This “cost” will be a variable that might
change based on the exact implementation of the algorithm, but it can be expected that the “cost”
will increase as distance increases or as signal strength or speed decreases. The generated network
should be a directed rooted tree, or arborescence, with the nodes representing UAVs (and the GCS)
and the edges representing the chosen links to be used by the network, with the direction of the
edges going from a “hub” UAV to the connected UAV it is directing. This generated arborescence
must also be a subset of the original graph, with all of the same nodes, and the edges being a subset
of the edges from the original graph (with directions rather than weights). Any nodes with an edge
going away from them represent “hub” nodes, and the root of the arborescence must be the node
representing the GCS.

1.3 Some Realistic Data Sets

The data for this problem can be generated quite easily. When implementing the algorithm in
practice, the signal strength of data connections can be obtained from each UAV, and converted to
“cost” values for the weight of the corresponding edge in the graph. As it is difficult to run large-
scale tests with actual UAVs, it is necessary to generate larger test data sets procedurally. This can
be achieved by running a simple simulation of the fleet of UAVs, likely with a simple random walk,
or diffusion, algorithm determining the positions of the UAVs. Then the links between nodes can
be created with a weight proportional to the distance between nodes (with a maximum threshold
distance for an edge). This allows for creation of hypothetical datasets much larger than any
measured data we have available. Some of the largest tests which the Dronology project has done
with physical UAVs so far have been 5 or 6 UAVs, but the project’s eventual goal is to support
hundreds or thousands of UAVs in a fleet[2]. There will also be a variety of fleets, some spread
out over large areas, while others are in dense groups, necessitating a variety of test graphs, both
sparse and dense, to properly represent and test as many situations as possible.

1.4 Network Centrality-A Key Graph Kernel

The problem can be solved by first calculating a centrality measure for each UAV, then using that
centrality measure as a priority for constructing an arborescence with all of the nodes of the graph.
The centrality measure may use many different algorithms, but Closeness Centrality seems to be
the most promising option so far. This is calculated for all nodes using Algorithm 1:

Algorithm 1 has time complexity of O(n?), n=num nodes, multiplied by the time complexity of
the shortest path algorithm. The most efficient implementations of the commonly-used Dijkstra’s
algorithm is O(e+n#log(n)), e=num edges [1], making the time complexity O(e*n?+n?*log(n)).
The space complexity is O(n), added to the space complexity of the shortest path algorithm. Dijk-
stra’s algorithm’s space complexity is typically O(n) [1], so the space complexity of the algorithm
is still just O(n).

So far, the simplest (but not very efficient) algorithm for building the network seems to be
Algorithm 2:

Algorithm 2 has a worst-case time complexity of O(n?), added to the time complexity of Al-
gorithm 1 and the time complexity of the sorting algorithm used to determine the order to use

Version 1.0 Page 2



Network Centrality

Algorithm 1 Closeness Centrality
nodes: set of nodes in graph

create number list farness
create number list closeness
for x in nodes:
farness([x] = 0
for y in nodes:
shortest_len = path_length(shortest_path(x,y))
farness[x] = farness[x] + shortest_len
closeness[x] = len(nodes)/farness[x]

Algorithm 2 Network Building Algorithm
nodes: set of nodes in graph
gcs_root_node: node corresponding to the GCS

function sort_by_centrality(nodes):
calculate centrality using Algorithm 1
return nodes sorted by centrality

remaining_nodes = sort_by_centrality(nodes)
create node set hubs
hubs . append(gcs_root_node)

function set_hub(node):
connected_nodes = get_connected_nodes(highest_node)
remaining_nodes.remove(connected_nodes)
connected_nodes.remove (hubs)
hubs. append (node)
for x in connected_nodes:
node.children.append (x)

while len(remaining nodes)>0:
highest_node = remaining_nodes[0]
connected_nodes = get_connected_nodes(highest_node)
closest_dist = infinity
for x in hubs:
this_path = shortest_path(highest_node,x)
this_dist = path_length(this_path)
if this_dist < closest_dist:
closest_hub = x
closest_path = this_path
closest_dist = this_dist
for y in closest_path:
set_hub(y)

Version 1.0 Page 3



Network Centrality

the nodes. Since most sorting algorithms are faster than O(n?), the overall time complexity is the
same as that of Algorithm 1, O(e *n? +n>*log(n)). The space complexity of algorithm 2 is O(n),
added to the space complexity of the sorting algorithm used. As many sorting algorithms use less
space than O(n), this leaves the overall space complexity at O(n).

Analysis of the performance of these algorithms can be done using a number of metrics, including
number of hubs used and average cost of connections between UAVs and the GCS. When making
variations to the centrality metric used or optimizations to the algorithm, these metrics can be
used to confirm that performance is not degraded significantly.

1.5 Prior and Related Work

There has been previous research into using a more common ad-hoc networking scheme for com-
munication between UAVs in a fleet[3]. These ad-hoc networks use a decentralized mesh-based
structure for communication, in a similar way to what is proposed here. While this allows for
decentralized communication around the network, most solutions still use a centralized approach
for authority, forcing all decisions to be made by a central Ground Control Station. Creating
a heirarchy of authority between the UAVs allows the UAVs to take care of smaller decisions,
such as small-scale collision avoidance, without contacting the GCS directly. This decentralized
decision-making allows for lower latency in time-critical applications like collision avoidance, saving
valuable time for the UAVs to react to one another, along with freeing up bandwidth in the parts
of the network closer to the GCS, leaving room for larger instructions to UAVs, without having to
micro-manage the small details.

Version 1.0 Page 4



Bibliography

[1] Mo Chen, Rezaul Alam Chowdhury, Vijaya Ramachandran, David Lan Roche, and Lingling
Tong. Priority queues and dijkstra’s algorithm, October 2007.

[2] Jane Cleland-Huang and Michael Vierhauser. Dronology - https://dronology.info/.

[3] D. L. Gu, G. Pei, H. Ly, M. Gerla, B. Zhang, and X. Hong. Uav aided intelligent routing for
ad-hoc wireless network in single-area theater. In 2000 IEEE Wireless Communications and
Networking Conference. Conference Record (Cat. No.00TH8540), volume 3, pages 1220-1225
vol.3, Sept 2000.



