Triangles

Peter M. Kogge

Notation

- k-Clique: set of k vertices with $k(k-1) / 2$ edges fully connecting them

- Triangle $=3$-clique
- Triangle algorithms:
- Find if any triangle exist in a graph
- List all triangles in a graph
- Count \# of triangles in a graph, but not list
- Estimate \# of triangles in a graph

Uses

- Finding k-cliques
- Community detection
- Computing clustering coefficients
- Subgraph isomorphism
- Finding minimum circuits

Properties

- For graph G with n vertices, there may be $\theta\left(n^{3}\right)$ or $\theta\left(m^{3 / 2}\right)$ triangles
- If vertex v has degree d, at most $d(d-1) / 2$ distinct triangles include it
- Any vertex in a k-clique must be in k-1 triangles with other $\mathrm{k}-1$ vertices
- Each minimum circuit of path length 3 corresponds to a triangle

The Importance of Wedges

- Wedge:

- If find all wedges, can check each for triangle
- If v has degree d, there are $d(d-1)$ wedges
- High degree vertices have lots of wedges
- Common heuristic:
- "label" all vertices in some order
- When looking at wedges, check only those where label of u and v are "higher/lower" than w

A Trivial Triangle Finder

- For each vertex v
- Do 3 levels of BFS
- For each vertex u reached in $3^{\text {rd }}$ level, - If $u=v$ then at least one Triangle

Finding Triangles: Matrix Multiply

- Let $A=$ adjacency matrix
$-A[v, u]=1$ if path from u to v
- Consider $Y_{2}=A^{2}$:
$-Y_{2}[v, u]=\Sigma A[v, z] * A[z, u]$
- If $Y_{2}[v, u]=1$ and $A[v, u]!=1$ then there is some edge from u to some z, and from z to v
- Consider $Y_{3}=A^{3}$:
$-Y_{3}[u, u]=\Sigma A[u, v]^{*} A^{2}[v, u]$
- If $Y_{3}[u, u]=1$ and $A^{2}[v, u]!=1$ then there is some edge from u to some z (of length 2), and from z back to u .
- Total path length $=3$ so $\{u, v, z\}$ forms a triangle
- Time complexity $\underset{\text { Tringles }}{\mathrm{O}\left(\mathrm{n}^{\omega}\right), \omega<2.376}$

Finding Triangles: Rooted Trees

- Assume $\mathrm{T}=$ a rooted spanning tree in G
- Every vertex in V is in tree
- Lemma: There is a triangle containing a tree edge iff there is a non-tree edge (u, v) for which (father(u), v) is in E
- Triangle-Finder: repeat until no edges in G
- Find a rooted spanning tree for each connected component of G
- If any tree edge is in a triangle (use above) stop
- If not, delete all edges in tree from G
- $\mathrm{O}\left(\mathrm{M}^{3 / 2}\right)$ time, $\mathrm{M}=\#$ edges

Listing Algorithm

```
Algorithm 1 - forward. Lists all the triangles in a graph [25, 26].
Input: an adjacency array representation of \(G\)
3 ab . add \(v\) to \(A[u]\)
- \(\theta\left(m^{3 / 2}\right)\) time, \(\theta^{\prime}(3 m+3 n)\) space
- Latapy, "Practical algorithms for triangle computation in very large (sparse (power law)) graphs"
- Reduced space ( \(\theta^{\prime}(2 m+2 n)\) by comparing neighbors
```


Another Listing Algorithm

Algorithm 3-new-listing. Lists all the triangles in a graph.
Input: a ported ādjacence-y arrāy, representation of G, and an integer $K \quad \mathbf{K} \approx V_{\mathbf{m}}$

1. for each vertex \bar{v} in \bar{V} :

1a. if $d(v)>K$ then, using the method of Lemma 4:
1aa. output all triangles $\{v, u, w\}$ such that $d(u)>K, d(w)>K$ and $v>u>w$
1ab. output all triangles $\{v, u, w\}$ such that $d(u)>K, d(w) \leq K$ and $v>u$
1ac. output all triangles $\{v, u, w\}$ such that $d(u) \leq K, d(w)>K$ and $v>w$
2. for each edge (v, u) in E :

2a. if $d(v) \leq K$ and $d(u) \leq K$ then:
2aa. if $u<v$ then output all triangles containing (u, v) by computing $N(u) \cap N(v)$

- For power law graphs with exponent $a, \theta\left(\mathrm{mn}^{1 / a}\right)$ time
- Latapy, "Practical algorithms for triangle computation in very large (sparse (power law)) graphs"

Counting for Scale-Free Graphs

- Degree Oriented Directed Graph DOD: "Augment" graph with new "edges" from low to high degree
- reduces \# of high-degree vertices
- Reduces \# of wedge checks
- Algorithm:
- Use 2-core to eliminate all vertices not possibly in a triangle
- Create DOD
- 1D partition onto nodes
- Check wedges for each vertex (in parallel)
- Pearse,"Triangle Counting for ScaleFree Graphs at Scale in Distributed Memory", 2017

Parallel Counting

- Partition V into p partitions $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{~V}_{\mathrm{p}}$
- Create subgraphs $V_{i, j, k r}=V_{i} \cup V_{j} \cup V_{k} i \neq j \neq k$ - With matching edge subsets: $\mathrm{E}_{\mathrm{ijk}}$
- Each triangle must be in at least 1 subgraph
- Load subgraphs on separate nodes
- Compute \# of local triangles
- Correct for duplicates
- Suri and Vassilvitskii, "Counting Triangles and the Curse of the Last Reducer"

