

Finding Triangles: Matrix Multiply	Y
 Let A = adjacency matrix A[v,u] = 1 if path from u to v 	
 Consider Y₂ = A²: Y₂[v,u] = ΣA[v,z]*A[z,u] If Y₂[v,u] = 1 and A[v,u]!=1 then there is some edge from u to some z, and from z to v 	
 Consider Y₃ = A³: Y₃[u,u] = ΣA[u,v]*A²[v,u] If Y₃[u,u] = 1 and A² [v,u]!=1 then there is some edge from u to some z (of length 2), and from z back to u. Total path length = 3 so {u, v, z} forms a triangle 	
• Time complexity $O(n^{\omega})$, $\omega < 2.376$	8

Listing Algorithm	
Algorithm $1 - forward$. Lists all the triangles in a graph [25, 26]].
$\begin{array}{c c} \hline{Input:} & \text{an adjacency array representation of } G & \text{order vertices} \\ \hline{Input:} & \text{an adjacency array representation of } G & \text{order vertices} \\ \hline{Input:} & \text{an adjacency array representation of } G & \text{order vertices} \\ \hline{Input:} & \text{an adjacency array representation of } G & \text{order vertices} \\ \hline{Input:} & \text{an adjacency array representation of } G & \text{order vertices} \\ \hline{Input:} & \text{an adjacency array representation of } G & \text{order vertices} \\ \hline{Input:} & \text{an adjacency array representation of } G & \text{order vertices} \\ \hline{Input:} & \text{such that } d(u) > d(v) & \text{implies } \eta(u) < \eta(v) & \text{for all } u & \text{and } v & \text{by degrees} \\ \hline{Input:} & \text{an array of } n & \text{arrays initially empty} & \text{A[u] contains a set of vertices} \\ \hline{Input:} & \text{an array of } n & \text{arrays initially empty} & \text{A[u] contains a set of vertices} \\ \hline{Input:} & \text{an array of } n & \text{arrays initially empty} & \text{A[u] contains a set of vertices} \\ \hline{Input:} & \text{an array of } n & \text{arrays initially empty} & \text{A[u] contains a set of vertices} \\ \hline{Input:} & \text{an array of } n & \text{array of } n & \text{arrays initially empty} & \text{A[u] contains a set of vertices} \\ \hline{Input:} & \text{an array of } n & \text{array of } n & \text{array of } n & \text{array of } n \\ \hline{Input:} & \text{an array of } n & \text{array of } n & \text{array of } n & \text{array of } n \\ \hline{Input:} & \text{an array of } n & \text{array of } n & \text{array of } n \\ \hline{Input:} & \text{an array of } n & \text{array of } n \\ \hline{Input:} & \text{an array of } n & \text{array of } n \\ \hline{Input:} & \text{an array of } n & \text{array of } n \\ \hline{Input:} & \text{an array of } n \\ \hline{Input:} & \text{an array of } n \\ \hline{Input:} & \text{array of } n \\ \hline{Input:} & \text{an array of } n \\ \hline{Input:} & \text{array of } n \\ Inp$	in ler ree t
 θ(m^{3/2}) time, θ'(3m+3n) space 	
 Latapy, "Practical algorithms for triangle computation in very large (sparse (power law)) graphs" 	
• Reduced space ($\theta'(2m+2n)$) by comparing neighbors	
Triangles	10

