Triangles

Peter M. Kogge

Triangles

Notation

e k-Clique: set of k vertices with k(k-1)/2
edges fully connecting them

7

3-clique 4-clique 5-clique

e Triangle = 3-clique

e Triangle algorithms:

Find if any triangle exist in a graph

List a/l triangles in a graph

Count # of triangles in a graph, but not list
Estimate # of triangles in a graph

Triangles

Uses

e Finding k-cliques

e Community detection

e Computing clustering coefficients
e Subgraph isomorphism

¢ Finding minimum circuits

Triangles

Properties

e For graph G with n vertices, there may be
B8(n3) or 8(m3/2) triangles

¢ If vertex v has degree d, at most d(d-1)/2
distinct triangles include it

e Any vertex in a k-clique must be in k-1
triangles with other k-1 vertices

e Each minimum circuit of path length 3
corresponds to a triangle

Triangles

The Importance of Wedges

Wedge: G{@{@

If find all wedges, can check each for triangle

If v has degree d, there are d(d-1) wedges

High degree vertices have /ots of wedges

Common heuristic:
- “label” all vertices in some order

- When looking at wedges, check only those where label of
u and v are “higher/lower” than w

Triangles 5

Taxonomy of Triangles

Undirected Trans. Out recip. In recip.
/ \ // R’\\ /// \\) 4 R\\
/ /
/ \\ v \ 4 \1 / \
R — > R
e L]
1 Cycle 1-Recip 2-Recip 3-Recip
1
| These
I contain
1
i A —— «—> |
I

“Using Triangles to Improve Community Detection in Directed Networks” https://arxiv.org/pdf/1404.5874.pdf

Triangles 6

A Trivial Triangle Finder

e For each vertex v
— Do 3 levels of BFS

- For each vertex u reached in 31 level,
e If u=v then at least one Triangle

Triangles 7

Finding Triangles: Matrix Multiply

e Let A = adjacency matrix
- A[v,u] = 1 if path fromutov

e Consider Y, = A2:
- Y,5[v,u] = ZA[v,z]*A[z,u]

- If Y,[v,u] = 1 and A[v,u]!=1 then there is some edge
from u to some z, and from zto v

e Consider Y5 = A3:
- Y5[u,u] = ZA[u,v]*A?[v,u]
- If Y5[u,u] = 1 and A?[v,u]!=1 then there is some
edge from u to some z (of length 2), and from z back
to u.

- Total path length = 3 so {u, v,z} forms a triangle

e Time complexity O(n®), w<2.376

Triangles 8

Finding Triangles: Rooted Trees

e Assume T = a rooted spanning tree in G
- Every vertex in V is in tree

e Lemma: There is a triangle containing a tree
edge iff there is a non-tree edge (u,v) for
which (father(u), v) is in E

e Triangle-Finder: repeat until no edges in G

- Find a rooted spanning tree for each connected
component of G

- If any tree edge is in a triangle (use above) stop
- If not, delete all edges in tree from G

e O(M3/2) time, M = # edges

Triangles 9

Listing Algorithm

Algorithm 1 — forward. Lists all the triangles in a graph [25, 26].
Input: an adjacency array representation of G order vertices in
1. number the vertices with an injective function () decreasing order

such that d(u) > d(v) implies 7(u) < n(v) for all © and v by degree

2. let A be an array of n arrays initially empty Alu] contains a set
2 for N S o = e e rnaaing ardar Af . of vertices
3. for each vertex v taken in increasing order of 7():)
. . . . - reachable from u
3a. for each w € N(v) with n(u) > n(v):

3aa. for each w in Au] N Afv]: output triangle {u, v, w}
3ab. add v to Alu]

e B(m32) time, 6'(3m+3n) space

e Latapy, “Practical algorithms for triangle computation in
very large (sparse (power law)) graphs”

e Reduced space (8'(2m+2n) by comparing neighbors

Triangles 10

Another Listing Algorithm

Algorithm 3 — new-listing. Lists all the triangles in a graph.

Input: a lﬁfu_‘@ ‘__“_l'E‘_T“____"i_l‘_T\: representation of &, and an integer k'
1. for each vertex v 1 V:
la. if d(v) > K then, using the method of Lemma 4:
laa. output all triangles {v, u, w} such that d(u) > K. d(w) > K and v > u > w
lab. output all triangles {v. u,w} such that d(u) > K, d(w) < K and v > u
lac. output all triangles {v, w,w} such that d(u) < K, d(w) > K and v > w
2. for each edge (v.u) in E:
2a. if d(v) < K and d(u) < K then:
2aa. if u < v then output all triangles containing (u.v) by computing N (u) N N (v)

e For power law graphs with exponent a, 6(mni/2) time

e Latapy, “Practical algorithms for triangle computation in
very large (sparse (power law)) graphs”

Triangles 1

Counting for Scale-Free Graphs

» Degree Oriented Directed Graph ®
DOD: "Augment” graph with new ‘\
“edges” from low to high degree @ T 0)
- reduces # of high-degree vertices ® ®/
- Reduces # of wedge checks
e Algorithm: — — —
- Use 2-core to eliminate all vertices " "+« -~ " "« 7 Ttw 7
not possibly in a triangle . - .
- Create DOD 2 gl
- 1D partition onto nodes
- Check wedges for each vertex (in o
parallel) o
* Pearse,"Triangle Counting for Scale-; z
Free Graphs at Scale in Distributed ¢ ’ 3
Memory”, 2017 0as)
Triangles - (nw":m;?[.mj:ti::: :“

—a— Scalability

Parallel Counting

Partition V into p partitions V,, V,, ... V,

Create subgraphs V,;,, = V; U V; U V i#]j#k
- With matching edge subsets: E;,

Each triangle must be in at least 1
subgraph

Load subgraphs on separate nodes
- Compute # of local triangles
- Correct for duplicates

Suri and Vassilvitskii, "Counting Triangles
and the Curse of the Last Reducer”

Triangles 13

