
1

1Triangles

Triangles

Peter M. Kogge

Please Sir, I want more

2Triangles

Notation
• k-Clique: set of k vertices with k(k-1)/2 

edges fully connecting them

• Triangle = 3-clique
• Triangle algorithms:

– Find if any triangle exist in a graph
– List all triangles in a graph
– Count # of triangles in a graph, but not list
– Estimate # of triangles in a graph



2

3Triangles

Uses
• Finding k-cliques
• Community detection
• Computing clustering coefficients
• Subgraph isomorphism
• Finding minimum circuits

4Triangles

Properties
• For graph G with n vertices, there may be 
θ(n3) or θ(m3/2) triangles

• If vertex v has degree d, at most d(d-1)/2 
distinct triangles include it

• Any vertex in a k-clique must be in k-1 
triangles with other k-1 vertices

• Each minimum circuit of path length 3 
corresponds to a triangle



3

5Triangles

The Importance of Wedges
• Wedge: 

• If find all wedges, can check each for triangle
• If v has degree d, there are d(d-1) wedges
• High degree vertices have lots of wedges
• Common heuristic: 

– “label” all vertices in some order
– When looking at wedges, check only those where label of 

u and v are “higher/lower” than w

w

vu

6Triangles

Taxonomy of Triangles

“Using Triangles to Improve Community Detection in Directed Networks” https://arxiv.org/pdf/1404.5874.pdf

These
contain 
cycles



4

7Triangles

A Trivial Triangle Finder
• For each vertex v

– Do 3 levels of BFS
– For each vertex u reached in 3rd level, 

• If u=v then at least one Triangle

8Triangles

Finding Triangles: Matrix Multiply
• Let A = adjacency matrix

– A[v,u] = 1 if path from u to v

• Consider Y2 = A2: 
– Y2[v,u] = ΣA[v,z]*A[z,u]
– If Y2[v,u] = 1 and A[v,u]!=1 then there is some edge 

from u to some z, and from z to v

• Consider Y3 = A3:
– Y3[u,u] = ΣA[u,v]*A2[v,u]
– If Y3[u,u] = 1 and A2 [v,u]!=1 then there is some 

edge from u to some z (of length 2), and from z back 
to u.

– Total path length = 3 so {u, v,z} forms a triangle

• Time complexity O(nω), ω<2.376



5

9Triangles

Finding Triangles: Rooted Trees
• Assume T = a rooted spanning tree in G

– Every vertex in V is in tree

• Lemma: There is a triangle containing a tree 
edge iff there is a non-tree edge (u,v) for 
which (father(u), v) is in E

• Triangle-Finder: repeat until no edges in G
– Find a rooted spanning tree for each connected 

component of G
– If any tree edge is in a triangle (use above) stop
– If not, delete all edges in tree from G

• O(M3/2) time, M = # edges

10Triangles

Listing Algorithm

• θ(m3/2) time, θ’(3m+3n) space
• Latapy, “Practical algorithms for triangle computation in 

very large (sparse (power law)) graphs”
• Reduced space (θ’(2m+2n) by comparing neighbors

order vertices in 
decreasing order 

by degree

A[u] contains a set 
of vertices 
reachable from u



6

11Triangles

Another Listing Algorithm

• For power law graphs with exponent α, θ(mn1/α) time
• Latapy, “Practical algorithms for triangle computation in 

very large (sparse (power law)) graphs”

K≈√m

12Triangles

Counting for Scale-Free Graphs
• Degree Oriented Directed Graph 

DOD: “Augment” graph with new 
“edges” from low to high degree
– reduces # of high-degree vertices
– Reduces # of wedge checks

• Algorithm: 
– Use 2-core to eliminate all vertices 

not possibly in a triangle
– Create DOD
– 1D partition onto nodes
– Check wedges for each vertex (in 

parallel)

• Pearse,”Triangle Counting for Scale-
Free Graphs at Scale in Distributed 
Memory”, 2017



7

13Triangles

Parallel Counting
• Partition V into p partitions V1, V2, … Vp

• Create subgraphs Vi,j,k, = Vi U Vj U Vk i≠j≠k
– With matching edge subsets: Eijk

• Each triangle must be in at least 1 
subgraph

• Load subgraphs on separate nodes
– Compute # of local triangles
– Correct for duplicates

• Suri and Vassilvitskii, “Counting Triangles 
and the Curse of the Last Reducer”


