
1

1GraphBLAS

GraphBLAS

Peter M. Kogge

Please Sir, I want more

2GraphBLAS

GraphBLAS References
• GraphBLAS Forum: http://graphblas.org/
• Overview:

– https://resources.sei.cmu.edu/asset_files/Presentation/2016_017_001_474272.pdf
– https://people.eecs.berkeley.edu/~aydin/GABB17.pdf

• Math Background: 
– http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

• Tutorials:
– http://faculty.cse.tamu.edu/davis/suitesparse_files/Davis_GraphBLAS_Oct2017.pdf

• V1.2 C API Spec: 
https://people.eecs.berkeley.edu/~aydin/GraphBLAS_API_C.pdf

• Suitesparse implementation: 
http://faculty.cse.tamu.edu/davis/suitesparse.html

9/18/2018 2



2

3GraphBLAS

Linear Algebra Review
• Computations involving “linear equations” 

with representation as matrices and vectors
• Core function: matrix multiplication 

– A is NxM matrix, B is MxR matrix
– If C = AxB (also written just AB or A+.*B)

• C[i, k] = A[i,1]*B[1,k] + A[i,2]*B[2,k] + … A[i,N]*B[N,k]

• Key observation: + & * need not be 
traditional math operators

• GraphBLAS observation: many graph 
algorithms expressible as matrix operations 
with different operators

4GraphBLAS

Changing the Operators: Semirings
Rules of linear algebra hold whenever “*” and “+” are 

functions that form a semi-ring:
• + is commutative: a + b = b + a
• Both are associative: 

– a + (b + c) = (a + b) + c
– a * (b * c) = (a * b) * c

• * distributes over +:
– (a + b)*c = a*c + b*c
– a*(b + c) = a*b + a*c

• Both are monoids, i.e. both have identities:
– a + 0 = a (“0” is additive identity)
– a*1 = a (“1” is multiplicative identity)

• Additive identity is multiplicative annihilator
– 0*a = a*0 = 0 

• Neither + nor * need have inverses

Lets call:
+ the reduction operator
* the combination operator



3

5GraphBLAS

Graphs as Matrices

6GraphBLAS

One Step of BFS

• Matrix Domain: booleans
• + = OR
• * = AND

Fig. 4.1



4

7GraphBLAS

Minimum Paths
• Assume G has weighted edges (positive only)
• A is adjacency matrix but with ∞ for no edge
• Ck[u,v] = min distance from u to v in exactly

k steps
– C1[u,v] = A

• Now assume mat mult ◊ + = min, * = +
• (A◊A)[u,v] = minw=1,N(A[u,w]+A[w,v]) = A◊2

• Thus C2 = A◊2; C3 = A ◊ 3; …
• mini=0,∞Ci [u,v] = min distance from u to v

min distance from u to v thru w

8GraphBLAS

Useful Semi Rings
+: Reduction Operation +: Reduction Operation Sample 

UsageFunction Domain Identity Function Domain Identity

Normal 
Add

Ints, 
floats

0 Normal 
Multiply

Ints, 
floats

1 Linear Algebra

OR Boolean 0 AND Boolean 0 BFS

min Ints, 
floats

∞ Normal 
Add

Ints, 
floats

0 Minimum 
paths



5

9GraphBLAS

GraphBLAS
• C package to implement linear algebra

– with different operators
– and matrices that may be sparse

• Computations occur in “opaque space” 
separate from main

• API has several subsets of functionality
– Define data types to use as matrix elements
– Define new monoids and semi-rings
– Transfer sparse data between main & opaque space
– Perform linear matrix operations in opaque space

10GraphBLAS9/18/2018 10



6

11GraphBLAS

Predefined Monoids

9/18/2018 11

T may be any of suffixes on right table

12GraphBLAS

Defining New Operations
• GrB Type_new: creates new type for 

values from a type known to the 
application program

• GrB UnaryOp_new: defines a new unary
– Includes function pointer to a C function

• GrB BinaryOp_new: defines a new 
binary operator 
– Includes function pointer to a C function

• GrB Monoid_new: specifies a previously 
defined binary operator to be a monoid 
GrB Semiring_new: specifies a pair of 
operators as a new semiring.



7

13GraphBLAS

Data Structures
• GraphBLAS matrices assumed to be “sparse”
• Unspecified elements are structural zeros

– Additive identity/multiplicative annihilator from semiring

• Objects created as vectors or matrices
– Have a “size” but when created all structural zeros

• Context element: object created in opaque 
space

• Index array: contiguous list of 64b uints
– Used as indices into a vector/matrix

• Mask: contiguous list of bools
– If x a mask, x[i]=0 => ith element is structural zero

14GraphBLAS

Creating New Objects
• All created in opaque space

– With user-invisible internal representation

• GrB_xxx_new: creates space for new object 
(vector or matrix) of some, but does not 
assign values
– xxx is vector or matrix

• GrB_xxx_dup: duplicates some object.
• GrB_free frees all storage associated with an 

object
• Functions available to return properties of an 

object



8

15GraphBLAS

Caller to Context Memory Transfers
• Move data from caller’s space to opaque space
• GrB_xxx_clear: removes all elements from 

an object in a context element.
• GrB_xxx_setElement: takes (index, value) 

pair (for a vector) or a double index and value 
(for a matrix) from application space, and 
changes entry in the context vector

• GrB_xxx_build: takes one or two vectors of 
indices and a vector of values from application 
space, and updates corresponding entries in a 
context object.

16GraphBLAS

Context to Caller Memory Transfers
• Move data from opaque space to caller’s space
• GrB_xxx_extractElement: returns value 

associated with a specified index in an object 
in context space.

• GrB_xxx_extractTuples: stores in caller's 
space two (or three for a matrix) equal-length 
vectors whose contexts are all the indices from 
the context object that are not structural 
zeros, and all the corresponding values.



9

17GraphBLAS

GraphBLAS Operations
• Performed on opaque objects, with values 

returned to opaque space
• May have options:

– Accumulation function: equivalent to C “+=+
– Mask: specify which elements of target are allowed to 

be modified
– Descriptor: optionally modify the execution of the 

called operation

18GraphBLAS



10

19GraphBLAS

Execution Model
• Steps in executing GraphBLAS call

– Initialization: check arguments for validity and 
consistency, and access from caller's space any 
values needed during the rest of the call.

– Computation: all computation required by call on 
the opaque objects carried out, and values saved into 
opaque space

– Materialization: When called for, data transferred 
back to the caller's space

• Two modes of execution:
– Blocking: each GraphBLAS call must complete in 

opaque space before control returned to caller
– Non-blocking: caller may resume before operation 

completed in opaque space
• Only Initialization guaranteed to complete before return


