

+: Reduction Operation			+: Reduction Operation			Sample
Function	Domain	Identity	Function	Domain	Identity	Usage
Normal Add	Ints, floats	0	Normal Multiply	Ints, floats	1	Linear Algebra
OR	Boolean	0	AND	Boolean	0	BFS
min	Ints, floats	œ	Normal Add	Ints, floats	0	Minimum paths

	Table 2.1: GraphBL	AS opaque	objects and their types.	
GrB_Object types	Description			
GrB_Type	User-defined scalar t	type.		-
GrB_UnaryOp	Unary operator, bui	lt-in or asso	ociated with a single-argument C function.	
GrB_BinaryOp	Binary operator, but	ilt-in or ass	ociated with a two-argument C function.	
GrB_Monoid	Monoid algebraic str	ructure.		
GrB_Semiring	A GraphBLAS semi	ring algebra	aic structure.	
GrB_Matrix	Two-dimensional col	llection of e	elements; typically sparse.	
GrB_Vector	One-dimensional col	lection of e	lements.	
GrB_Descriptor	Descriptor object, u	sed to mod	ify behavior of methods.	
domains for Graph	GrB_Type values	C type	domain	
	GrB_Type values	C type	domain	
	GrB_BOOL	bool	{false, true}	
	GrB_INT8	int8_t	$\mathbb{Z} \cap [-2^7, 2^7)$	
	GrB_UINT8	uint8_t	$\mathbb{Z} \cap [0, 2^{\circ})$	
	GrB_INT16	int16_t	$\mathbb{Z} \cap [-2^{15}, 2^{15})$	
	GrB_UINT16	uint16_t	$\mathbb{Z} \cap [0, 2^{16})$	
	GrB_INT32	int32_t	$\mathbb{Z} \cap [-2^{31}, 2^{31})$	
	GrB_UINT32	uint32_t	$\mathbb{Z} \cap [0, 2^{32})$	
	GrB_INT64	int64_t	$\mathbb{Z} \cap [-2^{63}, 2^{63})$	
	GrB_UINT64	uint64_t	$\mathbb{Z} \cap [0, 2^{64})$	
	GrB_FP32	float	IEEE 754 binary32	
		doublo	LVVV 754 binon/b/	
	GrB_FF04	doubte	TEEE 754 binary04	

Operator type GrB_UnaryOp GrB_UnaryOp GrB_UnaryOp GrB_BinaryOp GrB_BinaryOp GrB_BinaryOp GrB_BinaryOp GrB_BinaryOp GrB_BinaryOp GrB_BinaryOp GrB_BinaryOp GrB_BinaryOp	GraphBLAS identifier GrB.JDENTITY_T GrB.AINV_T GrB.LNOT GrB.LAND GrB.LAND GrB.LAND GrB.LAND GrB.LAND GrB.LAND GrB.CT GrB.GT_T GrB.GT_T GrB.GT_T GrB.GT_T GrB.GT_T	b) Predefined Operator $\frac{\text{Domains}}{T \rightarrow T}$ $T \rightarrow T$ $T \rightarrow T$ $\text{bool} \rightarrow \text{bool}$ $\text{bool} \rightarrow \text{bool}$ $\text{bool} \rightarrow \text{bool}$ $T \rightarrow T \rightarrow \text{bool}$ $T \rightarrow T \rightarrow \text{bool}$ $T \times T \rightarrow \text{bool}$	s. Description f(x) = x, f(x) = -x, f(x) = x, f(x) = x, $f(x, y) = x \lor y,$ $f(x, y) = x \lor y,$ $f(x, y) = x \lor y,$ f(x, y) = (x = y), f(x, y) = (x = y), f(x, y) = (x < y),	identity additive inverse multiplicative inverse logical OR logical AND logical XOR equal not equal greater than less than ereater than or equal	Suffix BOOL INT8 UINT8 INT16 UINT16 INT32 UINT22	C type bool int8_t uint8_t int16_t uint16_t uint16_t 				
GrB.BinaryOp GrB.BinaryOp GrB.BinaryOp GrB.BinaryOp GrB.BinaryOp GrB.BinaryOp GrB.BinaryOp GrB.BinaryOp GrB.BinaryOp	GBLE.T GB_FIRST_T GB_SECOND_T GB_MIN_T GB_MAX_T GB_PLUS_T GB_MINUS_T GB_TIMES_T GB_TIMES_T C-P_DIV_T	$\begin{array}{l} T\times T\to \mathrm{bool}\\ T\times T\to T\\ T\to T\\ T\to T\\ T\to T\\ T\to T\\ T \to T$	$\begin{array}{l} f(x,y) = (x \leq y) \\ f(x,y) = x, \\ f(x,y) = y, \\ f(x,y) = (x < y) ? x : y, \\ f(x,y) = (x > y) ? x : y, \\ f(x,y) = x + y, \\ f(x,y) = x - y, \\ f(x,y) = x$	less than or equal first argument second argument minimum addition subtraction multiplication division	INT64 UINT64 FP32 FP64	int64_t uint64_t float double				
9/18/2018	T may be any of suffixes on right table 9/18/2018 GraphBLAS 11									

Method	Target	Arg 1	Arg 2	Arg 3	Description	Page
mxm	C: matrix	A: matrix	B: matrix		$C[i,j] = A[i,*] \oplus . \otimes B[*,j]$	69
vxm	W: vector	U: vector	A: matrix		$W[j] = U \oplus . \otimes A[*, j]$	73
mxv	W: vector	A: matrix	U: vector		$W[i] = A[i, *] \oplus . \otimes U$	77
eWiseMult	W: vector	U: vector	V: vector		$W[i] = U[i] \otimes V[i]$	82
eWiseMult	C: matrix	A: matrix	B: matrix		$C[i, j] = A[i, j] \otimes B[i, j]$	86
eWiseAdd	W: vector	U: vector	V: vector		$W[i] = U[i] \oplus V[i]$	91
eWiseAdd	C: matrix	A: matrix	B: matrix		$C[i,j] = A[i,j] \oplus B[i,j]95$	
extract	W: vector	U: vector	I: Index		W[i] = (U[I])[i]	100
extract	C: matrix	A: matrix	I_R : index	I_C : index	$C[i, j] = (A[I_R, I_C])[i, j]$	104
extract	W: vector	A: matrix	I_R : index	J: uint	$W[i] = (A[I_R, J])[i]$	110
assign	W:vector	U: vector	I: index		(W[I])[i] = U[i]	114
assign	C: matrix	A: matrix	I_R : index	I_C : index	$(C[I_R, I_C])[i, j] = A[i, j]$	119
assign	C: matrix	U: vector	I_R : index	J: int	$(C[I_R, J])[i] = U[i]$	124
assign	C: matrix	U: vector	I: int	I_C : index	$(C[I, I_C])[i] = U[i]$	129
assign	W: vector	v: value	I: index		W[I] = v	133
assign	C: matrix	v: value	I_R : index	I_C : index	$C[I_R, I_C] = v$	138
apply	W: vector	f: function	U: vector		W[i] = f(U[i])	143
apply	C: matrix	f: function	A: matrix		W[i, j] = f(A[i, j])	147
reduce	W: vector	f: function	A: matrix		W[i] = f/A[i,*]	147
reduce	v: variable	f: function	U: vector		v = f/U	151
reduce	v: variable	f: function	A: matrix		v = f/f/A[i,]	155
transpose	C: matrix	A: matrix			$C = A^T$	160
Page numb	ers are relativ	e to "The Gr	aphBLAS C	API Spec,"	Version 1.0.0, 05/29/2017	
"Vectors" a	nd "matrices'	' are in the G	raphBLAS	context.		
An "index"	is an array o	f 64b uints in	caller's men	nory.		
A "value" o	or "variable" i	s a scalar in t	the caller's n	iemory.		
"M" is an o	ptional write	index set use	ed as a mask	on the targe	et.	
" \oplus " is the :	additive opera	tor from the	specified ser	niring.		
" \otimes " is the r	multiplicative	operator from	n the specifi	ed semiring.		
" \oplus . \otimes " is an	inner produc	t using the o	perators from	n the semiri	ng.	
"⊙" is an o	ptional accun	ulating opera	ator.			
An operato	r by itself is a	pplied element	nt-by-elemen	t		
The express	sion "f/" refer	s to the sum	mation acros	s all values i	in the operand using function f.	

