GraphBLAS

Peter M. Kogge

GraphBLAS

GraphBLAS References
GraphBLAS Forum: http://graphblas.org/

Overview:
— https://resources.sei.cmu.edu/asset files/Presentation/2016 017 001 474272.pdf
— https://people.eecs.berkeley.edu/~aydin/GABB17.pdf

Math Background:

— http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

Tutorials:
- http://faculty.cse.tamu.edu/davis/suitesparse files/Davis GraphBLAS Oct2017.pdf

V1.2 C API Spec:

https://people.eecs.berkeley.edu/~aydin/GraphBLAS API C.pdf

Suitesparse implementation:
http://faculty.cse.tamu.edu/davis/suitesparse.html

9/18/2018 GraphBLAS 2

Linear Algebra Review

Computations involving “linear equations”
with representation as matrices and vectors

Core function: matrix multiplication
— A is NxM matrix, B is MxR matrix
- If C = AxB (also written just AB or A+.*B)

e C[i, k] = A[i,11*B[1,k] + A[i,2]*B[2,k] + ... A[i,N]*B[N,k]
Key observation: + & * need not be
traditional math operators

GraphBLAS observation: many graph
algorithms expressible as matrix operations
with different operators

GraphBLAS

Changing the Operators: Semirings

Rules of linear algebra hold whenever “*"” and “+" are
functions that form a semi-ring:

+ is commutative:a+ b =b + a

Both are associative:

-a+(b+c)=(a+b)+c |Letscall
-ar(®drag=@"b)*c |4 the reduction operator

* distributes over +: * . .
(@ + b)*c = a*c + bre the combination operator

- a*(b + c) = a*b + a*c

Both are monoids, i.e. both have identities:
- a+ 0 = a ("0” is additive identity)
- a*1l = a (“1” is multiplicative identity)
Additive identity is multiplicative annihilator
- 0*a=a*0=0

Neither + nor * need have inverses

GraphBLAS

Graphs as Matrices

G = (V.E) A x Ax

Figure 1.1. Matrix graph duality.
Adjacency matrix A is dual with the corresponding graph. In addition,
vector matrix multiply is dual with breadth-first search.

GraphBLAS

One Step of BFS

[] L] ® L)
L B] L]
L BN] L B] [] L
& " ® e 2 e 7 @
[] [] L]
L3 | BN 2
[] L] 3
AT X ATx (AT)’x
e Matrix Domain: booleans
e + = 0OR
e * = AND

GraphBLAS 6

Minimum Paths

e Assume G has weighted edges (positive only)

¢ A is adjacency matrix but with oo for no edge

e C.[u,v] = min distance from u to v in exactly
k steps
- Cifu,v] = A

e Now assume mat mult ¢ + = min, *

= +

(AOA)[U,V] = minw=1,N(A[U,W]+A[W,V]) = A®?

min distance frolm utovthruw

Thus C, = A®2; C; = A°3; ..

GraphBLAS

min;_g »C; [u,v] = min distance from u to v

Useful Semi Rings

+: Reduction Operation | +: Reduction Operation Sample
Function | Domain Identity | Function | Domain Identity Usage
Normal Ints, 0 Normal Ints, 1 Linear Algebra
Add floats Multiply floats
OR Boolean 0 AND Boolean BFS
min Ints, 0o Normal Ints, Minimum
floats Add floats paths

GraphBLAS

GraphBLAS

e C package to implement linear algebra
— with different operators
— and matrices that may be sparse

e Computations occur in “opaque space”
separate from main

e API has several subsets of functionality

Define data types to use as matrix elements

Define new monoids and semi-rings

Transfer sparse data between main & opaque space
Perform linear matrix operations in opaque space

GraphBLAS 9
Table 2.1: GraphBLAS opaque objects and their types.
GrB_Object types | Description
GrB_Type User-defined scalar type.
GrB_UnaryOp Unary operator, built-in or associated with a single-areument C function.
GrB_BinaryQp Binary operator, built-in or associated with a two-argument C function.
GrB_Monoid Monoid algebraic structure.
GrB_Semiring A GraphBLAS semiring algebraic structure.
GrB_Matrix Two-dimensional collection of elements; typically sparse.
GrB Wector One-dimensional collection of elements.
GrB_Descriptor Descriptor object, used to modify behavior of methods.
Table 2.2: Predefined GrB_Type values, the corresponding C type (for scalar parameters), and
domains for GraphBLAS.
GrE_Type values | C type domain
GrE_BOOL bool {false, true}
GrBNTB int8_t Zn[-27,27)
GrE_UINTE uwintdx | Zn[0.2%)
GrBINT16 inti6r | Zn[-215 2ls
GrE_UINT16 uintié_t | Zn[0,2
GrBINT32 int32t | Zn|
GrE_UINT32 uint32_t | £n[0,2%)
GrBINTG4 int6at | EZn[-283 289)
GrE_UINTE4 uintéd_t | Z [0, 259
GrB_FF32 float “EE 754 binary32
GrB_FF64 double "EE 754 binary6d
9/18/2018 GraphBLAS 10 10

Predefined Monoids

(b) Predefined Operators.

Operator GraphBLAS
identifier Domains Description
GrB_UnaryOp | GrEIDENTITY_I' | T =T identity
GrB_UnaryOp | GrB_AINV_T T—=T !
GrB_UnaryQp | GrB_MINV_T T—=T
GrB_UnaryQp | GrB_LNOT bool —+ bool Suffix O type
GrB_BinaryOp | GrB_LOR bool x bool — bool | firu)==Vy BOOL bool
GrB_BinaryOp | GrE_LAND bool x bool —+ bool | flr.y) =rAuy, AD INTS int8 t
GrB_BinaryOp | GrB_LXOR bool x bool — bool] logical XOR UINTS uint8_t
GrB_BinaryOp | GrB_EQ_T T x T — bool equal .
GrB_BinaryOp | GrB_NE_T T =T — bool not equal INT16 1_3t'16_t
GrB_BinaryQp | GrB_GT_T T =T — bool greater than UINT16 | uinti6 t
GrE_BinaryOp | GIBLT_T T T — bool less than INT32 int32_t
GrB_BinaryOp | GrB_.GE_T T x T — bool greater than or equal UINT32 | nint3z t
GrB_BinaryOp | GrB_LE.T T x T — bool ess than or equal .
GrE_BinaryOp | GrB_FIRST.T' TxT 1T nent INTG | intéd_t
GrB_BinaryOp | GrBSECONDLT | Tx T — 1 (second argument UINT64 | uint64 t
GrE_BinaryOp | GrB_MIN_T TxT =T firy)=(r<y) Tz:y, i FP32 float
GrB_BinaryOp | GrE_MAX_T T=xT =1 flry)=(r>y) Tr:y. maximum A
GrB_BinaryOp | GrB_PLUS.T TxT =T fry) =T+, addition FP64 double
GrB_BinaryOp | GrB_MINUS_T' TxT—=T =1, subtraction
GrB_BinaryOp | GrB_TIMES_T TxT =T multiplication
GrB_BinaryOp | GrB_DIV_T TxT—=T division
T may be any of suffixes on right table
11
9/18/2018 GraphBLAS 1

Defining New Operations

GrB Type_new: creates new type for
values from a type known to the
application program

GrB UnaryOp_new: defines a new unary
— Includes function pointer to a C function

GrB BinaryOp_new: defines a new
binary operator
- Includes function pointer to a C function

GrB Monoid_new: specifies a previously
defined binary operator to be a monoid
GrB Semiring _new: specifies a pair of

operators as a new semiring.
GraphBLAS 12

Data Structures

GraphBLAS matrices assumed to be “sparse”

Unspecified elements are structural zeros
- Additive identity/multiplicative annihilator from semiring

Objects created as vectors or matrices
- Have a “size” but when created all structural zeros

Context element: object created in opaque
space

Index array: contiguous list of 64b uints
— Used as indices into a vector/matrix

Mask: contiguous list of bools

- If x a mask, x[i]=0 => ith element is structural zero
GraphBLAS 13

Creating New Objects

All created in opaque space
— With user-invisible internal representation

GrB_xxx_new: creates space for new object
(vector or matrix) of some, but does not
assign values

- XXX is vector or matrix

GrB_xxx_dup: duplicates some object.

GrB_free frees all storage associated with an
object

Functions available to return properties of an
object

GraphBLAS 14

Caller to Context Memory Transfers

Move data from caller’s space to opaque space

GrB_xxx_clear: removes all elements from
an object in a context element.

GrB_xxx_setElement: takes (index, value)
pair (for a vector) or a double index and value
(for a matrix) from application space, and
changes entry in the context vector

GrB_xxx_build: takes one or two vectors of

indices and a vector of values from application
space, and updates corresponding entries in a
context object.

GraphBLAS 15

Context to Caller Memory Transfers

Move data from opaque space to caller’s space

GrB_xxx_extractElement: returns value
associated with a specified index in an object
in context space.

GrB_xxx_extractTuples: stores in caller's
space two (or three for a matrix) equal-length
vectors whose contexts are all the indices from
the context object that are not structural
zeros, and all the corresponding values.

GraphBLAS 16

GraphBLAS Operations

e Performed on opaque objects, with values
returned to opaque space

e May have options:

- Accumulation function: equivalent to C “+=+

- Mask: specify which elements of target are allowed to

be modified

— Descriptor: optionally modify the execution of the

called operation

GraphBLAS 17
Method get Arg 1 Arg 2 Arg 3 Description
moxm C: matrix | A: matrix | B: matrix Cli,jl = Ali,*] ©.¢
vxm W: vector | U: vector | A: matrix Wii[=L
mxv W: vector | A: matrix | U: vector Wi = Afi, *
eWiseMult | W: vector | Ut vector | V: vector Wi = UT
eWiseMult | C: matrix [A: matrix | B: matrix
eWiseAdd | W: vector | U: vector | V: vector
eWiseAdd | C: matrix [A: matrix | B: matrix
extract W: vector | U: vector | I Index Wli] = (U])l]
extract C: matrix | A: matrix [/5 index | Io: index Cli,] = (A[lp.Ic))i. 5]
extract W: vector | A: matrix J: uint Wli] = (AlIn, J))i]
assign Wivector | U: vector (W)l = Ul
ass] *: matrix | A: matrix It index (ClTr.)i, 5] = AL, 1]
assign atrix | U: vector J: int (ClTr. D] = UTi]
assign C: matrix | U: vector It index (CIL TN = U]
assign W: vector v: value I: index Wl =v
assign C: matrix v: value Ig: index | Io: index Cllgdecl=v
apply W: vector | £ function | U: vector Wli f(UL)])
apply C: matrix | £ function | A: matrix Wli.j f(Ali, j])
reduce W: vector | f function | A: matrix
reduce v: variable | £ function | U: vector
reduce v: variable | £ function | A: matrix
transpose | C: matrix | A: matrix 4
Page numbers are relative to “The GraphBLAS C API Spec,” Version 1.0.0, 05/
“Vectors” and “matrices” are in the GraphBLAS context.
An “index” is an array of 64b uints in caller's memory.
alue” or “variable” is a scalar in the caller's memory.
an optional write index set used as a mask on the target.
“@" is the additive operator from the specified semiring.
s the multiplicative operator from the specified semiring.
" is an inner product using the operators from the semiring.
an optional accumulating operator.
An operator by itself is applied element-by-element
The expression “f/" refers to the summatior ss all values in the operand using function f.
18

U e v

Execution Model
e Steps in executing GraphBLAS call

- Initialization: check arguments for validity and
consistency, and access from caller's space any
values needed during the rest of the call.

- Computation: all computation required by call on
the opaque objects carried out, and values saved into
opaque space

- Materialization: When called for, data transferred
back to the caller's space

e Two modes of execution:

- Blocking: each GraphBLAS call must complete in
opaque space before control returned to caller
- Non-blocking: caller may resume before operation
completed in opaque space
¢ Only Initialization guaranteed to complete before return

GraphBLAS 19

10

