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GraphBLAS References
GraphBLAS Forum: http://graphblas.org/

Overview:
— https://resources.sei.cmu.edu/asset files/Presentation/2016 017 001 474272.pdf
— https://people.eecs.berkeley.edu/~aydin/GABB17.pdf

Math Background:

— http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

Tutorials:
- http://faculty.cse.tamu.edu/davis/suitesparse files/Davis GraphBLAS Oct2017.pdf

V1.2 C API Spec:

https://people.eecs.berkeley.edu/~aydin/GraphBLAS API C.pdf

Suitesparse implementation:
http://faculty.cse.tamu.edu/davis/suitesparse.html

9/18/2018 GraphBLAS 2




Linear Algebra Review

Computations involving “linear equations”
with representation as matrices and vectors

Core function: matrix multiplication
— A is NxM matrix, B is MxR matrix
- If C = AxB (also written just AB or A+.*B)

e C[i, k] = A[i,11*B[1,k] + A[i,2]*B[2,k] + ... A[i,N]*B[N,k]
Key observation: + & * need not be
traditional math operators

GraphBLAS observation: many graph
algorithms expressible as matrix operations
with different operators
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Changing the Operators: Semirings

Rules of linear algebra hold whenever “*"” and “+" are
functions that form a semi-ring:

+ is commutative:a+ b =b + a

Both are associative:

-a+(b+c)=(a+b)+c |Letscall
-ar(®drag=@"b)*c |4 the reduction operator

* distributes over +: * . .
(@ + b)*c = a*c + bre the combination operator

- a*(b + c) = a*b + a*c

Both are monoids, i.e. both have identities:
- a+ 0 = a ("0” is additive identity)
- a*1l = a (“1” is multiplicative identity)
Additive identity is multiplicative annihilator
- 0*a=a*0=0

Neither + nor * need have inverses

GraphBLAS




Graphs as Matrices

G = (V.E) A x Ax

Figure 1.1. Matrix graph duality.
Adjacency matrix A is dual with the corresponding graph. In addition,
vector matrix multiply is dual with breadth-first search.
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One Step of BFS
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e Matrix Domain: booleans
e + = 0OR
e * = AND
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Minimum Paths

e Assume G has weighted edges (positive only)

¢ A is adjacency matrix but with oo for no edge

e C.[u,v] = min distance from u to v in exactly
k steps
- Cifu,v] = A

e Now assume mat mult ¢ + = min, *

= +

(AOA)[U,V] = minw=1,N(A[U,W]+A[W,V]) = A®?

min distance frolm utovthruw

Thus C, = A®2; C; = A°3; ..
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min;_g »C; [u,v] = min distance from u to v

Useful Semi Rings

+: Reduction Operation | +: Reduction Operation Sample
Function | Domain Identity | Function | Domain Identity Usage
Normal Ints, 0 Normal Ints, 1 Linear Algebra
Add floats Multiply floats
OR Boolean 0 AND Boolean BFS
min Ints, 0o Normal Ints, Minimum
floats Add floats paths
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GraphBLAS

e C package to implement linear algebra
— with different operators
— and matrices that may be sparse

e Computations occur in “opaque space”
separate from main

e API has several subsets of functionality

Define data types to use as matrix elements

Define new monoids and semi-rings

Transfer sparse data between main & opaque space
Perform linear matrix operations in opaque space
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Table 2.1: GraphBLAS opaque objects and their types.
GrB_Object types | Description
GrB_Type User-defined scalar type.
GrB_UnaryOp Unary operator, built-in or associated with a single-areument C function.
GrB_BinaryQp Binary operator, built-in or associated with a two-argument C function.
GrB_Monoid Monoid algebraic structure.
GrB_Semiring A GraphBLAS semiring algebraic structure.
GrB_Matrix Two-dimensional collection of elements; typically sparse.
GrB Wector One-dimensional collection of elements.
GrB_Descriptor Descriptor object, used to modify behavior of methods.
Table 2.2: Predefined GrB_Type values, the corresponding C type (for scalar parameters), and
domains for GraphBLAS.
GrE_Type values | C type domain
GrE_BOOL bool {false, true}
GrBNTB int8_t Zn[-27,27)
GrE_UINTE uwintdx | Zn[0.2%)
GrBINT16 inti6r | Zn[-215 2ls
GrE_UINT16 uintié_t | Zn[0,2
GrBINT32 int32t | Zn|
GrE_UINT32 uint32_t | £n[0,2%)
GrBINTG4 int6at | EZn[-283 289)
GrE_UINTE4 uintéd_t | Z [0, 259
GrB_FF32 float “EE 754 binary32
GrB_FF64 double "EE 754 binary6d
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Predefined Monoids

(b) Predefined Operators.

Operator GraphBLAS
identifier Domains Description
GrB_UnaryOp | GrEIDENTITY_I' | T =T identity
GrB_UnaryOp | GrB_AINV_T T—=T !
GrB_UnaryQp | GrB_MINV_T T—=T
GrB_UnaryQp | GrB_LNOT bool —+ bool Suffix O type
GrB_BinaryOp | GrB_LOR bool x bool — bool | firu)==Vy BOOL bool
GrB_BinaryOp | GrE_LAND bool x bool —+ bool | flr.y) =rAuy, AD INTS int8 t
GrB_BinaryOp | GrB_LXOR bool x bool — bool ] logical XOR UINTS uint8_t
GrB_BinaryOp | GrB_EQ_T T x T — bool equal .
GrB_BinaryOp | GrB_NE_T T =T — bool not equal INT16 1_3t'16_t
GrB_BinaryQp | GrB_GT_T T =T — bool greater than UINT16 | uinti6 t
GrE_BinaryOp | GIBLT_T T T — bool less than INT32 int32_t
GrB_BinaryOp | GrB_.GE_T T x T — bool greater than or equal UINT32 | nint3z t
GrB_BinaryOp | GrB_LE.T T x T — bool ess than or equal .
GrE_BinaryOp | GrB_FIRST.T' TxT 1T nent INTG | intéd_t
GrB_BinaryOp | GrBSECONDLT | Tx T — 1 ( second argument UINT64 | uint64 t
GrE_BinaryOp | GrB_MIN_T TxT =T firy)=(r<y) Tz:y, i FP32 float
GrB_BinaryOp | GrE_MAX_T T=xT =1 flry)=(r>y) Tr:y. maximum A
GrB_BinaryOp | GrB_PLUS.T TxT =T fry) =T+, addition FP64 double
GrB_BinaryOp | GrB_MINUS_T' TxT—=T =1, subtraction
GrB_BinaryOp | GrB_TIMES_T TxT =T multiplication
GrB_BinaryOp | GrB_DIV_T TxT—=T division
T may be any of suffixes on right table
11
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Defining New Operations

GrB Type_new: creates new type for
values from a type known to the
application program

GrB UnaryOp_new: defines a new unary
— Includes function pointer to a C function

GrB BinaryOp_new: defines a new
binary operator
- Includes function pointer to a C function

GrB Monoid_new: specifies a previously
defined binary operator to be a monoid
GrB Semiring _new: specifies a pair of

operators as a new semiring.
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Data Structures

GraphBLAS matrices assumed to be “sparse”

Unspecified elements are structural zeros
- Additive identity/multiplicative annihilator from semiring

Objects created as vectors or matrices
- Have a “size” but when created all structural zeros

Context element: object created in opaque
space

Index array: contiguous list of 64b uints
— Used as indices into a vector/matrix

Mask: contiguous list of bools

- If x a mask, x[i]=0 => ith element is structural zero
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Creating New Objects

All created in opaque space
— With user-invisible internal representation

GrB_xxx_new: creates space for new object
(vector or matrix) of some, but does not
assign values

- XXX is vector or matrix

GrB_xxx_dup: duplicates some object.

GrB_free frees all storage associated with an
object

Functions available to return properties of an
object
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Caller to Context Memory Transfers

Move data from caller’s space to opaque space

GrB_xxx_clear: removes all elements from
an object in a context element.

GrB_xxx_setElement: takes (index, value)
pair (for a vector) or a double index and value
(for a matrix) from application space, and
changes entry in the context vector

GrB_xxx_build: takes one or two vectors of

indices and a vector of values from application
space, and updates corresponding entries in a
context object.
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Context to Caller Memory Transfers

Move data from opaque space to caller’s space

GrB_xxx_extractElement: returns value
associated with a specified index in an object
in context space.

GrB_xxx_extractTuples: stores in caller's
space two (or three for a matrix) equal-length
vectors whose contexts are all the indices from
the context object that are not structural
zeros, and all the corresponding values.
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GraphBLAS Operations

e Performed on opaque objects, with values
returned to opaque space

e May have options:

- Accumulation function: equivalent to C “+=+

- Mask: specify which elements of target are allowed to

be modified

— Descriptor: optionally modify the execution of the

called operation
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Method get Arg 1 Arg 2 Arg 3 Description
moxm C: matrix | A: matrix | B: matrix Cli,jl = Ali,*] ©.¢
vxm W: vector | U: vector | A: matrix Wii[=L
mxv W: vector | A: matrix | U: vector Wi = Afi, *
eWiseMult | W: vector | Ut vector | V: vector Wi = UT
eWiseMult | C: matrix [ A: matrix | B: matrix
eWiseAdd | W: vector | U: vector | V: vector
eWiseAdd | C: matrix [ A: matrix | B: matrix
extract W: vector | U: vector | I Index Wli] = (U])l]
extract C: matrix | A: matrix [ /5 index | Io: index Cli, ] = (A[lp.Ic))i. 5]
extract W: vector | A: matrix J: uint Wli] = (AlIn, J))i]
assign Wivector | U: vector (W)l = Ul
ass] *: matrix | A: matrix It index (ClTr. )i, 5] = AL, 1]
assign atrix | U: vector J: int (ClTr. D] = UTi]
assign C: matrix | U: vector It index (CIL TN = U]
assign W: vector v: value I: index Wl =v
assign C: matrix v: value Ig: index | Io: index Cllgdecl=v
apply W: vector | £ function | U: vector Wli f(UL)])
apply C: matrix | £ function | A: matrix Wli.j f(Ali, j])
reduce W: vector | f function | A: matrix
reduce v: variable | £ function | U: vector
reduce v: variable | £ function | A: matrix
transpose | C: matrix | A: matrix 4
Page numbers are relative to “The GraphBLAS C API Spec,” Version 1.0.0, 05/
“Vectors” and “matrices” are in the GraphBLAS context.
An “index” is an array of 64b uints in caller's memory.
alue” or “variable” is a scalar in the caller's memory.
an optional write index set used as a mask on the target.
“@" is the additive operator from the specified semiring.
s the multiplicative operator from the specified semiring.
" is an inner product using the operators from the semiring.
an optional accumulating operator.
An operator by itself is applied element-by-element
The expression “f/" refers to the summatior ss all values in the operand using function f.
18
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Execution Model
e Steps in executing GraphBLAS call

- Initialization: check arguments for validity and
consistency, and access from caller's space any
values needed during the rest of the call.

- Computation: all computation required by call on
the opaque objects carried out, and values saved into
opaque space

- Materialization: When called for, data transferred
back to the caller's space

e Two modes of execution:

- Blocking: each GraphBLAS call must complete in
opaque space before control returned to caller
- Non-blocking: caller may resume before operation
completed in opaque space
¢ Only Initialization guaranteed to complete before return
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