
1

1Sept. 2016

The BFS Kernel:
Applications and
Implementations

Peter M. Kogge
McCourtney Prof. of CSE

Univ. of Notre Dame
IBM Fellow (retired)

Please Sir, I want more

2Sept. 2016

Some Interesting Applications
• Six Degrees of Kevin Bacon
• From: https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/

– Search for neighbors in peer-peer networks
– Search engine web crawlers
– Social networks – distance k friends
– GPS navigation to find “neighboring” locations
– Patterns for “broadcasting” in networks

• From Wikipedia: https://en.wikipedia.org/wiki/Breadth-first_search
– Community Detection
– Maze running
– Routing of wires in circuits
– Finding Connected components
– Copying garbage collection, Cheney's algorithm
– Shortest path between two nodes u and v
– Cuthill–McKee mesh numbering
– Maximum flow in a flow network
– Serialization/Deserialization of a binary tree
– Construction of the failure function of the Aho-Corasick pattern matcher.
– Testing bipartiteness of a graph

2

3Sept. 2016

2
0

9

Key Kernel: BFS - Breadth First Search
• Given a huge graph
• Start with a root, find all reachable vertices
• Performance metric: TEPS: Traversed Edges/sec

1
3

5

7

8e0 e1

e2
e3

e4
e5

e6

e7e8

Starting at 1: 1, 0, 3, 2, 9, 5

No Flops – just Memory & Networking

4Sept. 2016

Definitions

• Graph G = (V, E)
– V = {v1, … vM}, |V| = N
– E = {(u, v)}, u and v are vertices, |E| = M

• Scale: log2(N)
• Out-degree: # of edges leaving a vertex
• “Heavy” vertex: has very large out-degree

– H = subset of heavy vertices from V

• Node: standalone processing unit
• System: interconnected set of P nodes
• TEPS: Traversed Edges per Second

3

5Sept. 2016

Notional Sequential Algorithm
• Forward search: Keep a “frontier” of new

vertices that have been “touched” but not
“explored”
– Explore them and repeat

• Backward search: look at all “untouched
vertices” and see if any of their edges lead
to a touched vertex
– If so, mark as touched, and repeat

• Special considerations
– Vertices that have huge degrees

6Sept. 2016

Notional Data Structures
• Vis = set of vertices already “visited”

– Initially just root vs

• In = “Frontier”
– subset of Vis reached for 1st time on last iteration

• Out = set of previously untouched
vertices that have 1 edge from frontier

• P[v] = “predecessor” or “parent” of v

4

7Sept. 2016

Sequential “Forward” BFS:
Explore forward from Frontier

while |In| != 0

Out = {};

for u in In do

for v in some edge (u,v)

if v not in Vis

Out = Out U {v};

Vis = Vis U {v};

P[v] = u;

In = Out;

Block executed for
each edge traversed

TEPS = # of times/sec
this block is executed

From each vertex in frontier
follow each edge

and if untouched,
add to new frontier

8Sept. 2016

Sequential “Backward” BFS
Explore backwards from Untouched

while vertices were added in prior step

Out = {};

for v not in Vis do

for u in some edge (u,v)

if u in Vis

Out = Out U {v};

Vis = Vis U {v};

P[v] = u;

5

9Sept. 2016

Key Observation
• Forward direction requires investigation of

every edge leaving a frontier vertex
– Each edge can be done in parallel

• Backwards direction can stop investigating
edges as soon as 1 vertex in current
frontier is found
– If search edges sequentially, potentially significant

work avoidance

• In any case, can still parallelize over
vertices in frontier

10Sept. 2016

Beamer’s Hybrid Algorithm
• Switch between forward & backward steps

– Use forward iteration as long as In is small
– Use backward iteration when Vis is large

• Advantage: when
– # edges from vertices in !Vis
– are less than # edges from vertices in In
– then we follow fewer edges overall

• Estimated savings if done optimally: up to
10X reduction in edges

• http://www.scottbeamer.net/pubs/beamer
-sc2012.pdf

6

11Sept. 2016

Edges Explored per Level

Few nodes in early
levels mean few edges

By this level,
most vertices now
touched, so edges
explored mostly
point backward Going backwards from

untouched vertices, and
stopping on first touch,
reduces # edges covered
to near-optimal (optimal is 1

edge per vertex)

Checconi and Petrini, “Traversing Trillions …”

12Sept. 2016

Notes
• TEPS is computed as # edges in

connected component / execution time
– Property of graph, not algorithm
– Thus traversing same edge >1 only counts as 1 time
– And not traversing an edge still counts as 1

7

13Sept. 2016

Graph500

14Sept. 2016

Graph500: www.graph500.org
• Several years of reports on performance

of BFS implementations on
– Different size graphs
– Different hardware configurations

• Standardized graphs for testing
• Standard approach for measuring

– Generate a graph of certain size
– Repeat 64 times

• Select a root
• Find “level” of each reachable vertex
• Record execution time
• TEPS = graph edges / execution time

8

15Sept. 2016

Graph500 Graphs
• Kronecker graph generator algorithm

– D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A
recursive model for graph mining, SIAM Data Mining
2004

• Recursively sub-divides adjacency matrix
into 4 partitions A, B, C, D

• Add edges one at a time, choosing
partitions probabilistically
– A = 57%, B = 19%, C = 19%, D = 5%

• # of generated edges = 16*# vertices
– Average Vertex Degree is 2X this

16Sept. 2016

Graph Sizes

Scale = log2(# vertices)

Level Scale Size

Vertices

(Billion) TB

Bytes

/Vertex

10 26 Toy 0.1 0.02 281.8048

11 29 Mini 0.5 0.14 281.3952

12 32 Small 4.3 1.1 281.472

13 36 Medium 68.7 17.6 281.4752

14 39 Large 549.8 141 281.475

15 42 Huge 4398.0 1,126 281.475

Average 281.5162

9

17Sept. 2016

Available Reference Implementations
• Sequential
• Multi-threaded: OPENMP, XMP
• Distributed using MPI

– Distribute vertices among nodes, including edge lists
– Each node keeps bit vectors of its vertices

• One vector of “touched”
• Two vectors of “frontier” – current and next

– For each level, all nodes search their current frontiers
• For each vertex, send message along each edge

– If destination vertex is “untouched”, mark as touched and
mark next frontier

– At end of levels make next frontier the current
frontier

18Sept. 2016

Graph500 Report Analysis

10

19Sept. 2016

Goal
• Match Graph 500 reports with actual

hardware
• Correlate performance with hardware &

system parameters
– Hardware: Core type, Peak flops, bandwidth, …
– System: System architecture, …

• Look at results thru lens of architectural
parameters

• Do so in way that allows apples-apples
across benchmarks

• Note: not all current reports fully correlated

20Sept. 2016

Units of Parallelism
• Cores: can execute independent threads
• Sockets: contain multiple cores
• Node: minimal unit of sockets & memory
• Endpoint: set of nodes visible to network as

single unit
• Blade: physical block of ≥1 endpoints
• Rack: Collection of blades
• Domain: set of cores that share same

address space, all accessible via load/stores

11

21Sept. 2016

2D Architectural Classification

System Interconnect
• L: Loosely coupled distributed

memory
– Commodity networking with

software I/F

• T: Tightly coupled distributed
memory
– Specialized NICs & some H/W

RDMA ops

• S: Shared Memory
– Single domain in H/W

• D: Distributed Shared
Memory
– Single domain but S/W assist

for remote references
(typically via traps)

Core Architecture

• H: Heavyweight
• L: Lightweight
• B: BlueGene
• X: Multi-threaded
• V: Vector
• O: Other
• G: GPU-like
• M: a mix

22Sept. 2016

Examples

System Interconnect

• T: Tightly coupled
– Cray systems with Aries

NICs

• L: Loosely coupled
– Infiniband Networking

• S: Shared Memory
– SGI UV systems, XMT

• D: Dist. Shared
Memory
– Numascale

Core Architecture

• H: Heavyweight: Xeon
• L: Lightweight: ARM
• B: BlueGene
• X: Multi-threaded: XMT
• V: Vector: NEC SX
• O: Other: Convey
• G: GPU-like: Nvidia
• M: a mix

12

23Sept. 2016

A Modern “Multi-Node” Endpoint

D
IM

M
D
IM

M
D
IM

M
D
IM

M

Processor
Socket

D
IM

M
D
IM

M
D
IM

M
D
IM

M

Processor
Socket

Router I/O Socket

D
IM

M
D
IM

M
D
IM

M
D
IM

M Processor
Socket

D
IM

M
D
IM

M
D
IM

M
D
IM

M Processor
Socket

GPU
Socket

GDDR
GDDR
GDDR
GDDR

GPU
Socket

GDDR
GDDR
GDDR
GDDR

GPU
Socket

GDDR
GDDR
GDDR
GDDR

GPU Nodes

Conventional
Processing

Node

Each Node a
Separate Domain

NIC
Domains can span Endpoints
if NIC in Memory Path

24Sept. 2016

HPL Architectural Change

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

01/01/92 01/01/96 01/01/00 01/01/04 01/01/08 01/01/12 01/01/16

R
m
ax

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Significant changes
in Architecture

Over Time

13

25Sept. 2016

Key Architectural Parameters
• Rpeak: peak flop rate
• Memory bandwidth: peak data exchange rate

between memory chips & socket(s)
• Memory Access Rate: peak # of random,

independent memory accesses per second
• Peak Network Injection Bandwidth (for tight

or loosely coupled)
• # Cores, Sockets, Nodes, Endpoints, Domains,

Blades, Racks
• Total Memory Capacity
• Total Power

AND RATIOS

26Sept. 2016

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

01/01/10 01/01/11 01/01/12 12/31/12 01/01/14 01/01/15 01/01/16 12/31/16

G
TE
P
S

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

BFS Over Time
Not A Lot of
Growth at Top

14

27Sept. 2016

Trends by System Class

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

01/01/10 01/01/11 01/01/12 12/31/12 01/01/14 01/01/15 01/01/16 12/31/16

G
TE
P
S

Tightly Coupled Loosely Coupled Shared Memory Dist. Shared Memory

Tightly Coupled
Systems Rule

28Sept. 2016

Trends by Core Architecture

15

29Sept. 2016

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

G
TE
P
S

Reported Cores

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Performance vs # Cores

30Sept. 2016

Performance “Per”

1.E‐06

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

G
TE
P
S
p
e
r
R
e
p
o
rt
e
d
 C
o
re
s

Reported Cores

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

G
TE
P
S
p
e
r
N
o
d
e
s

Nodes

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

G
TE
P
S
p
e
r
So

ck
e
ts

Sockets

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

G
TE
P
S
p
e
r
D
o
m
ai
n
s

Domains

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1000x

16

31Sept. 2016

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

G
TE
P
S

Domains

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Domains In Detail

32Sept. 2016

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

G
TE
P
S
p
e
r
D
o
m
ai
n
s

Domains

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Domains In Detail

Massive dropoff
with multiple domains

17

33Sept. 2016

Single Domain Systems

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

G
TE
P
S

Reported Cores

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+00 1.E+01 1.E+02 1.E+03

G
TE
P
S

Nodes

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+00 1.E+01 1.E+02 1.E+03

G
TE
P
S

Sockets

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

34Sept. 2016

Memory Bandwidth

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

G
TE
P
S

Peak Bandwidth (GB/s)
Tightly Coupled Loosely Coupled Shared Memory Dist. Shared Memory

1.E‐06

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

G
TE
P
S
p
e
r
P
e
ak

 B
an

d
w
id
th
 (
G
B
/s
)

Peak Bandwidth (GB/s)

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

1.E‐06

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+00 1.E+01 1.E+02 1.E+03

G
TE
P
S
p
e
r
P
e
ak
 B
an

d
w
id
th
 (
G
B
/s
)

Peak Bandwidth (GB/s) per Sockets

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

18

35Sept. 2016

Per Socket

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+00 1.E+01 1.E+02 1.E+03

G
TE
P
S
p
e
r
So

ck
e
ts

Peak Bandwidth (GB/s) per Sockets

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Sockets in Shared Memory
Systems seem to give best

Less Efficient

36Sept. 2016

GTEPS vs # Vertices

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12 1.E+13

G
TE
P
S

Vertices

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

19

37Sept. 2016

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12

G
TE
P
S
p
e
r
N
o
d
e
s

Vertices per Nodes

TH

TL

TB

TM

TX

TO

TV

TG

LH

LL

LB

LM

LX

LO

LV

LG

SH

SL

SB

SM

SX

SO

SV

SG

DH

DL

DB

DM

DX

DO

DV

DG

Performance vs # Local Vertices
More Vertices storable on
each node increases performance

38Sept. 2016

Sparsity & Parallelism

3
8

0.001

0.01

0.1

1

10

100

1000

1 10 100 1,000 10,000 100,000

P
e
rf
o
rm

an
ce
 N
o
rm

al
ze
d
 t
o
 P
e
ak
 S
in
gl
e
 D
o
m
ai
n

Domains
HPCG:Unconv HPCG:Conv SpMV:Sparse7 SpMV:Sparse49 SpMV:Sparse73 BFS

Observation: Extreme Sensitivity to
• Level of Sparsity
• # of physically separate memory domains

Across all kernels, it takes 10-
1000 nodes of distributed
memory systems to equal best of
single domain systems for the
sparsest problems

20

39Sept. 2016

TEPS/Watt

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E‐02 1.E+00 1.E+02 1.E+04 1.E+06

GT
EP
S/
W
at
t

Edges (G)

GPUs where problem
fits in GPU Memory

Green = Single Node, Blue = multi-node

40Sept. 2016

Conclusions
• 3 Performance regions

– Single Domain: highest performance per core, … – by far
– < 1 Rack

• Significant drop-off from single domain
• But excellent weak scaling
• Especially shared memory vector machines

– >1 Rack
• Another drop-off from single rack
• But again good scaling up to about 1 million cores

• Strong correlation with memory bandwidth
– But Shared Memory more effective using bandwidth

• Strongly invite more “low parallelism” reports

21

41Sept. 2016

Blue Gene Q
Implementations

42Sept. 2016

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

G
TE
P
S

Number of Nodes

Heavy BlueGene Light Hybrid DSM XMT Other

GTEPS vs Node Count: All Systems

Performance almost linear in # nodes over 1000 nodes

Except at
single node

22

43Sept. 2016

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

1.E+03

1/1/10 1/1/11 1/1/12 1/1/13 1/1/14 1/1/15 1/1/16

G
TE
P
S/
N
o
d
e

Date
Heavy BlueGene Light Hybrid DSM XMT Other

GTEPS/Node vs Time: All Systems

The best nodes are improving

44Sept. 2016

GTEPS/Node: BlueGene Only

1.E‐03

1.E‐02

1.E‐01

1.E+00

1/1/11 1/1/12 1/1/13 1/1/14 1/1/15 1/1/16

G
TE
P
S
p
er
 N
o
d
e

BB/P BG/Q

23

45Sept. 2016

Recent BG/Q Measurements

Observations
• Blue: Highest GTEPS per node

– 0.375 GTEPS, 16M vertices /node

• Orange: Highest vertices per node
– 1.07B vertices but only 0.0094 GTEPS /node

• Red: Highest overall GTEPS & biggest scale
– But only 0.24 GTEPS, 22.4M vertices /node

D
at
e

Sc
a
le

G
TE
PS

N
um

be
r
of

N
od
es

M
e
m
o
ry
 (
G
B
)

G
TE
PS
/
N
od
e

V
e
rt
ic
e
s

V
e
rt
ic
e
s/

n
od
e

C
a
ch
e
 B
it
s/

V
e
rt
e
x

M
e
m
.
B
yt
es
/

V
e
rt
e
x

M
e
m
o
ry
 B
/W

/
TE
P

A
cc
e
ss
es
 p
er

T
EP

11/1/2014 33 172 512 8,192 3.36E‐01 8.6E+09 1.68E+07 16.00 1024 127 0.99

11/1/2014 34 294 1024 16,384 2.87E‐01 1.7E+10 1.68E+07 16.00 1024 148 1.16

11/1/2014 34 382 1024 16,384 3.73E‐01 1.7E+10 1.68E+07 16.00 1024 114 0.89

11/1/2014 35 769 2048 32,768 3.75E‐01 3.4E+10 1.68E+07 16.00 1024 114 0.88

7/8/2015 36 0.601 64 1024 9.40E‐03 6.9E+10 1.07E+09 0.25 16 4541 35.34

11/1/2014 36 1427 4096 65,536 3.48E‐01 6.9E+10 1.68E+07 16.00 1024 122 0.95

11/1/2014 37 2567 8192 131,072 3.13E‐01 1.4E+11 1.68E+07 16.00 1024 136 1.06

11/1/2014 38 5848 16384 262,144 3.57E‐01 2.7E+11 1.68E+07 16.00 1024 120 0.93

11/1/2014 40 14982 49152 786,432 3.05E‐01 1.1E+12 2.24E+07 12.00 768 140 1.09

11/1/2014 41 23751 98304 1,572,860 2.42E‐01 2.2E+12 2.24E+07 12.00 768 177 1.37

46Sept. 2016

TEPS vs # Racks of Q (Blue #s)

1K nodes = 1 rack

Measurements made over 64 runs

Run with max performance

Run with min performance

1st Quartile

3rd Quartile

Median

After 16 racks edge distribution imbalance
increases, causing reduced scaling

24

47Sept. 2016

Message Passing

• Forward direction:
– Node ni sends a message to each node nj where

• Some vertex u is owned by ni, and u is currently in In
• And there is some edge (u,v) and v is owned by nj

• Backward direction:
– Node ni sends a message to each node nj where

• Some vertex v is owned by ni, and v is currently not in In
• And there is some edge (u,v) and u is owned by nj

– If that message finds a u that is in In
• Then reply message sent back to node ni to update v

48Sept. 2016

Distributed Data Decomposition

• How are vertices and edges distributed in
parallel system

• 1D: Each node owns subset of vertices
– If u is on nj, so are all edges (u,v)
– Problem: when u has very high out-degree

• 2D: Each node owns subset of edges
– Equivalent to owning all edges between subsets Vi

and Vj of vertices
– Better distribution of edges for heavy vertices

25

49Sept. 2016

BlueGene Q 1D Algorithm:
Most TEPS/Node for BG/Q

D
a
te

Sc
a
le

G
T
E
P
S

N
um

b
e
r
o
f

N
o
de
s

M
e
m
o
ry
 (
G
B
)

G
T
E
P
S/
 N
o
de

V
e
rt
ic
e
s

V
e
rt
ic
e
s/

no
d
e

C
a
ch
e
 B
it
s/

V
e
rt
e
x

M
e
m
. B

yt
e
s/

V
e
rt
e
x

M
e
m
o
ry
 B
/W

/
TE
P

A
cc
e
ss
e
s
p
e
r

TE
P

11/1/2014 33 172 512 8,192 3.36E‐01 8.6E+09 1.68E+07 16.00 1024 127 0.99

11/1/2014 34 294 1024 16,384 2.87E‐01 1.7E+10 1.68E+07 16.00 1024 148 1.16

11/1/2014 34 382 1024 16,384 3.73E‐01 1.7E+10 1.68E+07 16.00 1024 114 0.89

11/1/2014 35 769 2048 32,768 3.75E‐01 3.4E+10 1.68E+07 16.00 1024 114 0.88

7/8/2015 36 0.601 64 1024 9.40E‐03 6.9E+10 1.07E+09 0.25 16 4541 35.34

11/1/2014 36 1427 4096 65,536 3.48E‐01 6.9E+10 1.68E+07 16.00 1024 122 0.95

11/1/2014 37 2567 8192 131,072 3.13E‐01 1.4E+11 1.68E+07 16.00 1024 136 1.06

11/1/2014 38 5848 16384 262,144 3.57E‐01 2.7E+11 1.68E+07 16.00 1024 120 0.93

11/1/2014 40 14982 49152 786,432 3.05E‐01 1.1E+12 2.24E+07 12.00 768 140 1.09

11/1/2014 41 23751 98304 1,572,860 2.42E‐01 2.2E+12 2.24E+07 12.00 768 177 1.37

50Sept. 2016

BlueGene/Q Data Distribution
• Each node owns subset of vertices
• Non-heavy vertices {u}: 1D distribution of

edges
– All edges (u, v) from u stored on owner(u)

• Heavy vertices {h}:
– Edges distributed throughout system
– With {h, v} stored on owner(v)

26

51Sept. 2016

Data Structures
• In, Out, Vis: all bit vectors

– 1 bit per “non-heavy” vertex
– With node ni holding bits for all/only vertices it owns

• Ini, Outi, Visi refer to part held by node i
• P: array with one # per vertex

– P[v] = vertex number of predecessor of v
– Partitioned so P[v] on node that owns v

• InH, OutH, VisH all bit vectors for heavies
– Complete copies InH

n, OutH
n, VisH

n on each node n

• Likewise PH
n is separate copy on node n

52Sept. 2016

Non-Heavy Edges
• Each node holds combined edge list for its owned

vertices in single array in CSR format
• Edge sub-list for one non-heavy vertex

– Source vertex number stored in 64bit word
• actually offset within local’s range (<<40 bits)
• With remaining bits an offset to start of edge list for next local

vertex

– List of destination vertex numbers
• 40 bits each in a 64 bit word
• If vertex is heavy, upper 24 bits are index into H

• Coarse Index Array
– One entry for every 64 local vertices points to start in

CSR array
– To find vertex 64k+j, start at kth index & search
– 64 chosen to match 64 bits of bit vectors

27

53Sept. 2016

BG/Q Parallel BFS
while In != {} do

dir = CalculateDirection;
if dir = FORWARD

for u in Inn do
for v such that (u,v) in E do

send(u, v, FORWARD) to owner(v);
else

for v not in Inn do
for u such that (u,v) in E do

send(u, v, BACKWARD) to owner(u);
In = Out;

Function Receive(u, v, dir)
if dir = FORWARD

if v not in Visn
Visn = Visn U {v};
Outn = Outn U {v};
P[v] = u;

else if u in Inn
send(u, v, FORWARD) to owner(v);

Forward Step
for non-heavies

Backward Step
for non-heavies

Add v to frontier
if it is not already touched

54Sept. 2016

Forward Step for Heavies
OutHn = {};
for u in InH do

for each v from (u, v) in En do
if v in H then

VisHn = VisHn U {v};
OutHn, = OutHn U {v};
PHn[v] = u;

else
Visn = Visn U {v};
Outn, = Outn U {v};
Pn[v] = u;

allreduce (VisHn, OR);
allreduce (OutHn, OR);
InH = OutHn;

All nodes look at all heavies

But only process edges that are local

If target of edge is a heavy
then update local copy of
heavy data structures

If target of edge is not heavy
then local node is owner of
vertex’s data, and update
is again completely local

Need allreduce to combine all
local copies of heavy data structures

Note! no messages needed in loop!!!

28

55Sept. 2016

Backward Step for Heavies
OutHn = {};
for v in ~VisHn do

for each u from (u, v) in En do
if u in H then

if u in InH do
VisHn = VisHn U {v};
OutHn, = OutHn U {v};
PHn[v] = u;

else if u in Inn do
Visn = Visn U {v};
Outn, = Outn U {v};
Pn[v] = u;

allreduce (VisHn, OR);
allreduce (OutHn, OR);
InH = OutHn;

All nodes look at all heavies

But only process untouched heavies

If source of edge is heavy
then update local copy
of heavy data structures

Need allreduce to combine all
local copies of heavy data structures

Note! no messages needed in loop!!!

If source is not heavy but
local, then update local copy
of non-heavy data structures.
non-local non-heavy source
handled by other loop

56Sept. 2016

Message Packing
• Each send uses target node to identify a local buffer (need 1

buffer per node)
• Message is placed in that buffer until it is full
• When full, buffer is sent as single packet to target
• Target unpacks the packet and performs series of receives
• Packet format

– Header ~8B identifying source id and size of rest
– At most 6 bytes for each (u, v) pair

• 24 bits for source local index (with rest of 40 bit index from source node id)
• 24 bits for target local index (we know upper 16 bits are that associated with

this node)

– When possible use only 4 bytes per pair
• 24 bits for source vertex
• 7 bits as a difference from last target vertex # in this packet

29

57Sept. 2016

BlueGene/Q Analysis:
“Blue” Algorithm

58Sept. 2016

BlueGene/Q Node
• 16-core logic chip, each core:

– 1.6GHz, 4-way multi-threaded
– 16KB L1 data cache with 64B lines, 16KB L1 instruction
– 8 DP flops per cycle = 12.8 Gflops/sec per core

• 32MB Shared L2
– 16 2MB sections
– Rich set of atomic ops at L2 interface

• Up to 1 every 4 core cycles per section
• Load, Load&Clear, Load&Increment, Load&Decrement
• LoadIncrementBounded & LoadDecrementBounded

– Assumes 8B counter at target and 8B bound in next location
• StoreAdd, StoreOR, StoreXor combines 8B data into memory
• StoreMaxUnsigned, StoreMaxSigned
• StoreAddCoherenceOnZero
• StoreTwin stores value to address and next, if they were equal

30

59Sept. 2016

BlueGene/Q Node (Continued)
• 2 DDR3 memory channels, each

– 16B+ECC transaction width, 1.333GT/s
– 21.33 GB/s, 0.166B accesses per second, each returning 128B

• 10+1 spare communication links, each
– Full duplex 4 lanes each direction@ 4Gbps signal rate
– Equaling 2GB/s in each direction
– Supports 5D torus topology

• Network Packets
– 32B header, 0 to 512B data in 32B increments, 8B trailer
– RDMA reads, writes, memory FIFO

• In NIC Collective operations
– DP FltPt add, max, min
– Integer add (signed/unsigned), max, min
– Logical And, Or, Xor

60Sept. 2016

Estimated Storage per Node
• Assume V vertices, H heavy vertices
• In, Out, Vis: 3V/8N bytes (1 bit per vertex)
• P: 8V/N bytes
• Index: 8*(V/64N) bytes (8 bytes per vertex)
• Edge list for 1 vertex: 264B on average

– 8B vertex # + 32*8B for 32 edges

• InH, OutH, VisH: 3H/B bytes (1 bit per vertex)
– Complete copy on each node

• PH: 8H (again complete copy per node)
• Edge list one 1 heavy vertex: 8B+4|Eh| (H at most 2^32)
• I/O buffers: 2*256*N

Total: 272.5V/N + (16.4+8EH)H + 512N

31

61Sept. 2016

This image cannot currently be displayed.

Storage/Node: Scale=35, N=2048

Only 16 GB available per Node

Highest GTEPS per Node

62Sept. 2016

This image cannot currently be displayed.

Storage/Node: Scale=41, N=98,304

Only 16 GB available per Node

Highest GTEPS per System

32

63Sept. 2016

BG/Q Network Bandwidth
This image cannot currently be displayed.

Saturation at 256B packets implies at most 36-50 (u,v,dir) messages per packet

Checconi and Petrini, “Traversing Trillions …”

64Sept. 2016

Traffic Due to Hybrid 1D Algorithm
This image cannot currently be displayed.

Checconi and Petrini, “Traversing Trillions …”

Huge reduction in messages;
This includes compression

33

65Sept. 2016

Observed Compression Effect
This image cannot currently be displayed.

Checconi and Petrini, “Traversing Trillions …”

• Normal packing is ~6B/edge
• Compression: using 7

bits/target vertex when
packet holds many edges

• At levels with few edges,
effect of header is larger.

Green: my guess as to ave.
edges per packet

1

5

Many

~1.5

1

66Sept. 2016

Time/Level vs Graph Representation

This image cannot currently be displayed.

Checconi and Petrini, “Traversing Trillions …”

34

67Sept. 2016

Effect of Multi-Threading Within Node
Constant scale 34 on
1024 nodes (1 rack)

This image cannot currently be displayed.

With 16 codes/node
these numbers are
parallelism increases;
better than linear!

These represent
2 and 4 threads
respectively per core;
worse than linear
increase!

Checconi and Petrini, “Traversing Trillions …”

68Sept. 2016

Speedup Over Forward Algorithm
This image cannot currently be displayed.

Different
Graphsa.k.a

G500
scale 25

Net speedup from 3X to 8X

from Beamer, et al “Direction-Optimized…”

35

69Sept. 2016

Question

• How do all these systems have only about
1 memory reference per TEP?

• Clearly they use the 30MB cache
• Also, I/O uses cache also

– With set of atomics

This image cannot currently be displayed.

70Sept. 2016

Observations on Memory
• 16M vertices per node

– Requires only 16M bits for each bit vector
– Totaling 3*16M/64 = 0.75MB

• 2 256B I/O buffers for 2048 Nodes ~1MB
– NICs can access cache directly
– And perform atomic operations on them

• Together, these easily fit in cache
– No memory references need for them

• System size growth to 100K nodes => 50MB of I/O
• P array too big for cache: 256MB

– But each word written to at most once per vertex

