Introduction to CMOS VLSI

Design

Logical Effort Part B

Original Lecture by Jay Brockman
University of Notre Dame Fall 2008
Modified by Peter Kogge Fall 2010,2011,2015, 2018
Based on lecture slides by David Harris, Harvey Mudd College
http://www.cmosvlsi.com/coursematerials.html

Review: Motivating Example

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a 16×32 register file.
- Decoder specifications:
- 16 word register file
- Each word is 32 bits wide

- Each file bit presents load of 3 unit-sized transistors
- Both true \& complementary address inputs A[3:0] available
- Each address input may drive 10 unit-sized transistors
- Ben needs to decide:
- How many stages to use in decoder driver output buffers?
- How large should each gate be?
- How fast can decoder operate?

Review: Ideal Gate Delay τ

\square Imagine ideal unit inverter (no parasitic diffusion capacitance \& unit of resistance) driving identical inverter

$\square \tau=$ 3RC $=$ Ideal Inverter Delay

Review: Linear Delay Model

 Prior delay had two parts

- p: Parasitic delay due to internal diffusion capacitance of gate
- 3RC for inverter
- Independent of load = sum of diffusion caps
- f: Effort delay due to load capacitance of gates being driven
- 3h RC when driving h unit inverters
- Proportional to total load capacitance
- = h*g if driving identical circuits (copies of itself)
- h = \# of copies of gate (also called "Fanout")
- $\mathrm{g}=$ "Logical Effort" (function of gate complexity)
- 3RC for inverter

Review: Normalized Linear Delay

- Remember
$-3 R C=$ parasitic delay of unit inverter
$-3 R C+3 h R C=$ delay if driving h inverter copies
\square Normalized delay: divide delay by 3RC
- Measure of how much "slower" a circuit is than an inverter
$-=1+\mathrm{h}$ for inverter driving h identical inverters

Determining Logical Effort

\square Logical effort g: ratio of input capacitance of a gate to input capacitance of an inverter delivering the same output current (pullup/down resistance).

- Measured from delay vs. fanout plots
\square Or estimate by counting transistor widths
- AND divide by 3 to "normalize" to unit inverter

$C_{\text {in }}=3$
$g=3 / 3$

$C_{\text {in }}=4$
$g=4 / 3$
$\mathrm{g}=4 / 3$

$C_{\text {in }}=5$
$\mathrm{g}=5 / 3$

Question: does g change if we scale all the transistors wided?

Summary: (p.156)

Gate Type	Number of inputs													
	1			2		3			4			N		
Inverter		1	1											
NAND				4	$24 / 3$	5	3	5/3	6	4	6/3	$\mathrm{N}+2$	N	($\mathrm{N}+2$ /3
NOR				5	$25 / 3$	7	3	7/3	9	4	9/3	2N+1	N	$(2 \mathrm{~N}+1) / 3$
TriState/mux		2	2				6	2		8	2		2 N	2
XOR, XNOR					4 4, ${ }^{4}$			6,12, 6			8,16,16,8			
$(x, y, z)=$ pout,														

All inputs are not the same!
Parasitic: delay driving 0 load (divided by 3RC)
Logical effort: Input Cap of gate / Input Cap of inverter of same current

Delay Plots

$d=f+p$

Lets take our invertor:

- $\mathrm{d}=\mathrm{h}+1$
- $\mathrm{p}=1$ (y -intercept)
- $\mathrm{g}=1$ (slope)

What does "Normalized Delay" mean to designer?

2 input NAND

Remember we normalize

$$
\begin{aligned}
d & =f+p \\
& =g h+p
\end{aligned}
$$

(b)

More 2 input NAND

$$
\begin{aligned}
d & =f+p \\
& =g h+p
\end{aligned}
$$

(b)

$$
C_{\text {in }}=4
$$

3 Input NAND

(c)

Eg: Ring Oscillator (p.158)

\square Estimate the frequency of an N -stage ring oscillator

- N odd

Each Stage:

Logical Effort:	$g=1$
Electrical Effort:	$\mathrm{h}=1 \quad 31$ stage ring oscillator
Parasitic Delay:	$\mathrm{p}=1 \quad \cdot 65 \mathrm{~nm}$ process (3ps delay) $=2.7 \mathrm{GHz}$
Stage Delay:	$\mathrm{d}=(1+\mathrm{h}) \stackrel{\bullet 0.6}{=}(1+1 \mathrm{~m} \text { process } \sim 200 \mathrm{MHz}$
Total delay:	$\mathrm{Nd}=2 \mathrm{~N}$ (normalized)
	= 2Dt (in seconds)
Overall Frequency:	$\mathrm{osc}=1 /(2 \mathrm{NT})$

Example: FO4 Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: $\quad \mathrm{g}=$
Electrical Effort: h =
Parasitic Delay: $p=$
Stage Delay: d=

Example: F04 Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: $\quad \mathrm{g}=1$
Electrical Effort: h = 4
Parasitic Delay: $p=1$
Stage Delay: $d=5$
The FO4 delay is approximately

- 200 ps in $0.6 \mu \mathrm{~m}$ process
- 60 ps in a 180 nm process
- $\quad \mathrm{f} / 3 \mathrm{~ns}$ in an $f \mu \mathrm{~m}$ process

Drive (p.159)

. Most libraries have multiple versions of common gates

- Named <gate-type>_\#x
- Versions differ by "size" of transistors
- Denoted by \# in name
- Called the gate version's drive
- Relative to unit inverter
\square Drive $x=C_{\text {in }} / g$
- Thus delay $=C_{\text {out }} / x+p$
\square Question: what's speed difference between
- nand2_1x
- nand2_3x

> (p. 160) Figure 4.25 Artisan Components cell library datasheets. Reprinted with permission. $(180 \mathrm{~nm}$ process $)$

- Lets look at A input
- Parasitic delay $=(31.3+19.5) / 2$

$$
=25.4 \mathrm{ps}
$$

Parasitic delay $=(31.3+19.5) 2$

- $\mathrm{C}_{\text {in }}=4.2 \mathrm{fF}-$
- $\mathrm{K}_{\text {load }}=(4.53+2.84) / 2 \mathrm{~ns} / \mathrm{pF}$
$=3.69 \mathrm{~ns} / \mathrm{pF}$
$=3.69 \mathrm{ps} / \mathrm{fF}$
- $\mathrm{t}_{\mathrm{pd}}=25.4+4.2 * 3.69 * \mathrm{~h} \mathrm{ps}$ $=25.4+15.5 * \mathrm{~h} \mathrm{ps}$
- Normalizing by inverter 12.4 ps
- $\mathrm{p}=25.4 / 12.4=2.05$
- $\mathrm{g}=15.5 / 12.4=1.25$
- versus $4 / 3=1.33$ from model

Fin Capactian

Input Cap Why the difference?

(p. 161)
 Limitations to Linear Delay Model

- Input \& output slopes:
- not square
- Input arrival times: complex interactions
- when 2 or more inputs change at same time
- Velocity Saturation:
- We assume N transistors in series must be N times wider
- But series transistors see less velocity saturation
- \& hence less resistance
\square Voltage Dependencies:
- $T \sim V^{*} V_{D D} /\left(V_{D D}-V_{T}\right)^{a}$
- Gate/Source Dependencies:
- We assumed gate caps terminate on a fixed rail
- In reality to "middle" of channel
] Bootstrapping:
- Transistors have "gate to drain" capacitance
- Causes input to output "lifting"

Bootstrapping

FIGURE 4.28 The effect of bootstrapping on inverter delay and waveform shape
(b)

Delay in Multi-Stage Circuits

A Sample Multi Stage Circuit

Gate Type	Number of inputs														
	1			2			3			4			N		
Inverter		1	1												
NAND				4	2	4/3	5	3	5/3	6	4	6/3	N+2	N	$(\mathrm{N}+2) / 3$
NOR				5	2	5/3	7	3	7/3	9	4	9/3	2N+1	N	$(2 \mathrm{~N}+1) / 3$
TriState/mux		2	2		4	2		6	2		8	2		2N	2
XOR, XNOR					4	4,4		6	6,12,6		8	8,16,16,8			
$(\mathbf{x}, \mathbf{y}, \mathbf{z})=\ln$ put Cap, ,															

Scaling Transistors

- What if all transistors in gate G got wider by k ?
- Denote as gate " $G(k)$ "
\square Parasitic delay of $G(k)$: delay of unloaded gate
- Diffusion capacitance increases by k
- Resistance decreases by k
- Result: No change
\square Effort delay: ratio of load cap to input cap
- If drive same \# of $\mathrm{G}(\mathrm{k})$ as before, no change
- If drive same \# of $G(1)$ as before, decrease by $1 / k$
- If drive k times as many $G(1)$, no change
- Result: fanout to type G(1) gates increases by k
- YOU CAN DRIVE MORE GATES AT SAME SPEED!

Design Question

- Given a signal path thru multiple gates
- Of different types
- And different \#s on each output
\square How do we select transistor scale factors?
\square Answer: analyze/select "input capacitance"
- And then adjust transistor scaling to give you that value

MultiStage Logic Networks

(p. 163)

FIG 4.29 Multistage logic network
$g_{i}=$ logical effort to drive a gate of type $i=$ input cap/cap of inverter $h_{i}=$ fanout of gates of type $i=$ load cap/input cap

Question

IIf delay thru one gate is $p+h g$,
-Can we simplify multistage to something like $P+H G$?

Overall Delay

\square delay thru circuit $=\sum$ delay (i)

- where delay $(\mathrm{i})=$ delay thru i'th "stage" of logic
\square delay $(i)=p_{i}+h_{i}{ }^{*} g_{i}$
$-p_{i}$ function only of gate type at stage i
$-g_{i}$ function only of gate type at stage i
- input cap/cap of inverter
$-h_{i}$ depends on connected gates at stage $i+1$
- total load on output of gate i/input cap of gate i
\square Thus delay $=\Sigma\left(p_{i}+h_{i}{ }^{*} g_{i}\right)=\Sigma\left(p_{i}\right)+\sum\left(h_{i}{ }^{*} g_{i}\right)$
\square Clearly $P=\sum\left(p_{i}\right)$
- Can we write $\sum\left(h_{i}{ }^{*} g_{i}\right)$ as some $H^{*} G$?
(p. 164)

Definitions

\square Path Logical Effort $G=\prod g_{i}$

Question: Can we write F = GH?

Can We State $\mathbf{F}=\mathbf{G H}$?

Branch point
\square No! Consider paths that branch:

- Not all load at one stage is on path to output
- Individual terms
$\mathrm{g}_{1}=\mathrm{g}_{2}=1$ (inverters)
$\mathrm{h}_{1}=(15+15) / 5=6$
$h_{2}=90 / 15=6$
Path Terms
$G=\Pi_{\mathrm{i}}=1 \times 1=1$
$\mathrm{H}=\mathrm{C}_{\text {out }} / \mathrm{C}_{\text {in }}=90 / 5=18$

Question: What did GH overlook?

Thus GH

$$
=18
$$

Versus $F=g_{1} h_{1} g_{2} h_{2}=36=2 G H!=G H$

Branching Effort

- Introduce Branching Effort B
- Accounts for signal branching between stages in path

$$
\begin{aligned}
& b=\frac{C_{\text {on path }}+C_{\text {off path }}}{C_{\text {on path }}} \\
& B=\prod_{b_{t}} \\
& \Pi^{h_{i}=B H}
\end{aligned}
$$

- Now we compute the Path Effort F=GBH - Or delay $=$ P + GBH

Redo

\square Individual terms
$\mathrm{g}_{1}=\mathrm{g}_{2}=1$ (inverters)
$h_{1}=(15+15) / 5=6$
$h_{2}=90 / 15=6$
$\mathrm{b}_{1}=(15+15) / 15=2$
$b_{2}=90 / 90=1$

- Path Terms
$G=\Pi g_{i}=1 \times 1=1$
$\mathrm{H}=\mathrm{C}_{\text {out }} / \mathrm{C}_{\text {in }}=90 / 5=18$
B $=2 \times 1=2$

Thus GBH $=36$
Versus $F=g_{1} h_{1} g_{2} h_{2}=36$!

Designing Fast Multistage Circuits

Designing Fast Circuits

$$
D=\sum d_{i}=D_{F}+P=\sum \mathrm{f}_{\mathrm{i}}+\sum \mathrm{p}_{\mathrm{i}}=\mathrm{P}+\mathrm{F}=\mathrm{P}+\mathrm{GBH}
$$

\square D is Path Delay

- P is Path Parasitic Delay - independent of widths
- F is Path Effort
- $G=\Pi g_{i}=$ Path Logical Effort- ind. of width
$-B=$ Branching Factor
$-\mathrm{H}=\mathrm{C}_{\text {outpath }} / \mathrm{C}_{\text {inpath }}=$ Path Electrical Effort
- To minimize $\sum \mathrm{f}_{\mathrm{i}}$ when GBH is constant:
- MAKE EACH STAGE HAVE SAME EFFORT f^
- For N stage circuit: $f^{\wedge}=(G B H)^{1 / N}$

Minimum possible delay $=\mathbf{P}+\mathbf{N f} \wedge$!!!!

How Do We Find Gate Sizes to Reach this Equal Effort?

\square How wide should gates be for least delay?
\square Typically $\mathrm{C}_{\text {in }}$ of first gate is pre-specified
\square Working backward from load,

- apply transformation to find input

$$
\hat{f}=g h=g \frac{C_{\text {out }}}{C_{i n}}
$$

capacitance of each gate, given the load it drives.

- Use this for the load capacitance on previous stage
- Check work by verifying input cap spec i
\square Then use input cap of each gate to size each gate

Example: 3-stage path

Select input capacitance x and y for least delay from A to B, given capacitance on A is $8 C$

- Thus scale widths 2 X
- or n-type are $2 \mathrm{X} 2=4$ wide
- p-type are also $2 \times 2=4$ wide

Compute f^ \& Delay

Compute f^ \& Delay

Work Backwards

W. Work backward for sizes using $\mathrm{C}_{\text {in[i] }}=\mathrm{C}_{\text {out }[]^{*}} \mathrm{~g}_{\mathrm{i}} / \mathrm{f}^{\wedge}$ $y=$
$x=$

Work Backwards

- Work backward for sizes using $\mathrm{C}_{\text {in[i] }}=\mathrm{C}_{\text {out }[\mathrm{j}]} \mathrm{g}_{\mathrm{i}} / \mathrm{f}^{\wedge}$

Work Backwards

\square Work backward for sizes using $\mathrm{C}_{\text {in[i] }}=\mathrm{C}_{\text {out }[i]} \mathrm{g}_{\mathrm{i}} / \mathrm{f}^{\wedge}$
$y=45$ * $(5 / 3) / 5=15$
$x=(15 * 2) *(5 / 3) / 5=10$

Work Backwards

\square Work backward for sizes using $\mathrm{C}_{\text {in }[i]}=\mathrm{C}_{\text {out[i] }} \mathrm{g}_{\mathrm{i}} / \mathrm{f}^{\wedge}$

$$
y=45^{*}(5 / 3) / 5=15
$$

$x=\left(15^{*} 2\right) *(5 / 3) / 5=10$
$A=(10+10+10)^{*}(4 / 3) / 5=8$ AND IT CHECKS!

Size Last Gate

\square Now size last stage: $x=15$

- 2 input NOR has unit input cap of 5

To get an input cap of $15=>$ widths $15 / 5=3 X$ unit!

- => p-type are $3 * 4=12$ wide
=> n-type are $3 * 1=3$ wide

Size Middle Gate

Now size $2^{\text {nd }}$ stage 3 input NAND
$y=10 ;$

- unit input cap of $5=>$ widths $10 / 5=2 X$ unit!
- p:n ratio of $2: 3=>$ p-type are $2^{*} 2=4$ wide
=> n-type are $3^{*} 2=6$ wide

Size First Gate

- Now size 1st stage Cin = 8; 2 input NAND has
- unit input cap of $4=>$ widths $8 / 4=2 X$ unit!
$-p: n$ ratio of $1: 1=>$-type are $2 * 2=4$ wide

$$
\text { => n-type are 2*2 = } 4 \text { wide }
$$

Checking Delay

\square Let's check delay
$-d_{1}=g_{1} h_{1}+p_{1}=\{(10+10+10) / 8\}^{*}(4 / 3)+2=7$
$-d_{2}=g_{2} h_{2}+p_{2}=\{(15+15) / 10\}^{*}(5 / 3)+3=8$
$-d_{3}=g_{3} h_{3}+p_{3}=\{45 / 15\}^{*}(5 / 3)+2=7$

- delay $=7+8+7=22$
- in 65 nm process $\mathrm{T}=3 \mathrm{ps}$, so circuit is $22^{*} 3=66 \mathrm{ps}$

What If We Try to Tweak?

What if we made stage 2 even bigger (to be faster)
$-d_{2}=g_{2} h_{2}+p_{2}=\{(15+15) / 15\}^{*}(5 / 3)+3=6.3$ (faster)

- but $d_{1}=g_{1} h_{1}+p_{1}=\{(15+15+15) / 8\}^{*}(4 / 3)+2=9.5$ (slower)
- and $d_{3}=g_{3} h_{3}+p_{3}=\{45 / 15\}^{*}(5 / 3)+2=7$ (no change)
- delay $=9.5+6.3+7=22.8>22$ - SLOWER CIRCUIT

Choosing Best \# of Stages

- Many logic functions have multiple possible circuits (topologies)
\square Goal: select topology, est. delay, \& size transistors
- We know in general
- NANDs better than NORs
- Gates with fewer inputs better than more inputs
\square Typical shortcut: estimate delay by \# of stages
- Assuming constant "gate delay"
- and thus shorter paths are faster
\square THIS IS NOT ALWAYS TRUE!
- Eg: Adding inverters at end with increasing sizes can speed up circuit, esp. when high load

Example (p. 166)

- How many stages should a path use?
- Minimizing number of stages is not always fastest
\square Example: drive 64-bit datapath with unit inverter
- Each bit eqvt to unit inverter in load

Best Number of Stages

- How many stages should a path use?
- Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter
$\mathrm{H}=64$
G = 1
$F=H G=64$
$D=N F^{1 / N}+P$

$$
=N(64)^{1 / N}+N
$$

InitialDriver

General Derivation

\square Consider adding inverters to end of n_{1} stage path

- How many give least delay?

$$
p_{i n v}+\rho(1-\ln \rho)=0
$$

Best Stage Effort

$\square p_{i n v}+\rho(1-\ln \rho)=0$ has no closed-form solution
\square Neglecting parasitics ($\mathrm{p}_{\mathrm{inv}}=0$), we find $\rho=2.718$ (e)

For $\mathrm{p}_{\text {inv }}=1$, solve numerically for $\rho=3.59$
\square Again,

- these ρ values are best logical effort per stage
- when you have $\hat{N}=\log _{\rho} F$ stages

Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?

- $2.4<\rho<6$ gives delay within 15% of optimal
- We can be sloppy!
-Book likes $\rho=4$

$1^{\text {st }}$ Example, Revisited

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
] Decoder specifications:
- 16 word register file
- Each word is 32 bits wide

- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors
- Ben needs to decide:
- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?

What Does This Mean?

- 16 word register file
- There are 16 separate row lines
- Branching factor of 16 at end
\square Each word is 32 bits wide \& each bit presents load of 3 unit-sized transistors
- The load on each row line is $32 * 3=96$
\square True and complementary address inputs $A[3: 0$]
- Any address input needed for only 8 row lines
\square Each input may drive 10 unit-sized transistors
- Total input capacitance from $1^{\text {st }}$ stage gates on inputs $=10$

Number of Stages

D Decoder effort is mainly electrical and branching

$$
\begin{array}{ll}
\text { Electrical Effort: } & \mathrm{H}=(32 * 3) / 10=9.6 \\
\text { Branching Effort: } & \mathrm{B}=8
\end{array}
$$

- If we neglect logical effort (assume $G=1$)

Path Effort: $\quad F=G B H=76.8$

Number of Stages: $\quad N=\log _{4} F=3.1$

- Try a 3-stage design

3 Stage Gate Sizes \& Delay

Logical Effort:	$\mathrm{G}=1^{*} 6 / 3 * 1=2$
Path Effort:	$\mathrm{F}=\mathrm{GBH}=2^{*} 8^{*} 9.6=154$
Stage Effort:	$\hat{f}=F^{1 / 3}=5.36$
Path Delay:	$D=3 \hat{f}+1+4+1=22.1$
Gate sizes:	$\mathrm{z}=96^{*} 1 / 5.36=18 \quad \mathrm{y}=18^{*} / 25.36=6.7$

Comparison

. Compare many alternatives with a spreadsheet

Design	\mathbf{N}	\mathbf{G}	\mathbf{P}	\mathbf{D}
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	$20 / 9$	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	$20 / 9$	6	20.5
NAND2-INV-NAND2-INV	4	$16 / 9$	6	19.7
INV-NAND2-INV-NAND2-INV	5	$16 / 9$	7	20.4
NAND2-INV-NAND2-INV-INV-INV	6	$16 / 9$	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G=\prod g_{i}$
electrical effort	$h=\frac{C_{\text {out }}}{C_{\text {in }}}$	$H=\frac{C_{\text {outrath }}}{C_{\text {inmpat }}}$
branching effort	$b=\frac{C_{\text {ornath }}+C_{\text {offpanh }}}{C_{\text {orpanh }}}$	$B=\prod b_{i}$
effort	$f=g h$	$F=G B H$
effort delay	f	$D_{F}=\sum f_{i}$
parasitic delay	p	$P=\sum p_{i}$
delay	$d=f+p$	$D=\sum d_{i}=D_{F}+P$

Method of Logical Effort

1) Compute path effort
2) Estimate best number of stages
$F=G B H$
3) Sketch path with N stages
$N=\log _{4} F$
4) Estimate least delay
5) Determine best stage effort
$D=N F^{\frac{1}{N}}+P$
$\hat{f}=F^{\frac{1}{N}}$
6) Find gate sizes
$C_{i n_{i}}=\frac{g_{i} C_{o u t_{i}}}{\hat{f}}$

Limits of Logical Effort

- Chicken and egg problem
- Need path to compute G
- But don't know number of stages without G
\square Simplistic delay model
- Neglects input rise time effects
- Interconnect
- Iteration required in designs with wire
\square Maximum speed only
- Not minimum area/power for constrained delay

Summary

\square Logical effort is useful for thinking of delay in circuits

- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are ~4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about $\log _{4} \mathrm{~F}$ FO4 inverter delays
- Inverters and NAND2 best for driving large caps
\square Provides language for discussing fast circuits
- But requires practice to master

