1. (10)Problem 2.2

l Ips1 l |Dsz
[wiL
v,
[wreL [wiL
VoD @ Vbs Voo @ @ Vos
v v
(a) (b)
22 In(a). the transistor sees V,, = Vpp and V. = Vs The current is
v (a)s transistor is 2X
I { DD - Vr b5]I length of (b)s.
2 \ 2 , Thus B(a) is % B(b)

In (b). the bottom transistor sees V', = Vpp and V3= ;. The top transistor sees V.
= Vpp- V) and V.= Vps- V7. The currents are

v g V,.-V)),
Ips, = ﬂ(Vw = _Tl]Vl =B\ (Vop W) -V, ‘%](Vns -)
Bottom Transistor .' Top Transistor -

Solving for V. we find

—
—(VDD V) \/U _V (VDD_K_%]VDS

—_—

Substituting 7} indo the Ipsy equation and simplifying gives Ins; = Ips.

Note: V1 !=VDS/2, even when VDD = VDS (KEY QUESTION — WHY????)

Examples for 65nm tech: VDD 1 VDD 1.3
VDS 1 VDS 1
Vit 0.3 Vit 0.3
Vi 0.161484 V1 0.292893
IDS1/Beta 0.1 IDS1/Beta 0.25
IDS2Lower/Beta 0.1 IDS2Lower/Beta 0.25

IDSUpper/Beta 0.1 IDSUpper/Beta 0.25

2. (10) W&H problem 2.10a.

lasat = BVar/2. In this case Ver = Vgs — Vr = Vg - Vr

(12-03)?/(1.2-0.4)*=1.26 (26%)

3. (10) W&H 2.20a. —i.e. develop using the Long Channel Model the IV equation for two identical
NMOS transistors in series.

both transistors are on. OV

4. (10)Using the Excel spreadsheet on the class website, the ND technology, an NMOS invertor
where the width is 4A, and a Vdd of 4V, what is the resistor value you would need to have a Vgs
of 2V give a Vds of 2V as output. What is the maximum on current when Vgs=4V.

800 \L VJ,
NMQS D\e ice with RiPullyp_ ||
700 N /'. —— 4
——356
600
—_—238
500 e D 4}
< -
= 400 X == 1.6
[%2)]
o \ 1 .2
|\
300 N 0.8
\ —&—0.4
200] n\ 1) *0
° ° \Iv - R
100 - < i = —RA
M| W
ﬁo--.. . = Ny N
0 **H—
0 0.5 1 15 2 25 3 35 4 45

Vds (Volts)

For Vds=2V when Vgs=2V, load line must go thru (4,0) and cross Vds=2 when Vgs=2, at about 135uA, or
Resistance of 2V/135uA = 14.71K — the dotted red line. The max current is then when Vgs=4V (blue line)
and crosses the red line at about 230uA.

Note here the width is 4A, not 4L. 4\ is 2L. If you did 4L you would get 7.14K and 280uA.

5. (10)Again using the Excel spreadsheet for a CMOS invertor where the NMOS is as in the above
problem, what is the PMOS width you would need so that Ain = 2V gives Aout of 2V? What is the
max current for an input of 4V; What is it for an input of OV?

Note: the parameter set in the spreadsheet has the mobility of the ptype twice, not % of the n type. My
fault. | left it as is below, and simply adjusted width to get the 2,2 point, at a width of 1 and current of
about 140uA.

Max current at 4V VGgs is 0, at 0V is O (Its where the N and P cross)

800 l_
——-=0.] Inverter ,.—--I—l
700 e, /r
600
e——+—F++—¢ e
——3.6
500 1 3.2
R —_—28
< N ——2.4
3 400 *\ ——
T SEE S —e—16
DL A e])
300 :—-‘\ -\\ —h—0.8
LN
JSEEER DY et I —
200 ———— [_______£.T_

@ ==y %-;\P t ¢ ="
100 —— _/0_;_—4'_‘ Fum: f 3

~ 7 x 7 Xz ~7

0 0.5 1 1.5 2 2.5 3 3.5 4 45
Vds NMOS (Volts)

6. (10) Book A2

A.2: This circuit returns a 2-bit index into the input array a of the righttmost 1.

Al[3]a[2] a[1] a[0] y[1]¥([0]
X X X 1 11
X X 10 10
X 1 0 0 0 1
1 0 0 0 0 0
0 0 0 0 0 0

So logic is y[1] = a[0] + a[1]&~a[0] = aCo] - 45'1
And y[0] = a[0] + a[2]&~a[]

Any schematic that mirrors this is acceptable.

7. (10) Al16. Took off -1 if ~reset not included on taken paths, took off 2 if reset to S2 not included

taken & ~reset

taken | reset

reset

taken & ~reset

taken & ~reset

8. (10) Write down Verilog code for a behavioral model for a 2-input exclusive or gate using just
“&"”,“|”, and “~”. Then using this module, develop a structural module for an 8 bit parity
generator — 1.e. there are 8 dAta inputs which should be combined by 3 13v3ls of xors to
compute the odd parity of the data bits. This parity should be output.

module xor(output c. input a, b)
assign ¢ (1& ~b3| ~a&b
endmodule;

module parity(output parity. input [7:0] data)
wire [3:0] pl;

wire [1:0] p2;

xor x11(p1[3], data[7], data[6]);
xor x12(pl[2], data[5], data[4]);
xor x13(pl1[1]. data[3], data[2]):
xor x14(p1[0], data[1], data[0]);
xor x21(p2[1], p1[3]. p1[2));
xor x22(p2[0], p1[1]. p1[0]):
xor x3(parity, p2[1]. p2[0]);
endmodule;

9. (20) Write the behavioral code for a module named “grey” that implements a 4-bit “Grey code” (see
https://en.wikipedia.org/wiki/Gray code) counter with the following characteristics:

An input CLk that is the clock

An input Reset that when high resets the counter to 0000 when the Clk goes from low to high
An input Count that when high, and when the Clk goes from low to high (while Reset is low)
advances the counter to the next Grey code value. When Count is low, the outputs stay
unchanged.

Gray code table from Wikipedia (several are possible)

Decimal Binary Gray
0 0000 0000

1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001

15 1111 1000

Note for the above code (other codes have different patterns):

e greycode[3] always same as the binary[3].
e greycode[0] = binary[0] xor binary[1],
e greycode[1] = binary[2] xor binary[1],
e greycode [2] = binary[2] xor binary[3]

Several ways to generate this: simplest is like HW5.16 that steps thru 16 states in a big case statement.

A bit shorter (again for this code):

module grey(clk,reset,count,code);
input clk,reset,count;
output [3:0] code;
reg [3:0] counter;
always@(posedge clk)
begin
if (reset == 1) begin
counter <= 4’b0000;
end
else if (count == 1) begin
code[3] <= counter[3];
code[2] <= counter[3] * counter[2];
code[1] <= counter[2] ” counter[1];
code[0] <= counter[1] * counter[0];
end
end
endmodule

A simple 2-bit gray code
Gray Code: looks something like:
module gray?2 (clk, reset, count, q);
input clk, reset, count;
output [1:0] q;
parameter sO = 2'b00;
parameter sl = 2'b01;
parameter s2 = 2'bl1,
parameter s3 = 2'b10;
reg[1:0] state, next_state;

always @(posedge clk)
if (reset==1) state <= s0;
else state <= next_state:

always (@(state, count)
case (state)
s0: if (count) next_state = sl;
else next_state = s0;

sl: if (count) next_state = s2;
else next_state = sl;

s2: if (count) next_state = s3;
else next_state = s2;

s3: if (count) next_state = s0;
else next_state = s3:

endcase

assign q = state;
endmodule

