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pp. 292-311. The Class NP-Complete (Sec. 7.4) 

• P = {L|L decidable in poly time} 

• NP = {L|L verifiable in poly time} 

• Certainly all P is in NP 

• Unknown if NP is bigger than P 

• (p. 299) NP-Complete = subset of NP where if any one 

is solvable in poly time, then all in NP-Complete are 

• No one has found polynomial algorithms for any in it 

• If someone finds such an algorithm for any problem in NP-

Complete, then NP moves to P  

• Unknown if NP-complete = NP 

• (p 300) Theorem 7.27 SAT is in P iff P=NP 

• 1st NP complete problem 

• Will prove any NP problem convertible into SAT 

• Needs several intermediate theorems first 
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• (p. 261) Definition: Language A is Turing-Reducible to 

B, written A≤TB, if A is decidable relative to B using 

some function f:A->B 

• i.e. any wA from A can be mapped/reduced to a wB in B 

such that B’s decision on wB can be converted into 

decision on wA 

 

• If B decidable, then so is A. 

• (p. 300) Definition 7.28: f:∑* -> ∑* is a polynomial 

time computable function if 

• Some polynomial time TM exists 

• which when started with w on tape,  

• halts with just f(w) on its tape,  
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• (Def. 7.29) Language A is polynomial time reducible to  

language to B (Written A ≤P B) if  

• There is some polynomial time computable function f 

• Where w is in A iff f(w) is in B 

• See Fig. 7.30, p.301 

• Thus for every string w in A there is a string f(w) in B 

• And if w not in A, then f(w) not in B 

• If you can write a polynomial time decider for B  

• then using f can write a polynomial time solver for A 

 

• (p. 301) Theorem 7.3.1. If A ≤P B and B in P, then A in P 

• Given any w in A 

• Compute w’ = f(w) – poly time 

• Run Decider for B and output result – poly time 

• Sum of two poly time functions is still poly 
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• Two sample problems  

• (p. 299) SAT: The Satisfiability Problem  

• SAT = {wff| wff is satisfiable} 

• Wff = Well-formed-Formula, made up of 

• Boolean Variables (may take on only 0 or 1) 

• Expressions built from AND, OR, NOT 

• (p. 302) CNF: a wff is in conjunctive normal form: 

• The AND of a set of clauses (called a conjunction) 

• Where each clause is the OR of a set of literals called a 

disjunction 

• Where each literal is a variable or its complement 

• 3SAT = {wff| wff in CNF with exactly 3 literals} 

• E.g. (a1 v b1 v c1)&&(a2 v b2 v c2)&&… (ak v bk v ck)  

 

• Also: CLIQUE ={<G,k>| G includes a k-clique} 

• Where a k-clique has k vertices with edges to each other 

• CLIQUE known to be in NP (p. 296) 

  



5 
 

• (p.302) 3SAT is polynomial time reducible to CLIQUE 

• Proof: convert wffs to graphs 

• Wff C = C1 ^ C2 … ^ Ck (i.e. k clauses) 

• Ci = ai v bi v ci where ai, bi, ci all literals 

• f converts wff C to string <G,k> 

• G has k groups of 3 vertices (each group from a clause) 

• Each vertex in a triple corresponds to a literal 

• And named to match 

• All vertices in G have edges to all other vertices except 

• No edges between vertices in same triple 

• No edge between vertices with opposite labels (i.e. 

same variable, different signs) 

• See page 303 for example 

 
http://cs.nmu.edu/~mkowalcz/cs422w09/36/reduction2.jpg 
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• (p. 303) Wff C is satisfiable iff G has a k-clique 

• =>: If wff has a satisfying assignment, then each clause has 

at least one literal that is true 

• Choose just one of these in each triple 

• By construction there must be an edge between all 

selected vertices & thus must be a k-clique 

• <=: If the graph has a k clique 

• Cannot include vertices in same triple (not permitted by 

construction) 

• Cannot include literals with opposite sides (not 

permitted by construction) 

• Assign value to variables to make each literal in k-clique 

true 

• Result is a satisfying assignment 

• If CLIQUE is solvable in poly time, so is 3SAT and vv 
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• (p. 304) Def 7.34. B is NP-complete if both B in NP and 

every A in NP is polynomial time reducible to B 

• (p. 304) Theorem 7.35. If B is in NP-complete and B in 

P, then P = NP 

• Any member can be converted to any other by series of 

polynomial time f  

• (p. 304) Theorem 7.36. If B in NP-complete, and B≤PC 

for some C in NP, then C is also NP-complete 

• Since B is NP-complete, every language in NP is 

polynomial time reducible to B, 

• But B is polynomial time reducible to C 

• Can compose the functions, so every language in NP is 

also polynomial time reducible to C 

• Thus C also in NP-Complete 
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• (p. 304) COOK-LEVIN Theorem. SAT is NP-complete! 

• First show SAT is in NP 

• A nondeterministic TM N can guess an assignment and 

then verify in polynomial time. Thus in NP 

• Now show any A in NP is polynomial time reducible to SAT 

• n = |w|, w in A 

• N an NTM that decides A in O(nk) for some k 

• Tape used is thus at most nk cells in length 

• Construct tableau (table) of size nk x nk (p. 305) 

• Each row is a configuration (nk of them) 

• 1st row is starting config of N on w 

• Each configuration at most nk symbols long 

(columns – max tape length) 

• For convenience, each config starts & ends with # 

• Each entry in table called a cell 

• Let C = Q U Γ U {#} = state set + tape chars 

• Each cell in table contains a symbol from C 

• A state or a symbol 

• Tableau is accepting if some row an accepting config 

• Now to show N accepts w is eqvt to question “does an 

accepting tableau exist?” 
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• Conversion f from A to SAT: Each cell in tableau has a 

symbol from C 

• Define a set of 2kx2kx|C| Boolean variables xi,j,s  

• i, j between 1 and 2k 

• s over all symbols in C 

• xi,j,s = 1 iff cell[i,j] contains symbol s 

• (p. 306) Define a wff made up of AND of 4 sets of 

clauses 

• Wffcell = clauses ensure 1 variable is true for each i,j 

• Wffstart = clause that forces variables with i=1 to 

have initial config of N 

• Wffaccept = clauses that guarantees an accepting 

configuration appears as some row 

• Wffmove = clauses that guarantee that a move from 

the config for row i to row i+1 is valid 

• See 6 “windows” on p. 308 for rows I and i+1 

• Centered around state symbol in row i 

• This conversion can be done in poly time 

• Thus any problem in NP can have its decider (if it 

exists) converted into a SAT problem in poly time 

• Solving the SAT problem finds answer for A 
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• Sample tableau (for deterministic TM accepting (aa)n ) 

 

  

TM: decide {(aa)*}

state tape new state new tape dir

q0 a q1 a R

q1 a q0 a R

q0 blank q2 blank L

1 2 3 4 5 6

1 # q0 a a bl #

2 # a q1 a bl #

3 # a a q0 bl #

4 # a q2 a bl #

3 cells = 4x6x6 144 variables

i s 1 2 3 4 5 6

1 # 1 0 0 0 0 1

1 a 0 0 1 1 0 0

1 bl 0 0 0 0 1 0

1 q0 0 1 0 0 0 0

1 q1 0 0 0 0 0 0

1 q2 0 0 0 0 0 0

2 # 1 0 0 0 0 1

2 a 0 1 0 1 0 0

2 bl 0 0 0 0 1 0

2 q0 0 0 0 0 0 0

2 q1 0 0 1 0 0 0

2 q2 0 0 0 0 0 0

3 # 1 0 0 0 0 1

3 a 0 1 1 0 0 0

3 bl 0 0 0 0 1 0

3 q0 0 0 0 1 0 0

3 q1 0 0 0 0 0 0

3 q2 0 0 0 0 0 0

4 # 1 0 0 0 0 1

4 a 0 1 0 1 0 0

4 bl 0 0 0 0 1 0

4 q0 0 0 0 0 0 0

4 q1 0 0 0 0 0 0

4 q2 0 0 1 0 0 0

j

Tableau for aa

Variable Assignments
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• Remember: showing a problem is NP-Complete 

• Show its in NP (i.e. NTM to create certificate & poly 

verifier) 

• Show some/any NP-Complete problem polynomially 

maps to it 

• Not always 3SAT! 

• Other NP-Complete problems 

• (p. 310) 3SAT 

• Do logic conversions from any SAT wff to 3 var clauses 

• (p. 311) CLIQUE 

• 3SAT reduces to it via Theorem 7.32 (p. 302) 

• 3 vertices for each clause 

• Labelled with literal name 

• Edges between all vertices, except: 

• Between vertices of a clause 

• Any vertex with any other labelled with the vertex’s 

literal complement 

• P. 303 addresses match of satisfying solution and k-

clique 
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• (p. 312) VERTEX-COVER = {<G,k>| G a graph with a subset 

of k vertices that has every edge in G touching at least one 

of the subset} 

• 3SAT reduces to (G,k) k=m+2l, m=# variables, l=# 

clauses 

• For each variable x create pair of 2 vertices (labelled x 

and ~x) with an edge between them 

• Each clause maps to a triangle labelled with variables 

• With edges to matching vertices from 1st set 

• Total of 2m + 3l vertices 

• Assume satisfying assignment, show k-cover: 

• Include m vertices from pairs that match assignment  

• Covers edges to clause triangles and other of pair 

• Each triangle has at least 1 vertex in assignment, 

choose other 2 (2l) 

• Assume G has a k-cover, show satisfying assignment 

• Cover must have at least one vertex in each pair 

• Otherwise edge between pair not covered 

• Cover must have at least 2 vertices in each triangle 

• Otherwise cannot get edge in triangle covered 

• For k=m+2l, above must be exact 

• M from pair must be satisfying (p. 313) 
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• (p. 314) HAMPATH: {<G,s,t>| there is a path from s to t 

that goes thru all vertices exactly once.} 

• 3SAT of l variables & k clauses reduces to HAMPATH. 

• For each variable in 3SAT construct diamond as Fig. 7.47 

• 3k+3 vertices in center row 

• 2-vertex pair for each clause + 1 border per clause 

• Lefthand vertex for “true” assignment 

• Righthand for “False” 

• Multiple paths from top to bottom 

• Left or right from top to center 

• Optionally across the center, in either direction 

• Left or right to lower vertex 

• Diamonds stacked on top of each other (Fig. 7.49) 

• Vertex s is topmost; vertex t is bottommost 

• Additionally, add separate vertex for each clause in 3SAT 

• K of them 

• If literal xi appears in clause cj (p. 316, Fig. 7.51) 

• Add edge from left vertex of j’th pair in center of 

diamond for xi to vertex for cj 

• Add edge from cj to right vertex of j’th pair 

• If literal ~xi appears in clause cj, add edges in opposite 

  



14 
 

• If 3SAT is satisfiable, then Hamiltonian path from s to t 

• Starts at top, go left if x1 is true, right if false (Fig. 7.53) 

• Go across center, then down to top of next diamond 

• Repeat 

• Exception: for each clause cj pick one satisfying literal 

• Follow the breakout from the appropriate center row 

• Result: all vertices touched exactly once 

• If HAMPATH exists in graph 

• If “normal”: top-down and thru center, with bypass, 

then can read out satisfying assignment 

• Fig. 7.54 (p. 318) cannot occur 

• (p. 319) UHAMPATH – HAMPATH with undirected 

edges 
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• (p. 319) SUBSET-SUM S = {(S,t)| S = {x1, …) and for 

some subset Q={q1,… } a subset of S, sum of y’s = t}  

• 3SAT of l variables and k clauses reduces to a Subset-Sum 

problem with  

• 2l members of S = {y1,…yl,z1,…zl} 

• yi and zi for variable xi 

• 2k members of Q = {g1,…gk,h1…,hk} 

• and t=a # described below 

• Create table of p. 321 

• Each row of l+k #s:  

• l columns: 1 for each variable 

• and k more columns: 1 for each clause 

• Total of 2l + 2k + 1 rows:  

• 2l of them: variable xi has 2 rows, labelled yi and zi 

• For row yi: all 0’s but a 1 in column for xi and a 1 in 

each clause column having xi as a literal 

• For row zi: all 0’s but a 1 in column for xi and a 1 in 

each clause column having ~xi as a literal 

• 2k of them: 2 for each clause, labelled gi and hi 

• Row is all 0s but a single 1 in column for clause i 

• One row for t: All 1s for variable columns; all 3s 

for clause columns 
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• Treat each row as digits of a number 

• Assume wff is satisfiable, show subset 

• select Q as follows 

• If xi assigned true, select yi for Q 

• If xi assigned false, select zi for Q 

• Add up the selected rows 

• Exactly 1 for each of 1st l digits 

• Each of last k digits between 1 and 3 

• To make last k digits all 3 

• Select enough gs and hs to add up to 3 

• Assume subset exists, show assignment 

• All digits in each # is either 0 or 1 

• Each column in table has at most 5 1’s 

• At most 3 from literals in clause 

• 2 from gs’ and hs’ 

• Thus no carries possible 

• Thus for a 1 in each of first l columns, exactly 1 of ys’ 

and zs’ must be selected 

• This is assignment 
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• Summary: from https://people.eecs.berkeley.edu/~vazirani/algorithms/chap8.pdf 
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From https://en.wikipedia.org/wiki/NP-completeness 

 

 


