pp. 292-311. The Class NP-Complete (Sec. 7.4)

e P ={L|L decidable in poly time}

e NP ={L|L verifiable in poly time}

e Certainly all Piisin NP

e Unknown if NP is bigger than P

e (p. 299) NP-Complete = subset of NP where if any one
is solvable in poly time, then all in NP-Complete are

e No one has found polynomial algorithms for any in it

e If someone finds such an algorithm for any problem in NP-
Complete, then NP moves to P

e Unknown if NP-complete = NP
e (p 300) Theorem 7.27 SAT is in P iff P=NP
e 1t NP complete problem
e Will prove any NP problem convertible into SAT
e Needs several intermediate theorems first

e (p. 261) Definition: Language A is Turing-Reducible to

B, written A<:B, if A is decidable relative to B using

some function f:A->B

e i.e. any wa from A can be mapped/reduced to a wg in B

such that B’s decision on wg can be converted into

decision on wy

function

W a stri \
> fmaps O

from A

» Rfor I

w to f(w) in B

Decider

)

e |f B decidable, then so is A.
e (p. 300) Definition 7.28: f:3* -> >* is a polynomial
time computable function if

e Some polynomial time TM exists

Map decision
from B
to one for A

C

e which when started with w on tape,

e halts with just f(w) on its tape,

Decision for

w instance

o (Def. 7.29) Language A is polynomial time reducible to
language to B (Written A <p B) if
e There is some polynomial time computable function f
e Where wisin A iff f(w) isin B
e See Fig. 7.30, p.301
e Thus for every string w in A there is a string f(w) in B
e And if wnotin A, then f(w) notin B
e |f you can write a polynomial time decider for B
e then using f can write a polynomial time solver for A

|
o] function Decider Map decision | ! Decision for
w a stripng !
S Al”i—=_> fmaps O———p Rfor ——)> fromB LC——>
I | wtof(w)inB B toone for A || winstance
I

e (p.301) Theorem7.3.1.If A<pBand BinP,thenAinP
e GivenanywinA
e Compute w’ = f(w) — poly time
e Run Decider for B and output result — poly time
e Sum of two poly time functions is still poly

e Two sample problems

e (p. 299) SAT: The Satisfiability Problem
o SAT = {wff| wff is satisfiable}
o Wff = Well-formed-Formula, made up of
e Boolean Variables (may take on only O or 1)
e Expressions built from AND, OR, NOT
e (p. 302) CNF: a wff is in conjunctive normal form:
e The AND of a set of clauses (called a conjunction)
e Where each clause is the OR of a set of literals called a
disjunction
e Where each literal is a variable or its complement

e 3SAT = {wff| wff in CNF with exactly 3 literals}
e E.g. (a1 vbivcy)&&(azvbyvey)&&... (ak v bk vck)

e Also: CLIQUE ={<G,k>| G includes a k-clique}
e Where a k-clique has k vertices with edges to each other
e CLIQUE known to be in NP (p. 296)

e (p.302) 3SAT is polynomial time reducible to CLIQUE
e Proof: convert wffs to graphs
e WIfC=C;MC,... MCk (i.e. k clauses)
e Ci=a;v bijvciwhere a;, b;, ¢ all literals
e f converts wff C to string <G,k>
e G has k groups of 3 vertices (each group from a clause)
e Each vertexin a triple corresponds to a literal
e And named to match
e All vertices in G have edges to all other vertices except
e No edges between vertices in same triple
e No edge between vertices with opposite labels (i.e.
same variable, different signs)
e See page 303 for example
wx|ly) && (x| ly | 2) && (12| 'w | %)

-~ ; ; e ; Clause
We'll connect vertices from different clauses if they are consistent.

Consider y=false, x = true, w = false, z = true

Is there a clique of size m where m is the number of clauses?

http://cs.nmu.edu/~mkowalcz/cs422w09/36/reduction2.jpg

5

e (p. 303) Wff Cis satisfiable iff G has a k-clique
e =>: |f wff has a satisfying assignment, then each clause has
at least one literal that is true
e Choose just one of these in each triple
e By construction there must be an edge between all
selected vertices & thus must be a k-clique
e <=:|f the graph has a k clique
e Cannot include vertices in same triple (not permitted by
construction)
e Cannot include literals with opposite sides (not
permitted by construction)
e Assign value to variables to make each literal in k-clique
true
e Result is a satisfying assignment
e If CLIQUE is solvable in poly time, so is 3SAT and vv

(wx|ly) && (Ix|ly|2) && (z| !w]!x)

= ; 3 s = : Clause
We'll connect vertices from different clauses if they are consistent. :

Consider y=false, x = true, w = false, z = true

Is there a clique of size m where m is the number of clauses?

e (p.304) Def 7.34. B is NP-complete if both B in NP and
every A in NP is polynomial time reducible to B

e (p.304) Theorem 7.35. If Biis in NP-complete and B in
P, then P =NP

e Any member can be converted to any other by series of
polynomial time f

e (p.304) Theorem 7.36. If B in NP-complete, and B<pC

for some Cin NP, then Cis also NP-complete

e Since B is NP-complete, every language in NP is
polynomial time reducible to B,

e But B is polynomial time reducible to C

e Can compose the functions, so every language in NP is
also polynomial time reducible to C

e Thus C also in NP-Complete

e (p. 304) COOK-LEVIN Theorem. SAT is NP-complete!
e First show SAT isin NP
e A nondeterministic TM N can guess an assignment and

then verify in polynomial time. Thus in NP
e Now show any A in NP is polynomial time reducible to SAT
e n=|w|,winA
e N an NTM that decides A in O(n¥) for some k
e Tape used is thus at most n* cells in length
e Construct tableau (table) of size n*x n* (p. 305)
e Each row is a configuration (n* of them)
e 1strow is starting config of N on w
e Each configuration at most n* symbols long
(columns — max tape length)
e For convenience, each config starts & ends with #
e Each entry in table called a cell
o Let C=QUT U {#} =state set + tape chars
e Each cell in table contains a symbol from C
e A state or a symbol
e Tableau is accepting if some row an accepting config
e Now to show N accepts w is eqvt to question “does an
accepting tableau exist?”

e Conversion f from A to SAT: Each cell in tableau has a
symbol from C
e Define a set of 2¥x2*x| C| Boolean variables xi s
e i, jbetween 1 and 2¢
e sover all symbols in C
e X;js = 1 iff cellli,j] contains symbol s
e (p. 306) Define a wff made up of AND of 4 sets of
clauses
o Wiffe. = clauses ensure 1 variable is true for each i,j
o Wffart = clause that forces variables with i=1 to
have initial config of N
o Wif,iccept = Clauses that guarantees an accepting
configuration appears as some row
o Wifnove = clauses that guarantee that a move from
the config for row i to row i+1 is valid
e See 6 “windows” on p. 308 for rows | and i+1
e Centered around state symbol in row i
e This conversion can be done in poly time
e Thus any problem in NP can have its decider (if it
exists) converted into a SAT problem in poly time
e Solving the SAT problem finds answer for A

e Sample tableau (for deterministic TM accepting (aa)")

TM: decide {(aa)*}

dir

new state new tape

tape

state
q0

ql

ql

q0
q2

blank

blank

q0

Tableau for aa

q0

b

ql

b

q0

b

q2

144 variables

4x6x6

3 cells

Variable Assignments

bl

q0
ql

q2

bl

q0
ql

q2

bl

q0
ql

q2

bl

q0
ql

q2

10

e Remember: showing a problem is NP-Complete
e Show its in NP (i.e. NTM to create certificate & poly
verifier)
e Show some/any NP-Complete problem polynomially
maps to it
e Not always 3SAT!

e Other NP-Complete problems
* (p.310) 3SAT
e Do logic conversions from any SAT wff to 3 var clauses
e (p.311) CLIQUE
e 3SAT reduces to it via Theorem 7.32 (p. 302)
e 3 vertices for each clause
e Labelled with literal name
e Edges between all vertices, except:
e Between vertices of a clause
e Any vertex with any other labelled with the vertex’s
literal complement
e P.303 addresses match of satisfying solution and k-
clique

11

e (p.312) VERTEX-COVER = {<G,k>| G a graph with a subset
of k vertices that has every edge in G touching at least one
of the subset}

e 3SAT reduces to (G,k) k=m+2l, m=# variables, |=#
clauses
e For each variable x create pair of 2 vertices (labelled x
and ~x) with an edge between them
e Each clause maps to a triangle labelled with variables
e With edges to matching vertices from 1 set
e Total of 2m + 3l vertices
e Assume satisfying assignment, show k-cover:
e Include m vertices from pairs that match assignment
e Covers edges to clause triangles and other of pair
e Each triangle has at least 1 vertex in assignment,
choose other 2 (2I)
e Assume G has a k-cover, show satisfying assignment
e Cover must have at least one vertex in each pair
e Otherwise edge between pair not covered
e Cover must have at least 2 vertices in each triangle
e Otherwise cannot get edge in triangle covered
e For k=m+2l, above must be exact
e M from pair must be satisfying (p. 313)

12

e (p.314) HAMPATH: {<G,s,t>| there is a path from sto t
that goes thru all vertices exactly once.}
e 3SAT of | variables & k clauses reduces to HAMPATH.
e For each variable in 3SAT construct diamond as Fig. 7.47
e 3k+3 vertices in center row
e 2-vertex pair for each clause + 1 border per clause
e Lefthand vertex for “true” assignment
e Righthand for “False”
e Multiple paths from top to bottom
e Left or right from top to center
e Optionally across the center, in either direction
e Left or right to lower vertex
e Diamonds stacked on top of each other (Fig. 7.49)
e Vertex s is topmost; vertex t is bottommost
e Additionally, add separate vertex for each clause in 3SAT
e K of them
e If literal xi appears in clause cj (p. 316, Fig. 7.51)
e Add edge from left vertex of j'th pair in center of
diamond for xi to vertex for cj
e Add edge from cj to right vertex of j'th pair
e If literal ~xi appears in clause cj, add edges in opposite

13

o If 3SAT is satisfiable, then Hamiltonian path fromstot
e Starts at top, go left if x1 is true, right if false (Fig. 7.53)
e Go across center, then down to top of next diamond
o Repeat
e Exception: for each clause cj pick one satisfying literal
e Follow the breakout from the appropriate center row
e Result: all vertices touched exactly once
e If HAMPATH exists in graph
e If “normal”: top-down and thru center, with bypass,
then can read out satisfying assignment
e Fig. 7.54 (p. 318) cannot occur

e (p.319) UHAMPATH — HAMPATH with undirected
edges

14

® (p.319) SUBSET-SUM S ={(S,t)| S=1{x1, ...) and for
some subset Q={qgl,... } a subset of S, sum of y’s = t}
e 3SAT of | variables and k clauses reduces to a Subset-Sum
problem with
e 2| members of S ={y1,...yl,z1,...zl}
¢ yi and zi for variable xi
e 2k members of Q ={gl,...gk,h1...,hk}
e and t=a # described below
e Create table of p. 321
e Each row of |+k #s:
e | columns: 1 for each variable
e and k more columns: 1 for each clause
e Total of 2| + 2k + 1 rows:
e 2| of them: variable xi has 2 rows, labelled yi and zi
e Forrowyi:all0’sbutalincolumnforxiandalin
each clause column having xi as a literal
e Forrow zi:all 0’s buta 1in column for xianda lin
each clause column having ~xi as a literal
e 2k of them: 2 for each clause, labelled gi and hi
e Row is all Os but a single 1 in column for clause i
e One row for t: All 1s for variable columns; all 3s
for clause columns

15

e Treat each row as digits of a number
e Assume Wff is satisfiable, show subset
e select Q as follows
e If xi assigned true, select yi for Q
e If xi assigned false, select zi for Q
e Add up the selected rows
e Exactly 1 for each of 1% | digits
e Each of last k digits between 1 and 3
e To make last k digits all 3
e Select enough gs and hs to add up to 3
e Assume subset exists, show assignment
e All digits in each #is eitherOor 1
e Each column in table has at most 5 1’s
e At most 3 from literals in clause
e 2 fromgs and hs’
e Thus no carries possible
e Thus for a 1in each of first | columns, exactly 1 of ys’
and zs’ must be selected
e This is assignment

16

Summa ry. from https://people.eecs.berkeley.edu/~vazirani/algorithms/chap8.pdf

Hard problems (NP-complete) Eagy problems (in P)
dBAT 25AT, HORN SAT
TRAVELING SALESMAN PROBLEM | MINIMUM SPANNING TREE
LONGEST PATH SHORTEST PATH
3D MATCHING BIPARTITE MATCHING
ENAPSACK UNARY KNAPSACK
INDEFENDENT SET INDEFENDENT SET on trees
INTECER LINEAR PROCRAMMING LINEAR PROCRAMMING
EUDRATA PATH EULER PATH
BALANCED CUT MINIMUM CUT
Algorithm for A
Solution S of (I Soluti
Iﬂfwm [7 |_Instance (1) | Algorithm E .l..;:;?t;ic‘l?
| for B

Mo solution to f{1) .
No solution to [

Figure 8.7 Reductions between search problems.

All of NP
BAT
35AT
INDEPENDENT SET 3D MATCHING
F -‘.h'u l
VERTEX COVER CLIQUE ZOE

SURSET sUM ILP RUDRATA CYCLE

|

TSP

17

From https://en.wikipedia.org/wiki/NP-completeness

(cre-sar)
Cor

[3-CNF SAT j
N

[Clique Prnblemj [Subset Problemj

[Vertex Cover Problem]

(Hamiltonian Cycle)

[Travelling Salesman j

18

