
1

pp. 292-311. The Class NP-Complete (Sec. 7.4)

• P = {L|L decidable in poly time}

• NP = {L|L verifiable in poly time}

• Certainly all P is in NP

• Unknown if NP is bigger than P

• (p. 299) NP-Complete = subset of NP where if any one

is solvable in poly time, then all in NP-Complete are

• No one has found polynomial algorithms for any in it

• If someone finds such an algorithm for any problem in NP-

Complete, then NP moves to P

• Unknown if NP-complete = NP

• (p 300) Theorem 7.27 SAT is in P iff P=NP

• 1st NP complete problem

• Will prove any NP problem convertible into SAT

• Needs several intermediate theorems first

2

• (p. 261) Definition: Language A is Turing-Reducible to

B, written A≤TB, if A is decidable relative to B using

some function f:A->B

• i.e. any wA from A can be mapped/reduced to a wB in B

such that B’s decision on wB can be converted into

decision on wA

• If B decidable, then so is A.

• (p. 300) Definition 7.28: f:∑* -> ∑* is a polynomial

time computable function if

• Some polynomial time TM exists

• which when started with w on tape,

• halts with just f(w) on its tape,

function
f maps

w to f(w) in B

Decider
R for

B

Map decision
from B

to one for A

w a string
from A

Decision for

w instance

3

• (Def. 7.29) Language A is polynomial time reducible to

language to B (Written A ≤P B) if

• There is some polynomial time computable function f

• Where w is in A iff f(w) is in B

• See Fig. 7.30, p.301

• Thus for every string w in A there is a string f(w) in B

• And if w not in A, then f(w) not in B

• If you can write a polynomial time decider for B

• then using f can write a polynomial time solver for A

• (p. 301) Theorem 7.3.1. If A ≤P B and B in P, then A in P

• Given any w in A

• Compute w’ = f(w) – poly time

• Run Decider for B and output result – poly time

• Sum of two poly time functions is still poly

function
f maps

w to f(w) in B

Decider
R for

B

Map decision
from B

to one for A

w a string
from A

Decision for

w instance

4

• Two sample problems

• (p. 299) SAT: The Satisfiability Problem

• SAT = {wff| wff is satisfiable}

• Wff = Well-formed-Formula, made up of

• Boolean Variables (may take on only 0 or 1)

• Expressions built from AND, OR, NOT

• (p. 302) CNF: a wff is in conjunctive normal form:

• The AND of a set of clauses (called a conjunction)

• Where each clause is the OR of a set of literals called a

disjunction

• Where each literal is a variable or its complement

• 3SAT = {wff| wff in CNF with exactly 3 literals}

• E.g. (a1 v b1 v c1)&&(a2 v b2 v c2)&&… (ak v bk v ck)

• Also: CLIQUE ={<G,k>| G includes a k-clique}

• Where a k-clique has k vertices with edges to each other

• CLIQUE known to be in NP (p. 296)

5

• (p.302) 3SAT is polynomial time reducible to CLIQUE

• Proof: convert wffs to graphs

• Wff C = C1 ^ C2 … ^ Ck (i.e. k clauses)

• Ci = ai v bi v ci where ai, bi, ci all literals

• f converts wff C to string <G,k>

• G has k groups of 3 vertices (each group from a clause)

• Each vertex in a triple corresponds to a literal

• And named to match

• All vertices in G have edges to all other vertices except

• No edges between vertices in same triple

• No edge between vertices with opposite labels (i.e.

same variable, different signs)

• See page 303 for example

http://cs.nmu.edu/~mkowalcz/cs422w09/36/reduction2.jpg

6

• (p. 303) Wff C is satisfiable iff G has a k-clique

• =>: If wff has a satisfying assignment, then each clause has

at least one literal that is true

• Choose just one of these in each triple

• By construction there must be an edge between all

selected vertices & thus must be a k-clique

• <=: If the graph has a k clique

• Cannot include vertices in same triple (not permitted by

construction)

• Cannot include literals with opposite sides (not

permitted by construction)

• Assign value to variables to make each literal in k-clique

true

• Result is a satisfying assignment

• If CLIQUE is solvable in poly time, so is 3SAT and vv

7

• (p. 304) Def 7.34. B is NP-complete if both B in NP and

every A in NP is polynomial time reducible to B

• (p. 304) Theorem 7.35. If B is in NP-complete and B in

P, then P = NP

• Any member can be converted to any other by series of

polynomial time f

• (p. 304) Theorem 7.36. If B in NP-complete, and B≤PC

for some C in NP, then C is also NP-complete

• Since B is NP-complete, every language in NP is

polynomial time reducible to B,

• But B is polynomial time reducible to C

• Can compose the functions, so every language in NP is

also polynomial time reducible to C

• Thus C also in NP-Complete

8

• (p. 304) COOK-LEVIN Theorem. SAT is NP-complete!

• First show SAT is in NP

• A nondeterministic TM N can guess an assignment and

then verify in polynomial time. Thus in NP

• Now show any A in NP is polynomial time reducible to SAT

• n = |w|, w in A

• N an NTM that decides A in O(nk) for some k

• Tape used is thus at most nk cells in length

• Construct tableau (table) of size nk x nk (p. 305)

• Each row is a configuration (nk of them)

• 1st row is starting config of N on w

• Each configuration at most nk symbols long

(columns – max tape length)

• For convenience, each config starts & ends with #

• Each entry in table called a cell

• Let C = Q U Γ U {#} = state set + tape chars

• Each cell in table contains a symbol from C

• A state or a symbol

• Tableau is accepting if some row an accepting config

• Now to show N accepts w is eqvt to question “does an

accepting tableau exist?”

9

• Conversion f from A to SAT: Each cell in tableau has a

symbol from C

• Define a set of 2kx2kx|C| Boolean variables xi,j,s

• i, j between 1 and 2k

• s over all symbols in C

• xi,j,s = 1 iff cell[i,j] contains symbol s

• (p. 306) Define a wff made up of AND of 4 sets of

clauses

• Wffcell = clauses ensure 1 variable is true for each i,j

• Wffstart = clause that forces variables with i=1 to

have initial config of N

• Wffaccept = clauses that guarantees an accepting

configuration appears as some row

• Wffmove = clauses that guarantee that a move from

the config for row i to row i+1 is valid

• See 6 “windows” on p. 308 for rows I and i+1

• Centered around state symbol in row i

• This conversion can be done in poly time

• Thus any problem in NP can have its decider (if it

exists) converted into a SAT problem in poly time

• Solving the SAT problem finds answer for A

10

• Sample tableau (for deterministic TM accepting (aa)n)

TM: decide {(aa)*}

state tape new state new tape dir

q0 a q1 a R

q1 a q0 a R

q0 blank q2 blank L

1 2 3 4 5 6

1 # q0 a a bl #

2 # a q1 a bl #

3 # a a q0 bl #

4 # a q2 a bl #

3 cells = 4x6x6 144 variables

i s 1 2 3 4 5 6

1 # 1 0 0 0 0 1

1 a 0 0 1 1 0 0

1 bl 0 0 0 0 1 0

1 q0 0 1 0 0 0 0

1 q1 0 0 0 0 0 0

1 q2 0 0 0 0 0 0

2 # 1 0 0 0 0 1

2 a 0 1 0 1 0 0

2 bl 0 0 0 0 1 0

2 q0 0 0 0 0 0 0

2 q1 0 0 1 0 0 0

2 q2 0 0 0 0 0 0

3 # 1 0 0 0 0 1

3 a 0 1 1 0 0 0

3 bl 0 0 0 0 1 0

3 q0 0 0 0 1 0 0

3 q1 0 0 0 0 0 0

3 q2 0 0 0 0 0 0

4 # 1 0 0 0 0 1

4 a 0 1 0 1 0 0

4 bl 0 0 0 0 1 0

4 q0 0 0 0 0 0 0

4 q1 0 0 0 0 0 0

4 q2 0 0 1 0 0 0

j

Tableau for aa

Variable Assignments

11

• Remember: showing a problem is NP-Complete

• Show its in NP (i.e. NTM to create certificate & poly

verifier)

• Show some/any NP-Complete problem polynomially

maps to it

• Not always 3SAT!

• Other NP-Complete problems

• (p. 310) 3SAT

• Do logic conversions from any SAT wff to 3 var clauses

• (p. 311) CLIQUE

• 3SAT reduces to it via Theorem 7.32 (p. 302)

• 3 vertices for each clause

• Labelled with literal name

• Edges between all vertices, except:

• Between vertices of a clause

• Any vertex with any other labelled with the vertex’s

literal complement

• P. 303 addresses match of satisfying solution and k-

clique

12

• (p. 312) VERTEX-COVER = {<G,k>| G a graph with a subset

of k vertices that has every edge in G touching at least one

of the subset}

• 3SAT reduces to (G,k) k=m+2l, m=# variables, l=#

clauses

• For each variable x create pair of 2 vertices (labelled x

and ~x) with an edge between them

• Each clause maps to a triangle labelled with variables

• With edges to matching vertices from 1st set

• Total of 2m + 3l vertices

• Assume satisfying assignment, show k-cover:

• Include m vertices from pairs that match assignment

• Covers edges to clause triangles and other of pair

• Each triangle has at least 1 vertex in assignment,

choose other 2 (2l)

• Assume G has a k-cover, show satisfying assignment

• Cover must have at least one vertex in each pair

• Otherwise edge between pair not covered

• Cover must have at least 2 vertices in each triangle

• Otherwise cannot get edge in triangle covered

• For k=m+2l, above must be exact

• M from pair must be satisfying (p. 313)

13

• (p. 314) HAMPATH: {<G,s,t>| there is a path from s to t

that goes thru all vertices exactly once.}

• 3SAT of l variables & k clauses reduces to HAMPATH.

• For each variable in 3SAT construct diamond as Fig. 7.47

• 3k+3 vertices in center row

• 2-vertex pair for each clause + 1 border per clause

• Lefthand vertex for “true” assignment

• Righthand for “False”

• Multiple paths from top to bottom

• Left or right from top to center

• Optionally across the center, in either direction

• Left or right to lower vertex

• Diamonds stacked on top of each other (Fig. 7.49)

• Vertex s is topmost; vertex t is bottommost

• Additionally, add separate vertex for each clause in 3SAT

• K of them

• If literal xi appears in clause cj (p. 316, Fig. 7.51)

• Add edge from left vertex of j’th pair in center of

diamond for xi to vertex for cj

• Add edge from cj to right vertex of j’th pair

• If literal ~xi appears in clause cj, add edges in opposite

14

• If 3SAT is satisfiable, then Hamiltonian path from s to t

• Starts at top, go left if x1 is true, right if false (Fig. 7.53)

• Go across center, then down to top of next diamond

• Repeat

• Exception: for each clause cj pick one satisfying literal

• Follow the breakout from the appropriate center row

• Result: all vertices touched exactly once

• If HAMPATH exists in graph

• If “normal”: top-down and thru center, with bypass,

then can read out satisfying assignment

• Fig. 7.54 (p. 318) cannot occur

• (p. 319) UHAMPATH – HAMPATH with undirected

edges

15

• (p. 319) SUBSET-SUM S = {(S,t)| S = {x1, …) and for

some subset Q={q1,… } a subset of S, sum of y’s = t}

• 3SAT of l variables and k clauses reduces to a Subset-Sum

problem with

• 2l members of S = {y1,…yl,z1,…zl}

• yi and zi for variable xi

• 2k members of Q = {g1,…gk,h1…,hk}

• and t=a # described below

• Create table of p. 321

• Each row of l+k #s:

• l columns: 1 for each variable

• and k more columns: 1 for each clause

• Total of 2l + 2k + 1 rows:

• 2l of them: variable xi has 2 rows, labelled yi and zi

• For row yi: all 0’s but a 1 in column for xi and a 1 in

each clause column having xi as a literal

• For row zi: all 0’s but a 1 in column for xi and a 1 in

each clause column having ~xi as a literal

• 2k of them: 2 for each clause, labelled gi and hi

• Row is all 0s but a single 1 in column for clause i

• One row for t: All 1s for variable columns; all 3s

for clause columns

16

• Treat each row as digits of a number

• Assume wff is satisfiable, show subset

• select Q as follows

• If xi assigned true, select yi for Q

• If xi assigned false, select zi for Q

• Add up the selected rows

• Exactly 1 for each of 1st l digits

• Each of last k digits between 1 and 3

• To make last k digits all 3

• Select enough gs and hs to add up to 3

• Assume subset exists, show assignment

• All digits in each # is either 0 or 1

• Each column in table has at most 5 1’s

• At most 3 from literals in clause

• 2 from gs’ and hs’

• Thus no carries possible

• Thus for a 1 in each of first l columns, exactly 1 of ys’

and zs’ must be selected

• This is assignment

17

• Summary: from https://people.eecs.berkeley.edu/~vazirani/algorithms/chap8.pdf

18

From https://en.wikipedia.org/wiki/NP-completeness

