- Decidable Languages: Some TM exists which will accept any string w that is in L , and reject any string not in L. The TM always halts.
- (p. 194) $A_{D F A}=\{<B, w>\mid B$ is a DFA that accepts $w\}$
- (p. 195) $A_{\text {NFA }}=\{<B, w>\mid B$ is an NFA that accepts w $\}$
- (p. 196) $A_{R E x}=\{<R, w>\mid R$ is a regex that generates $w\}$
- (p. 196) $E_{D F A}=\{<A>\mid A$ is a DFA where $L(A)=\Phi\}$
- (p. 197) $E Q_{\text {dFA }}=\{<A, B>\mid A, B$ both DFAs \& $L(A)=L(B)\}$
- (p. 198) $A_{C F G}=\{<G, w>\mid G$ is a CFG that generates $w\}$
- (p. 199) $\mathrm{E}_{\mathrm{CFG}}=\{<\mathrm{G}>\mid \mathrm{G}$ is a CFG \& $\mathrm{L}(\mathrm{G})=\Phi\}$
- (p. 200) Every CFL is decidable
- (Prob. 4.3) ALLDFA $=\left\{\langle A\rangle \mid A\right.$ a DFA and $\left.L(A)=\Sigma^{*}\right\}$
- (Prob. 4.4) $A \varepsilon_{\text {cFG }}=\{\langle G>| G$ a CFG that generates $\varepsilon\}$
- (Prob. 4.10) INFINITE ${ }_{\text {DFA }}=\{\langle A\rangle \mid A$ a DFA, $L(A)$ is infinite $\}$
- (Prob. 4.11) INFINITE PDA $=\{<A>\mid A$ a PDA, $L(A)$ is infinite $\}$
- Undecidable Languages: A decider does not exist.
- (p. 202) HALT $_{T M}=\{<M, w\rangle \mid M$ is a TM that halts on $\left.w\right\}$
- (p. 207) $A_{T M}=\{<M, w>\mid M$ accepts $w\}$
- (p. 217) $\mathrm{E}_{\mathrm{TM}}=\{<\mathrm{M}>\mid \mathrm{M}$ is a TM and $\mathrm{L}(\mathrm{M})=\Phi\}$
- (p. 218) REGULAR ${ }^{\text {tm }}=\{<M>\mid M$ a TM \& $L(M)$ is regular $\}$
- (p. 219) $L_{p}=\{<M>\mid M$ a TM such that $L(M)$ has property $P\}$
- (p. 220) $\mathrm{EQ}_{\text {тм }}=\{<\mathrm{M} 1, \mathrm{M} 2>\mid \mathrm{M} 1, \mathrm{M} 2 \mathrm{TMs}, \mathrm{L}(\mathrm{M} 1)=\mathrm{L}(\mathrm{M} 2)\}$
- (p. 222) $A_{\text {LBA }}=\{<M, w>\mid M$ an LBA that accepts $w\}$
- (p. 223) $E_{L B A}=\{<M>\mid M$ an LBA where $L(M)$ is empty $\}$
- (p. 225) ALLcFG $=\left\{<G>\mid G\right.$ is CFG where $\left.L(G)=\Sigma^{*}\right\}$
- (p. 228) PCP $=\{\langle\mathrm{P}\rangle \mid \mathrm{P}$ instance of Post Correspondence Problem)
- Recognizable Languages: Some TM exists which can accept any string w that is in L, and will not accept any string not in L. No guarantees that TM will even halt for w not in L.
- co-Turing Recognizable Languages: a TM recognizer exists for the complement of the language
- (Prob. 4.5) $\mathrm{E}_{\mathrm{TM}}=\{<\mathrm{M}>\mid \mathrm{M}$ is a TM and $\mathrm{L}(\mathrm{M})=\Phi\}$
- If L is both recognizable and co-Turing recognizable then it is decidable
- Class P: decidable by a 1-tape TM in poly time
- (p. 287) PATH $=\{<\mathrm{G}, \mathrm{s}, \mathrm{t}\rangle \mid \mathrm{G}$ is directed graph (V,E), with path from s to t $\}$
- (p. 289) RELPRIME $=\{\langle x, y\rangle \mid x, y$ relatively prime $\}$
- (Prob. 7.8) CONNECTED $=\{<G>\mid G$ is a connected undirected graph\}
- (Prob. 7.9) TRIANGLE $=\{<G\rangle \mid G$ contains a triangle $\}$
- (Prob. 7.10) ALL ${ }_{\text {DFA }}$
- (Prob. 7.13) MODEEXP $=\{(a, b, c, p) \mid$ positive binary integers such that $a^{b}=c \bmod p$)
- (p. 290) Every context-free language is in P
- Class NP: Not in P but a poly time NTM exists (* in NPComplete)
- *HAMPATH $=\{(\mathrm{G}, \mathrm{s}, \mathrm{t}) \mid \mathrm{G}$ is graph with Hamiltonian path from s to t\}
- COMPOSITES $=\{x \mid x=p q$, for $p, q>1\}$
- *CLIQUE $=\{<\mathrm{G}, \mathrm{k}>\mid \mathrm{G}$ undirected graph with k-clique $\}$
- *SUBSET-SUM $=\left\{<S, t>\mid S=\left\{x_{1}, \ldots x_{k}\right\}\right.$
- *SAT $=\{w f f \mid \mathrm{wff}$ is satisfiable $\}$
- *VERTEXCOVER $=\{<\mathrm{G}, \mathrm{k}>\mid \mathrm{G}$ has a k -node vertex cover $\}$

