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Obtaining an accurate higher order statistical
description of heterogeneous materials and using
this information to predict effective material
behaviour with high fidelity has remained an
outstanding problem for many years. In a recent
letter, Gillman & Matouš (2014 Phys. Lett. A 378, 3070–
3073. (doi:10.1016/j.physleta.2014.08.032)) accurately
evaluated the three-point microstructural parameter
that arises in third-order theories and predicted with
high accuracy the effective thermal conductivity of
highly packed material systems. Expanding this work
here, we predict for the first time effective thermo-
mechanical properties of granular Platonic solid
packs using third-order statistical micromechanics.
Systems of impenetrable and penetrable spheres
are considered to verify adaptive methods for
computing n-point probability functions directly from
three-dimensional microstructures, and excellent
agreement is shown with simulation. Moreover, a
significant shape effect is discovered for the effective
thermal conductivity of highly packed composites,
whereas a moderate shape effect is exhibited for the
elastic constants.
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1. Introduction
Quantifying the morphology of many-body systems has applications in many scientific fields at a
variety of length scales from molecular configurations [1,2] up to composite microstructures [3,4]
and celestial bodies [5–7]. Often, these systems have varying degrees of randomness and can
only be described though use of statistics. Moreover, the connection of a statistical description
to observed physical phenomena has long been studied [3,8]. Bernal [9] first motivated
the importance of higher order statistics when investigating the molecular arrangement of
liquids using the radial distribution function. n-point probability functions were introduced
by Frisch & Stillinger [10] to describe radiation scattering patterns in packs of voided media.
Statistical characterization of many-body systems has remained prevalent as evidenced by more
recent studies of the background cosmic radiation [6,11] and characterization of molecules in
amorphous condensed matter (e.g. glasses [12]). Note that many-body systems are often spatially
complex, and accurately obtaining higher order statistical descriptions in three dimensions have
proved difficult.

The focus of this work is to predict effective transport and mechanical properties of particulate
composites from higher order statistical data. This field has applications in many scientific and
engineering disciplines including flow in fractured rock [13], design of structural composites [14]
and use of conductive adhesives in electronics [15], just to name a few. Specifically, a primary
objective of this work is to predict thermo-mechanical properties of highly filled crystalline
packs (Platonic solids) and investigate the effect of the inclusion shape for a wide range of
microstructures. Experimental observations for particular systems have shown significant shape
effects. For example, Timofeeva et al. [16] show that alumina nanofluids have higher thermal
conductivities for alumina particles with larger aspect ratios, and linear models dependent on
the particle shape were developed. However, application of these linear models is limited to low
particle concentrations. Direct numerical modelling of a shape effect was performed by Yvonnet
et al. [17,18] for both mechanical and thermal properties. However, studies were limited to single
particle simulations at low volume fractions. Chauhan et al. [19] developed a micromechanics
model for the effective conductivity from a chain of single particle unit cells for various shapes. In
[19], good agreement was obtained for some experiments at moderate particle volume fractions,
but large errors were present for other tests.

Statistical micromechanics theories developed over the past half century have proved accurate
for wide ranging particle concentrations. Brown [20] first used n-point probability functions to
connect the microstructural details to the effective material behaviour. Hashin & Shtrikman [21]
derived the most accurate second-order bounds for the permittivity/conductivity and elastic
constants [22] for isotropic two-phase materials. However, the sole microstructural information
included in these bounds is the volume fractions (one-point probability functions) of the
respective constituents. Three-point bounds for the effective permittivity were introduced by
Beran [23], and these bounds were later simplified independently by Torquato [24] and Milton [25]
as a function of the volume fraction cq and a microstructural parameter ζq of each material phase q.
Beran & Molneux [26], McCoy [27] and Milton & Phan-Thien [28] derived three-point bounds
for the effective shear and bulk moduli incorporating cq, ζq and an additional microstructural
parameter ηq. These microstructural parameters ζq and ηq depend on three-dimensional integrals
involving one-, two- and three-point probability functions. While additional theories have been
introduced incorporating nonlinear material response [29] and imperfect interface behaviour [30],
demonstration of these theories has been severely restricted. Strong microstructural assumptions
are an impediment to accurately computing ζq and ηq for complex microstructures. Therefore,
application of third-order models has been primarily directed to systems of spheres.

Many have studied systems of overlapping spheres [31–34], where the probability functions
can be described by a simple exponential decay function. Numerical methods have also been
proposed for computing the n-point probability functions directly from microstructures [32,35].
However, application of these methods has been limited to computationally generated
morphologies of overlapping spheres [36] or imaging approaches of real systems like sandstone,
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which closely resemble the overlapping sphere model [37]. More complex configurations
of impenetrable spheres were considered by Torquato and co-workers [38–41], where the
microstructural parameters ζq and ηq were computed using a statistical mechanics or a
single-body operator concept. These methods unfortunately bypassed the computation of the
probability functions and have thus proved inaccurate. Despite years of progress in computing
these microstructural parameters, direct computation of the statistical functions from three-
dimensional microstructural domains with resolution required in third-order models has been
elusive until the recent work of Gillman & Matouš [42].

The adaptive numerical method introduced in [42] to compute statistical information directly
from three-dimensional microstructures is designed to extend beyond systems of spheres and
allows for investigation of an inclusion shape effect. In this work, we extend the computational
framework presented in [42] to the microstructural parameter ηq, and a unique study is conducted
on the effective thermal conductivity and elastic constants for highly filled isotropic systems of
crystalline inclusions (Platonic solids). First, we present an overview of the mathematical theory
of third-order statistical micromechanics. Next, we describe and rigorously verify the adaptive
numerical methods for computing ζq and ηq in third-order models. For the first time, novel
predictions of the effective thermo-mechanical properties for isotropic systems of Platonic solids
are obtained.

2. Mathematical theory
In this section, a brief summary of higher order statistical micromechanics is presented for
computing the effective thermal conductivity and elastic constants of statistically isotropic
microstructures.

(a) n-point probability functions
In this work, n-point probability functions are used to describe the morphology of a
heterogeneous material. First, a phase indicator function of material phase q at a position x ∈ R in
a material sample α of an ensemble space E is given by

χq(x; α) =
{

1 if x in phase q

0 otherwise.
(2.1)

The ensemble average (indicated by overbar) of this indicator function is defined as

χq(x) =
∫
E

χq(x; α)p(α) dα, (2.2)

where p(α) is the probability density function of α in E . Using this definition, the n-point
probability function, Sqs...t(x1, x2, . . . , xn), reads

Sqs···t(x1, x2, . . . , xn) = χq(x1)χs(x2) · · · χt(xn), (2.3)

and represents the probability of phases q, s, . . . , t existing at points x1, x2, . . . , xn, simultaneously.
In this work, materials containing statistically homogeneous (translationally invariant) and

isotropic (rotationally invariant) phases are considered. For statistically homogeneous systems,
it is useful to define volume averages. When assuming ergodicity of homogeneous systems,
ensemble averaging corresponds to volume averaging in the infinite volume limit

Sqs···t(x1, x2, . . . , xn) = lim
Ω→∞

1
Ω

∫
Ω

χq(x1 − l)χs(x2 − l) · · · χt(xn − l) dΩ , (2.4)

where l is a translation vector, and Ω is the volume of the domain. For ergodic, homogeneous
and isotropic systems, the one-, two- and three-point probability function reduce to Sq(x1) = cq,
Sqs(x1, x2) = Sqs(r1 = |x2 − x1|) and Sqst(x1, x2, x3) = Sqst(r1 = |x2 − x1|, r2 = |x3 − x1|, θ ), where θ is
the angle between the vectors x2 − x1 and x3 − x1. Moreover, long range order is also absent for

 on April 8, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150060

...................................................

Smp

Sm

Smm
r1

Sppp

r1 q
r2

Figure 1. Ilustration of n-point probability function sampling with n – 1 simplices. (Online version in colour.)

randomly configured microstructures, and the following limits hold for the two-point probability
functions

Sqs(x2 − x1) →
{

cqδqs as x2 − x1 → 0

cqcs as x2 − x1 → ∞,
(2.5)

and three-point probability functions

Sqst(x2 − x1, x3 − x1) →

⎧⎪⎪⎨
⎪⎪⎩

cqδts as x2 − x1 → 0, x3 − x1 → 0

Sqs(x2 − x1)δts as x2 − x3 → 0

cqcsct as x2 − x1 → ∞, x2 − x3 → ∞.

(2.6)

More details on statistical characterization of heterogeneous materials can be found in a book by
Torquato [3].

Analytical expressions of the n-point probability functions do not generally exist for random
morphologies. Therefore, Monte Carlo (MC)-based statistical sampling algorithms are often used.
When computing function values of a n-point probability function, many random samples or
throws are considered and averaged. The accuracy of MC methods is O(1/

√
Nr). We use high-

performance computing to speed up the analysis employing our in-house software package
Stat3D. The Nr random samples are decomposed on O(103) computing cores. A random sample,
Nr, consists of a random translation (described by three position values) and random rotation
(described by three angles) of a (n–1)-simplex within the three-dimensional microstructure
as illustrated in figure 1. For example, computing a function value of the isotropic three-
point probability function Sqst(r1, r2, θ ) requires random placement of a triangle (a two-simplex)
described by two side lengths, r1 and r2, and the angle between the sides θ . In a similar
manner, the two-point probability function Sqs(r1) requires random samples of a line segment
(one-simplex) with length r1.

Figure 2 shows selected planes of θ for the isotropic three-point probability function,
Sppp(r1, r2, θ ), for a system of impenetrable (non-overlapping) spheres considered by Gillman &
Matouš [42]. Note that this pack was generated using a packing algorithm [43] based on
the Lubachevsky–Stillinger method [44,45]. Others have computed one-, two- and three-point
probability functions for systems of spheres for the purpose of quantifying the configuration
[46,47]. However, computing these complex functions for the entire function domain, Ω , with
the fidelity required by third-order statistical micromechanics models presented in §2b has
not been previously accomplished. Therefore, we introduce the adaptive interpolation strategy
described in §3 to overcome these difficulties. See [42] for brief information on the adaptive
interpolation scheme.

 on April 8, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


5

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150060

...................................................

0

spheres

d

d

2d

3d

4d

2d
r1

q = 0° q = 10° q = 60°

r2

3d 4d 0
0.189

0.292

0.394

0.497

0.600

d 2d
r1

3d 4d 0 d 2d
r1

3d 4d

Figure 2. Three-point probability function, Sppp(r1, r2, θ ), for the isotropic system of spheres with cp = 0.6. (Online version
in colour.)

(b) Third-order models of effective material behaviour
For completeness of presentation, this section summarizes the statistical micromechanics theories.
Books by Milton [48] and Torquato [3] present the detailed mathematical theory for determining
effective material properties.

(i) Thermal conductivity

Regarding effective thermal properties, the steady-state heat conduction problem is considered.
At the local scale, the conservation of energy is

∇ · q(x) = 0 in Ω , (2.7)

where q(x) denotes the heat flux at a spatial point x ∈ R of the domain Ω . The heat flux is related
to the temperature field, T(x), assuming Fourier’s Law

q(x) = κ(x) · Q(x), (2.8)

where κ(x) is the second-order thermal conductivity tensor and Q(x) = −∇T(x). The local thermal
conductivity for a two-phase particulate composite is defined as

κ(x) = κmχm(x) + κpχp(x) = κm(1 − χp(x)) + κpχp(x), (2.9)

where the subscripts p and m denote the particle and matrix phases, respectively.
Using variational principles, Beran [23] derived third-order bounds for the effective

thermal conductivity, κL ≤ κe ≤ κU, of homogeneous and isotropic heterogeneous materials. The
superscripts L and U denote the lower and upper bounds, respectively. The bounds were later
simplified by Milton [25] and Torquato [24] for two-phase materials assuming isotropic material
behaviour and are given as

κL = cpκp + cmκm − cmcp(κp − κm)2

cmκp + cpκm + 2(ζp/κp + ζm/κm)−1 ,

and κU = cpκp + cmκm − cmcp(κp − κm)2

cmκp + cpκm + 2(ζpκp + ζmκm)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.10)

These bounds are a function of the volume fraction, cq, the local conductivity, κq, and the
microstructural parameter, ζq, of the particle (q = p) and matrix (q = m) material phases. The
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microstructural parameter, ζq is defined as

ζq = 9
2cpcm

∫∞

0

∫∞

0

∫ 1

−1

3 cos2θ − 1
2r1r2

S̃qqq(r1, r2, θ ) d(cos θ ) dr1 dr2, (2.11)

where

S̃qqq(r1, r2, θ ) = Sqqq(r1, r2, θ ) − Sqq(r1)Sqq(r2)
cq

. (2.12)

For isotropic two-phase systems, Torquato [49] derived a three-point approximation (TPA) that
has shown good agreement with simulations [50] for microstructures containing dispersions of
particles without large clustering. This estimate is given as

κe

κm
=

1 + 2cpκpm − 2cmζpκ2
pm

1 − cpκpm − 2cmζpκ2
pm

, (2.13)

where

κpm = κp − κm

κp + 2κm
. (2.14)

(ii) Elastic constants

When considering the effective mechanical response, the conservation of linear momentum
neglecting inertia and body forces reads

∇ · σ (x) = 0 in Ω , (2.15)

where σ (x) is the symmetric second-order stress tensor at a point x ∈ R. The state of stress is related
to the infinitesimal strain tensor, ε(x) = 1

2 (∇u(x) + ∇u(x)T), assuming Hooke’s Law,

σ (x) = L(x) : ε(x). (2.16)

Here, u(x) is the local displacement field, and L(x) is the local elasticity tensor given as

L(x) = Lmχm(x) + Lpχp(x) = Lm(1 − χp(x)) + Lpχp(x). (2.17)

Note that for an isotropic material, Lq = 3KqΛh + 2GqΛs, where Kq and Gq are the bulk and
shear moduli of material phase q, and the hydrostatic and shear projection tensors are defined as
Λh = 1

3 1 ⊗ 1 and Λs = I − 1
3 1 ⊗ 1, respectively. 1 and I are the second and symmetric fourth-order

identity tensors.
Using variational principles, third-order bounds of the effective bulk (KL ≤ Ke ≤ KU) and shear

moduli (GL ≤ Ge ≤ GU) have been derived by Beran & Molyneux [26], McCoy [27], and were
later simplified and improved upon by Milton [25], Milton & Phan-Thien [28] and Gibiansky &
Torquato [51]. The bounds of the effective moduli considered in this work are given in Milton &
Phan-Thien [28] as

KL = cpKp + cmKm − cmcp(Kp − Km)2

cmKp + cpKm + (4/3)(ζp/Gp + ζm/Gm)−1

KU = cpKp + cmKm − cmcp(Kp − Km)2

cmKp + cpKm + (4/3)(ζpGp + ζmGm)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.18)

and

GL = cpGp + cmGm − cmcp(Gp − Gm)2

cmGp + cpGm + ΞL

GU = cpGp + cmGm − cmcp(Gp − Gm)2

cmGp + cpGm + ΞU
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.19)

where ΞL and ΞU are presented in appendix A. The bounds are functions of Km, Kp, Gm, Gp, cm,
cp, ζm, ζp, ηm and ηp. Note that in addition to the microstructural parameter ζq that also appeared

 on April 8, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


7

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150060

...................................................

in the bounds of the effective thermal conductivity, the bounds of the shear modulus are functions
of an additional microstructural parameter ηq. This parameter is defined as

ηq = 5ζq

21
+ 150

7cpcm

∫∞

0

∫∞

0

∫ 1

−1

P4(cosθ )
r1r2

S̃qqq d(cosθ ) dr1 dr2. (2.20)

Similar to the TPA presented for the effective thermal conductivity (see equation (2.13)),
Torquato [52,53] has more recently derived a TPA for the effective bulk and shear modulus (see
appendix A).

3. Adaptive interpolation/integration method for computing microstructural
parameters

The integrals presented in equations (2.11) and (2.20) for computing the microstructural
parameters ζq and ηq involve the interaction of the one-, two- and three-point probability
functions. Moreover, the statistics are multiplied by the term 1/(r1r2) in the integral kernel.
When the values for r1 and r2 are small, the error in the statistics values can be substantially
amplified. These interactions, especially for systems with complex statistics functions (figure 2)
have prevented the accurate evaluation of ζq and ηq for particulate microstructures until recent
work of Gillman & Matouš [42]. In this section, we expand on the numerical methods introduced
in [42] for constructing an adaptive interpolant of S̃qqq(r1, r2, θ ) and numerically integrating
equations (2.11) and (2.20).

Others [46,54] have attempted an MC sampling strategy to compute probability functions,
but on regular structured grids. An adaptive triangulation technique is used to overcome
inefficiencies of structured grids. To simply explain our adaptive scheme, an illustration is shown
for a two-dimensional product peak function introduced by Genz [55] in figure 3. This function is
typical for testing multi-dimensional numerical integration schemes and is defined as

fG(x1, x2) = 1

(a−2
1 + (x1 − w1)2)(a−2

2 + (x2 − w2)2)
, (3.1)

where the constants are set to a1 = 5, a2 = 10, w1 = 0.25 and w2 = 0.4 for this example.
In order to capture the important features of this function, a Delaunay triangulation is

iteratively constructed with C0 continuity using the CGAL library [56,57]. The triangulation is
denoted as T . Initially, a regular discretization is constructed (figure 3c). This triangulation and
associated function values, f (x1, x2, . . . , xn), define the initial interpolant Tl=0 (l is the adaptive
level). For a given iteration, a bisection method is used to refine the triangulation based on the
local error of the interpolant. For all triangles/tetrahedrons in a given iteration of the interpolant
Tl, the local accuracy is evaluated at each edge midpoint by introducing an error indicator
function, ε̃ = |f (x1, x2, . . . , xn) − Tl(x1, x2, . . . , xn)|. If an edge midpoint error is ε̃ > tol, where tol is
a tolerance, each edge of the triangle/tetrahedron is bisected and added to Tl+1. If all midpoints in
a tetrahedron satisfy ε̃ ≤ tol, the triangle/tetrahedron is added to Tl+1 unchanged. An illustration
of this bisection method is shown in figure 3b, where the line segment along x1 = 0.5 is considered.
The solid black line is the smooth function, fG(x1 = 0.5, x2), and the dashed black line is the initial
interpolant, Tl=0(x1 = 0.5, x2). Midpoints that satisfy ε̃ ≤ tol are marked with circles, and those
that do not are marked with x’s. All triangles with a midpoint marked with an x are bisected. This
iterative process is repeated until all grid points satisfy the ε̃ ≤ tol.

In this work, the adaptive triangulation technique is used to create an interpolant of
S̃qqq(r1, r2, θ ) as defined in equation (2.12). The initial regular tetrahedral grid is constructed
for the domain [r1 = 0, r1 = r∞] × [r2 = 0, r2 = r1] × [θ = 0, θ = π ] (note that this is half of the
integration domain since the function is symmetric about the axis r1 = r2). This triangulation
and associated function values, S̃qqq(r1, r2, θ ), define the interpolant T . After a convergence study,
it was determined that setting tol = 1

200 max{S̃qqq(r1, r2, θ )} results in low numerical error for all
computations presented in this work. Using the interpolant T , the microstructural parameters,
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Figure 3. (a–c) Illustrations of adaptive interpolation of a function by Delaunay triangulation. (Online version in colour.)

ζq and ηq in equations (2.11) and (2.20), are computed via simplex integration. MC integration of
each tetrahedron is performed [58], and a convergence study determined that using Nint = 1000
random integration points per tetrahedron is sufficient for all particulate systems considered.
Given that there are O(107) tetrahedrons in a typical interpolant, O(1010) integration points are
required to evaluate the integrals in equations (2.11) and (2.20). To perform these challenging
computations, we use 500-7200 computing cores on Los Alamos National Laboratories’ Mustang
and Notre Dame’s C-SWARM clusters.

4. Numerical results
Using the methods described in the prior sections, bounds and estimates of the effective
thermal conductivity and elastic constants were computed with the well-resolved (WR) statistical
description. First, verification studies were conducted on commonly studied microstructures of
overlapping and impenetrable spheres. After verification of the methods, results are presented
for statically isotropic systems of Platonic solids. Note that throughout this section, we denote
our results with WR due to use of WR statistics.

(a) Verification
In order to assess the accuracy of our numerical method, a verification study was conducted. The
interpolation/integration scheme is verified using the analytical form of the overlapping sphere
model. Then, the methods are used with MC sampling for systems of impenetrable spheres. The
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Table 1. Verification of the adaptive interpolation and integration method for computing equations (2.11) and (2.20) assuming
penetrable sphere model. Comparison is made between results of this work (ζm, ηm) and results in [34] (ζ R1

m , η
R1
m ). Results for

ζm were published in [42].

cp ζm ζ R1
m ε

ζ

PS(%) ηm ηR1
m ε

η

PS(%)

0.2 0.5187 0.5174 0.24 0.4178 0.4163 0.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 0.6571 0.6489 1.26 0.5579 0.5604 0.44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6 0.7743 0.7702 0.54 0.6987 0.7050 0.89
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

resulting predictions of the effective thermal conductivity and elastic constants are compared to
simulation data.

(i) Penetrable sphere model

For the purpose of verification, microstructures composed of overlapping spheres are studied.
This is one of the few systems, where the n-point probability functions can be defined analytically.
The probability function for the matrix phase is defined as

Sm···m(x1, x2, . . . , xn) = exp(−ρVn), (4.1)

where ρ is the number density of spheres and Vn is the union volume of n spheres with diameter d.
Using this analytical expression for the n-point probability function, an interpolant is

created for S̃qqq(r1, r1θ ) (equation (2.12)) with tol = 1
200 max{S̃qqq(r1, r2, θ )} and r∞ = 6d. Following

construction of this interpolant, MC integration is used to compute the integrals appearing in
equations (2.11) and (2.20). The resulting values of ζm and ηm are presented in table 1. Note
that results for ζm (or ζp) were first presented in [42] and are provided here for completeness. In
order to assess the accuracy of these methods, the values computed in this work are compared to
the most accurate result presented in the literature [34]. Error measures introduced to quantify
the accuracy of the microstructural parameters are defined as ε

ζ

PS = |ζm − ζR1
m |/ζR1

m × 100[%]
and ε

η

PS = |ηm − ηR1
m |/ηR1

m × 100[%]. Note that all results computed with the adaptive methods
have errors below 2% (table 1). Thus, the adaptive interpolation and integration methods are
considered verified for the range of volume fractions considered in this work.

(ii) Random systems of impenetrable spheres

Following verification of the penetrable sphere model, systems of impenetrable (non-
overlapping) monodisperse spheres are considered. Such systems have been studied extensively
by Torquato and co-workers [38–40]. However, despite significant progress, computing
the microstructural parameters ζq and ηq for three-dimensional systems directly has been
unachievable (due to the complexity of the n-point probability functions) until the recent work
on thermal conductivity of Gillman & Matouš [42].

The same monodisperse sphere systems presented in [42] for verification of the effective
thermal conductivity are considered for verification of the third-order estimates of the effective
bulk and shear moduli. These systems were generated using a packing algorithm [43] based on
the Lubachevsky–Stillinger method [44,45]. Cubic domains consisting of O(104) particles with
diameter d were generated, and a high expansion rate was prescribed to ensure statistical isotropy.
After a convergence study, it was determined that r∞ = 12d is required to compute ζp and ηp

with acceptable accuracy. Furthermore, the convergence study uncovered that it is necessary to
use Nr = 107 random samples for each n-point probability function evaluation in equation (2.12)
to satisfy the tolerance tol. The computed microstructural parameters ζp and ηp are presented
in table 2. Comparison is made to approximations given in [40,59]. The improvement of ζp

from the result presented in [40], denoted as ζR2
p , is quantified by introducing an error metric

ε
ζ

IS = |ζp − ζR2
p |/ζR2

p × 100[%]. Reasonable agreement for ζp is shown for lower volume fractions,
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Table 2. Comparison of ζp and ηp for random impenetrable monodisperse sphere systems. Comparison is made between
results presented in this work (ζp, ηp) and results in [40] (ζ R2

p ) and [59] (η
R3
p ). Results for ζp were published in [42].

cp ζp ζ R2
p ε

ζ

IS (%) ηp ηR3
p ε

η

IS(%)

0.2 0.0442 0.0409 8.17 0.084 0.097 13.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 0.0883 0.0765 15.37 0.192 0.193 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5 0.1114 0.0938 18.78 0.252 0.241 4.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6 0.1967 0.134 46.78 0.342 0.290 18.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Comparison of third-order lower bounds KLe and G
L
e for random impenetrable monodisperse sphere systems with

infinite material contrast. Comparison is made between WR bounds and bounds computed with data from [40,59] (R2,R3, see
table 2).

cp KL−WR
e /Km KL−R2

e /Km εKIS(%) GL−WR
e /Gm GL−R2,R3

e /Gm εGIS(%)

0.2 1.46 1.46 0.05 1.53 1.53 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 2.25 2.24 0.32 2.49 2.49 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5 2.90 2.88 0.60 3.31 3.29 0.64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6 3.99 3.89 2.78 4.70 4.54 3.54
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

but significant improvement has been achieved for higher volume fractions. For the parameter
ηp, the results are compared to the work of Torquato et al. [59]. The differences from the results in
[59] are quantified by the following metric ε

η

IS = |ηp − ηR3
p |/ηR3

p × 100[%]. Note that the metric ε
η

IS
is non-monotonic with respect to cp. However, this is not unexpected given the simple inaccurate
relation, ηp = 0.4827cp, derived in [59], as ηp is only first-order accurate with respect to cp.

The computed microstructural parameters, ζp and ηp, are then used within the third-order
statistical micromechanics theories for the effective bulk and shear moduli as described in §2b(ii).
We use our in-house software package Prop3D to compute all thermo-mechanical properties.
In the remainder of this work, an infinite contrast ratio between particle and matrix phases
is considered (Kp/Km = ∞, Gp/Gm = ∞ and νm = 0.25). The WR three-point lower bounds
KL−WR

e and GL−WR
e (see equations (2.18) and (2.19)) are presented in table 3 and compared

to the bounds using ζR2
p and ηR3

p from [40,59]. Differences in KL
e and GL

e are quantified as

εK
IS = |KL−WR

e − KL−R2
e |/KL−R2

e × 100[%] and εG
IS = |GL−WR

e − GL−R2,R3
e |/GL−R2,R3

e × 100[%]. As
expected, the differences are small for lower particle volume fractions, as marginal improvement
was seen for ζp and ηp (table 2). However, for cp = 0.6, where improvements in ζp and ηp were
46.8% and 18.0%, respectively, the lower bounds of Ke and Ge are improved by 2.78% and 3.54%.

In figure 4, we show results for the well-resolved three-point approximation (TPA-WR, solid
line with circles) of Ke and Ge (see equations (A 2) and (A 5)). These results are compared to FEM
data from Segurado & Llorca [60] (filled circles), the TPA using Torquato’s approximations [40,59]
(TPA, dash-dotted line) and the widely used Hashin–Shtrikman bound (HS, dashed line). Note
that the HS bounds (presented in appendix B) are unable to capture details of the morphology
other than the volume fraction, cp, and is the least accurate prediction. When comparing TPA-
WR to Torquato’s TPA, the largest improvement in the estimate of Ke and Ge is seen for higher
volume fractions. For the volume fraction cp = 0.6, the estimates of the bulk modulus and shear
modulus have been improved by 5.25% and 6.4%, respectively. Note that the improvement in
the elastic constants is less pronounced than those of the effective thermal conductivity [42]
(17.4% improvement in κe achieved for cp = 0.6). This smaller improvement shows that the third-
order estimates for the elastic constants are less sensitive to the morphology. When comparing
the TPA-WR to finite-element method (FEM) data in [60] (filled black circles), all finite-element
method (FEM) data points are within 4.3% of the TPA-WR for the bulk modulus (Ke) and within
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Figure 4. TPA of (a) bulk modulus and (b) shear modulus for isotropic systems of spheres with infinite contrast ratio.

9% of the TPA-WR for the shear modulus (Ge). We point out that FEM data are not error free.
Therefore, small differences between our statistical micromechanics and FEM results [60] for Ke

and Ge must be interpreted more qualitatively. It is also important to note that the FEM data
presented in [60] is only reported for particle volume fractions up to cp = 0.5. Direct numerical
modelling methods like FEM can become challenging for highly filled systems due to numerical
issues, especially for high material contrast. However, the computational complexity of higher
order statistical micromechanics presented in this work does not increase for highly filled packs.

(b) Random systems of Platonic solids
As mentioned in the Introduction, predicting the effective material behaviour of particulate
materials by third-order statistical micromechanics has proved elusive due to numerical
difficulties. Therefore, in this seciton, we elucidate the importance of our WR computations with
the novel application of these theories to packs of monodisperse Platonic solids. For the first time,
the statistical micromechanics is applied to crystalline packs (Platonic solids) with fidelity and
resolution needed for meaningful thermo-mechanical engineering analysis.

(i) Generation of microstructures

To study the effect of inclusion shape on the effective material properties, the packing code
Rocpack [61–63] is used to generate statistically isotropic systems of Platonic solids. The algorithm
is a hybrid of the Lubachevsky–Stillinger [44] and Adaptive Shrinking Cell [64,65] packing
algorithms, where infinitesimal particles are randomly distributed within a volume and allowed
to grow until a desired volume fraction is reached. Collisions are handled to prevent particle
intersection and maintain statistical isotropy. In this work, packs with volume fractions of
cp = 0.2, 0.4, 0.5 and 0.6 containing Np = 10 313, 20 626, 25 783 and 30 940 particles, respectively,
are packed in a unit cubic volume. This corresponds to a side length of approximately 30d, where
d is the equivalent sphere diameter (diameter computed from volume of a particle assuming
spherical shape).

Geometric quantities associated with the Platonic solids are summarized in table 4. The
number of faces (NF), vertices (NV) and edges (NE) are presented along with the dihedral angle
(α), inradius (Rin), midradius (Rmid) and circumradius (Rcirc). Note that the inradius (Rin) is
the radius of an inscribed sphere for the polyhedra, the midradius (Rmid) is the radius of a
sphere intersecting the midpoints of the edges and the circumradius (Rcirc) is the radius of a
circumscribed sphere. The inradius and dihedral angle (α) increase with the number of faces NF.
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Figure 5. (a, b) Two-point probability function, Spp(r1), for Platonic solids. Note that d is the equivalent sphere diameter.

Table 4. Geometrical description of each Platonic solid with volume of 4π/3 (equivalent sphere diameter, d = 2). The
percolation threshold, cperp for overlapping Platonic solids was determined from numerical simulation by Torquato & Jiao [66].

shape NF NE NV α Rin Rmid Rcir cperp

tetrahedron 4 6 4 70.53◦ 0.671 1.162 2.013 0.1701
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hexahedron 6 12 8 90.0◦ 0.806 1.140 1.396 0.2443
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

octahedron 8 12 6 109.47◦ 0.846 1.036 1.465 0.2514
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dodecahedron 12 30 20 116.57◦ 0.911 1.070 1.146 0.2949
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

icosahedron 20 30 12 138.19◦ 0.939 1.006 1.182 0.3030
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To aid further analysis, the percolation threshold volume fraction, cper
p , for systems of overlapping

shapes from [66] is also presented. Note that cper
p increases with NF, and the percolation results for

overlapping systems assist in explaining the structures and their effect on the effective material
response.

(ii) Statistical analysis

After generating the packs of Platonic solids, the systems are statistically characterized. The
isotropic two-point probability function Spp(r) for cp = 0.6 packs of tetrahedra, octahedra and
icosahedra is shown in figure 5. The functions are compared to the system of spheres considered
in §4b(ii). Note that packs with polyhedra that are composed of more faces (NF) approach the
statistical function for a pack of spheres. At the origin (r = 0), the slope of the function is steepest
for the system of tetraheda. The three-point probability functions for packs with cp = 0.6 are
presented for selected values of θ in figure 6. It can be seen that the system of icosahedra closely
resembles the function for spheres (cf. figure 2). Meanwhile, the probability function for the
systems of tetraheda has less complex features. In general, the packs of polyhedra with smaller
NF result in less complex n-point probability functions as compared with ones with more faces.
Note that the one-point and two-point probability functions are contained within the three-point
probability function (see equations (2.5) and (2.6)). The function Sppp(r1, r2, θ ) degenerates to the
volume fraction cp = 0.6 at the point r1 = r2 = 0, and the function degenerates to the two-point
probability function along the line r1 = r2 (θ = 0) and along the planes r1 = 0 and r2 = 0. These
degeneracies are used to evaluate the MC sampling error in the statistical functions.
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Figure 6. Three-point probability function, Sppp(r1, r2, θ ), for isotropic systems of Platonic solids with cp = 0.6. (Online version
in colour.)

It is particularly important to understand the error related to the interactions of the probability
functions in S̃ppp (see equation (2.12)). Therefore, two error metrics are constructed to evaluate
the sampling error and are defined as ε0

S3 = ‖S̃ppp(r1 = 0, r2 = 0, θ )‖∞ and ε∞
S3 = |S̃ppp(r1 = r∞,

r2 = r1, θ = π )|. Both error metrics should approach 0 as Nr → ∞. For all packs with cp = 0.2, both
of these error metrics are below 1.3 × 10−4 when the number of random samples is Nr = 107. For
all packs with cp = 0.6, both of these metrics are below 2.7 × 10−4. These errors are at least 2× less
than the tolerance tol in the adaptive interpolation scheme.

Following the statistical analysis and error quantification, the microstructural parameters ζp

and ηp are computed. The same numerical parameters reported for the systems of impenetrable
spheres (r∞ = 12d and Nr = 107) are used. The parameters ζp and ηp for all packs of Platonic solids
are shown in figure 7a,b, respectively. Note that there is a monotonic increase of ζp as the number
of faces, NF, decreases. However, the value of ηp does not follow this simple trend.

Considering the local configurations of the shapes aids in understanding the values obtained
for ηp. A measure βIJ is introduced to quantify the local arrangement of particles. βIJ, as illustrated
in figure 8, is the distance between a particle I and a neighbouring particle J. The minimum
distance between particle I and all neighbouring particles is denoted βI = min(βIJ). Finally, β =
mean(βI) is defined as the average βI for all particles in a pack. In figure 9a, β is presented for
each pack and is normalized by the equivalent sphere diameter, d. In order to complement the
values of β/d, the distances, β12/d, associated with the various types of contacts between only two
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neighbour and particle I is denotedβI .

single Platonic solids are shown in figure 9b. The distances associated with a vertex–vertex (V–
V, β12 = Rcirc + Rcirc), vertex–edge (V–E, β12 = Rcirc + Rmid), vertex–face (V–F, β12 = Rmid + Rin),
edge–edge (E–E, β12 = Rmid + Rmid), edge–face (E–F, β12 = Rmid + Rin) and face–face (F–F, β12 =
Rin + Rin) contact between two particles are presented. The F–F contact represents the lower
limit of β/d and corresponds to the inscribed radius, Rin (table 4). β12/d less than one signifies
particles in close proximity and assembling mostly in a E–F of F–F contact. For illustration, note
that two tetrahedrons come in V–V contact at larger distances apart and are closest together
with a F–F contact. In figure 9a, β/d is less than one at the smallest volume fractions for the
system of tetrahedra. Moreover, when the measure β/d becomes less than one, a significant slope
decrease in the function ηp is observed (figure 7b). With tetrahedra for example (dotted line with
triangular markers), β/d becomes less than one between cp = 0.2 − 0.3, and a change in slope of ηp

is observed near cp = 0.2. A similar change in slope can be also observed for ζp as β/d approaches
one (figure 7a).

(iii) Third-order estimates of effective material behaviour

With ζp and ηp accurately computed, the TPA of the thermal conductivity and bulk and shear
moduli are considered. Figure 10 presents the TPA-WR estimates of the thermal conductivity, κe,
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Figure 9. (a) Mean minimum distance of neighbouring particles,β/d, for isotropic systems of Platonic solids as a function of
volume fraction, cp. (b) Distance between only two contacting Platonic solids, β12/d. Contact types are vertex–vertex (V–V),
vertex–edge (V–E), vertex–face (V–F), edge–edge (E–E), edge–face (E–F) and face–face (F–F).
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Figure 10. Third-order approximation of thermal conductivity for isotropic systems of Platonic solids with infinite contrast.

using equation (2.13) for an infinite contrast ratio (κp/κm = ∞). In figure 10, the striking feature is
the prominent shape effect in thermal conductivity for different Platonic solids. With tetrahedra
for example (dotted line with triangular markers), the normalized effective thermal conductivity
(κe/κm) for cp = 0.6 is 16.81. In comparison to the pack of spheres (κe/κm = 8.42), the effective
thermal conductivity has increased by 1.99 times (99.6% increase). In general, as the number
of faces, NF, decreases, the effective conductivity increases. Moreover, when revisiting the local
morphology measure β, tetrahedra came to proximity frequently through F–F contact (β/d < 1)
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Figure 11. TPA of (a) bulk modulus and (b) shear modulus for isotropic systems of Platonic solids.

(figure 9a) and are capable to contact at large distances, β12/d > 1, through V–V contact (figure 9b).
This contact behaviour suggests that tetrahedra are near percolation compared to other packs,
which leads to greater effective conductivity. This trend is also consistent with the percolation
threshold, cper

p , for systems of overlapping Platonic solids listed in table 4. This is the first time
to the authors’ knowledge that a shape effect has been predicted for isotropic systems with
varying shapes up to high packing fractions using third-order statistical micromechanics. The
resulting predictions of the thermal conductivity are also compared to the HS lower bound (see
equation (B 1)) that is unable to capture any shape effect.

The TPA of the effective bulk modulus (equation (A 2)) and shear modulus (equation (A 5)) are
presented in figure 11a,b, respectively. The same shape effect trend seen for the effective thermal
conductivity is exhibited for both the shear and bulk moduli. However, the magnitude is less
pronounced. With tetrahedra for example (dotted line with triangular markers), the normalized
effective bulk modulus (Ke/Km) for cp = 0.6 is 5.00. In comparison to the pack of spheres
(Ke/Km = 4.29), the effective bulk modulus increases by 1.16 times (16.6% increase). Meanwhile,
the normalized effective shear modulus (Ge/Gm) at cp = 0.6 for the pack of tetrahedra increases
by 1.13 times (12.6% increase) above the system of spheres. This indicates that the effective elastic
properties are less sensitive to the inclusion shape. These predictions are also compared to the HS
lower bounds (see equations (B 2) and (B 3)).

5. Conclusion
In this work, we predict with high accuracy thermal conductivity and elastic constants of isotropic
packs of Platonic solids (crystalline materials). Verification studies are conducted for systems of
overlapping and hard monodisperse spheres, and numerical approaches are found very accurate.
Good agreement is shown between the third-order models and finite-element simulations for
rigid particles in a deformable matrix, and the TPA using the WR microstructural parameters ζp

and ηp is improved.
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For the first time, TPAs of the thermal–mechanical properties are computed for isotropic
systems of Platonic solids at various volume fractions. A significant particle shape effect is
predicted for thermal conductivity, whereas the effective elastic moduli are less sensitive to the
microstructural configuration. Based on our statistical framework, a large class of materials with
arbitrary inclusion shapes can now be easily studied. Moreover, image-based modelling, using
micro-computed tomography for example, can now be successfully employed for real material
systems.
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Appendix A. Third-order estimates for elastic constants
The parameters ΞL and ΞU presented in equation (2.19) are defined as

ΞL = (128ζm/Km + 128ζp/Kp + 99ζm/Gm + 99ζp/Gp) + 45(ηm/Gm + ηp/Gp)

30(ζm/Gm + ζp/Gp)(6ζm/Km + 6ζp/Kp − ζm/Gm − ζp/Gp) · · ·
+ 6(ηm/Gm + ηp/Gp)(2ζm/Km + 2ζp/Kp + 21ζm/Gm + 21ζp/Gp)

and ΞU = 3(Gmηm + Gpηp)(6Kmζm + 6Kpζp + 7Gmζm + 7Gpζp) − 5(Gmζm + Gpζp)2

6(2Kmζm + 2Kpζp − Gmζm − Gpζp) + 30(Gmηm + Gpηp)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

The TPA for the bulk and shear modulus of a two-phase isotropic material were derived by
Torquato [52,53]. These approximations were simplified assuming stiff particles in a deformable
matrix (Kp/Km = ∞ and Gp/Gm = ∞). The bulk modulus is given as

Ke

Km
= 1 + (4Gm/3Km)Kpmcp − (10Gm/(3Km + 6Gm))KpmGpmcmζp

1 − Kpmcp − (10Gm/(3Km + 6Gm))KpmGpmcmζp
, (A 2)

where

Kpm = Kp − Km

Kp + (4/3)Gm
(A 3)

and

Gpm = Gp − Gm

Gp + Gm((9Km + 8Gm)/(6Km + 12Gm))
. (A 4)

The TPA of the shear modulus for an infinite contrast is

Ge

Gm
=

1 + ((9Km + 8Gm)/(6Km + 12Gm))Gpmcp − (2KpmGpmGm/(3Km + 6Gm))cmζp · · ·
− G2

pm/6{[(3Km + Gm)/(Km + 2Gm)]2cmηp + 5Gm[(2Km + 3Gm)/(Km + 2Gm)2]cmζp}
1 − Gpmcp − (2KpmGpmGm/(3Km + 6Gm))cmζp · · ·

− (G2
pm/6){[(3Km + Gm)/(Km + 2Gm)]2cmηp + 5Gm[(2Km + 3Gm)/(Km + 2Gm)2]cmζp}

.

(A 5)
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Appendix B. Hashin–Shtrikman bounds
The HS lower bound for the effective thermal conductivity [21] of an isotropic two-phase
composite is given as

κe

κm
= cmκm + cpκp − cmcp(κp − κm)2

cmκp + cpκm + 2κm
. (B 1)

The HS lower bounds for the effective bulk and shear modulus [22] are defined as

Ke

Km
= cmKm + cpKp − cmcp(Kp − Km)2

cmKp + cpKm + 4Gm/3
(B 2)

and
Ge

Gm
= cmGm + cpGp − cmcp(Gp − Gm)2

cmGp + cpGm + Gm((3Km/2 + 4Gm/3)/(Km + 2Gm))
, (B 3)

respectively.
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