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We examine the microscopic toughening mechanisms and their effect on the macroscopic
failure response of heterogeneous adhesives made of stiff particles embedded in a more
compliant matrix. The analysis relies on a multi-scale cohesive framework first described
in Matouš et al. [Matouš, K., Kulkarni, M., Geubelle, P., 2008. Multiscale cohesive failure
modeling of heterogeneous adhesives. Journal of the Mechanics and Physics of Solids 56,
1511–1533]. Two microscopic constitutive failure models are incorporated: an isotropic
damage model to capture the fracture response of the matrix and a cohesive law to model
the inclusion-matrix interfacial debonding. A detailed study of the RVE size is presented
followed by a set of examples that illustrate the effect of filler size, volume fraction and
particle–matrix interface properties on the macroscopic effective traction-separation law
of heterogeneous adhesives.

� 2009 Published by Elsevier Ltd.
1. Introduction

The highly cross-linked and amorphous microstructure
of epoxy polymers provides relatively high failure strength
and elastic modulus, but makes them inherently brittle
and susceptible to fracture. The addition of second-phase
micro-heterogeneities such as rubber particles (Pearson
and Yee, 1991; Chen and Mai, 1998) and glass beads
(Spanoudakis and Young, 1984a; Kitey and Tippur,
2005a) has long been considered to improve fracture prop-
erties of thermosetting polymers. A vast body of literature
is devoted to the characterization of macroscopic failure
properties of epoxy-based particulate composites by
studying the micro-toughening mechanisms (Lange,
1970; Johnsen et al., 2007). Of particular relevance to the
present work are the articles by Nakamura et al. (1999),
Spanoudakis and Young (1984a,b), Kitey and Tippur
(2005a,b), Kawaguchi and Pearson (2003a,b) who study
the effect of filler size, volume fraction, and particle–ma-
y Elsevier Ltd.
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trix interface adhesion strength on the macroscopic failure
properties of stiff particle modified bulk epoxy composites.
While some literature exists on the characterization and
failure of soft (rubber) particle modified epoxy adhesives
(Kinloch, 2003; Pucciariello et al., 1989), the use of stiff
particles in epoxy adhesives, which are generally known
to have quite different toughening mechanisms than the
former, is still relatively uncommon.

The failure of an adhesive can be characterized into two
types: adhesive, where failure is along the interface be-
tween the adhesive and the adherend, and cohesive, where
failure is contained within the adhesive layer. It has been
experimentally recognized that the modification of neat
epoxy adhesives by carbon nano-tubes (Hsiao et al.,
2003) and rubber particles (Kinloch, 2003) leads to
changes in the failure type by introducing several micro-
scopic fracture toughening mechanisms, such as micro-
cracking, crack bridging/deflection/pinning and fiber pull-
out. In general, heterogeneous adhesives tend to fail in a
more cohesive fashion than neat polymer adhesives. From
a mechanical design viewpoint, it is important to under-
stand the link between the failure type of an adhesive
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Fig. 1. Multi-scale cohesive approach showing the macro- and micro-
scale coupling.
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and several design parameters at one’s disposal. The study
of various failure mechanisms present at the micro-scale
and their impact on the macroscopic failure response of
the adhesive system is the topic of this paper. In particular,
we analyze the effect of particle size, volume fraction, and
particle–matrix interface properties on the failure type and
effective macroscopic property response of stiff particle
reinforced epoxy adhesives using a multi-scale numerical
scheme.

At the macro-scale, the cohesive finite element (CFE)
method, which collapses the adhesive layer to a surface
(in 3D) or a line (in 2D), is a natural choice for numerical
analyses of bonded structures. Although attractive for their
simplicity, the phenomenological and/or mathematically
convenient cohesive laws proposed in the literature do
not directly represent the complex failure processes occur-
ring at the micro-level in heterogeneous adhesives. Com-
mon examples of such cohesive laws include bi-linear
(Geubelle and Baylor, 1998) and exponential (Needleman,
1990b) relations that describe the tractions acting along
the crack faces as a function of displacement jump. The
extraction of macro-scale cohesive law of heterogeneous
adhesives directly from micro-scale simulations is limited
due to the complexity of failure processes at that level. A
step in that direction was recently achieved by Matouš
et al. (2008), who proposed a multi-scale cohesive scheme
with an ability to relate the microscopic failure details in
heterogeneous layers to the macroscopic traction-separa-
tion law. In this paper, we use the multi-scale cohesive ap-
proach to analyze the physics of failure processes at micro-
scale in heterogeneous layers, with emphasis on the key
role played by the particle–matrix interface.

The paper is organized as follows: in Section 2, we sum-
marize the multi-scale cohesive approach. Section 3 de-
scribes the constitutive models adopted to simulate the
micro-scale failure processes followed, in Section 4, by a
brief explanation of the numerical implementation of the
scheme. In Section 5, we present a study of the RVE size
and a set of illustrative examples.
2. Variational framework for multi-scale scheme

We summarize in this section the multi-scale cohesive
model proposed by Matouš et al. (2008) in a variational
framework using the formalism of Miehe (2002). Consider
X � R3 to be an open bounded set with a piecewise
smooth boundary C. Any generic point �x is defined by its
position vector directed from the origin of R3. The bound-
ary C is assumed to be decomposed into non-intersecting
sub-domains Cu and Ct where displacements and tractions
are imposed, respectively. Let the sub-manifold Cc 2 R2

with unit normal N represent a heterogeneous adhesive
layer, which divides X into two disjoint sets Xþ and X�.
Let X0 ¼ lcCc denote the physical volume of the heteroge-
neous adhesive layer where lc represents the average
thickness of the layer. We assume the adhesive layer re-
peats itself in the x1;2 direction with H representing the
volume of the periodic heterogeneous unit cell (see Fig. 1).

Let u(x) represent the displacement field in the hetero-
geneous microstructure of adhesive layer at a point
x 2 H � R3. In what follows, all the quantities with a bar
overhead ð��Þ are defined at the macro-scale, while the per-
turbation quantities at the micro-scale are denoted with a
tilde overhead ð~�Þ. The displacement is assumed to be
decomposed into a homogeneous part due to the pre-
scribed macroscopic strain �� and a fine-scale fluctuation
displacement ~uðxÞ as

uðxÞ ¼ ��xþ ~uðxÞ: ð1Þ

The microscopic strain field is then given by the sym-
metric part of the gradient of displacement field as

�ðxÞ ¼ rsuðxÞ ¼ ��þ ~�ðxÞ; ð2Þ

which constitutes an additive decomposition into a homo-
geneous macroscopic part �� and a fluctuation part
~� ¼ rs ~uðxÞ. The macroscopic strain is assumed to be gov-
erned by surface data of the microscopic displacement
field (Hill, 1972) as

�� ¼ 1
jHj

Z
oH
ðu� nÞs dA; ð3Þ

where n represents the normal to the boundary of micro-
structure, the symbol � denotes vector dyadic product
and the operator ð�Þs yields the symmetric part of a sec-
ond-order tensor. Condition (3) places the following
restriction on the fluctuation field ~u in decomposition (1):

1
jHj

Z
oH
½~u� n�dA ¼ 0: ð4Þ

Let W denote the stress potential at the micro-scale that
relates the stress to the strain in the adhesive layer
r ¼ o�Wð�; xÞ. To bridge the macro- and micro-scales, we
introduce the minimization relation given by modified
Hill’s lemma (see Matouš et al., 2008 for details)

inf
��

�Wð��Þ ¼ inf
��

inf
~u

lc

jHj

Z
H

Wð��þrs ~uÞdH; ð5Þ

where W is the macro-traction potential that by recourse to
the Coleman and Noll’s method (Lubliner, 1972, 1973)
yields the cohesive law describing the failure of the adhe-
sive layer at the macro-scale, i.e., �t ¼ oW

od�uc. �u denotes the
macroscopic displacement and the symbol d�c ¼ ð�þ � ��Þ
represents the jump operator. Constraint (4) can be satis-
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fied for the following two classes of local boundary
conditions:

ðiÞ ~uðxÞ ¼ 0 on oH and ðiiÞ ~uþðxÞ
¼ ~u�ðxÞ on oH: ð6Þ

Together with (1), the first condition leads to linear dis-
placements on the boundary of the microstructure, while
the second condition implies periodicity of the microstruc-
ture. For the thin adhesive layer, we satisfy condition (4)
using a combination of the two purely kinematic condi-
tions (6)

~u 2V :¼ ~uj~u 2 H1ðHÞ; ~u� x1;2 periodic;~ujC�c ¼ 0
n o

; ð7Þ

where H1ðHÞ ¼ ~uj~u 2 L2; ~u;i 2 L2
� �

with L2 being the space
of square-integrable functions over H. To satisfy the min-
imization problem (5), we require that the variations with
respect to the strain d�� and virtual fluctuation field d~u van-
ish independently so that

�t � dd�uc ¼ lc

jHj

Z
H

rdH : d�� at the macro-scale; ð8Þ

1
jHj

Z
H
rd~u : rdH ¼ 0 at the micro-scale: ð9Þ

Exploiting the arbitrariness of the macroscopic strain
field, we let d�� ¼ 1

lc
ðN � dd�ucÞs, which, along with (8) and

arbitrariness of dd�uc, leads to the macroscopic cohesive
traction vector

�t ¼ 1
jHj

Z
H

rdH � N: ð10Þ

Eq. (9) is the weak form of the momentum balance at
the micro-scale, which can be solved along with the local
boundary conditions (7). Further, the macroscopic strain
field in the heterogeneous adhesive layer is approximated
in terms of the macroscopic displacement jump vector d�uc
as

�� :¼ 1
lc
ðN � d�ucÞs: ð11Þ

Without loss of generality, we can consider the adhe-
sive layer to be in the x3 ¼ 0 plane, for which (11) reduces
to

�� ¼ 1
lc

0 0 1
2 d�u1c

0 0 1
2 d�u2c

1
2 d�u1c 1

2 d�u2c d�u3c

264
375: ð12Þ
3. Constitutive response

We now describe the constitutive models adopted in
this work (i) to model the behavior of the constituents of
the heterogeneous adhesive, and (ii) to capture the inclu-
sion-matrix interface debonding.
3.1. Irreversible damage model

The damage model employs irreversible thermodynam-
ics and the internal state variables theory (Simo and Ju,
1987a). To introduce damage, let us consider the free en-
ergy potential given by

Uð�;xÞ ¼ ð1�xÞU0ð�Þ; ð13Þ

with

U0ð�Þ ¼
1
2
� : LðxÞ : �; ð14Þ

where U0ð�Þ represents the total potential energy function
of an undamaged (virgin) material, x denotes the isotropic
damage parameter and LðxÞ is the elastic stiffness of micro-
constituents.

The onset of damage is defined based on the concept of
damage surface. The state of damage in the material is gov-
erned by

gðY;vtÞ ¼ GðYÞ � vt
6 0; t 2 Rþ; ð15Þ

where Y is the thermodynamic force or damage energy re-
lease rate, while vt denotes the softening parameter (inter-
nal state variable) usually set as vt ¼ 0. The function GðYÞ
that characterizes the damage process in the material can
possess various mathematical forms and we adopt hereaf-
ter a three-parameter Weibull distribution that reads

GðYÞ ¼ 1� exp � Y � Yin

p1Yin

� �p2
� �

; ð16Þ

where Yin denotes the initial threshold (energy barrier),
and p1 and p2 are non-dimensional scale and shape
parameters, respectively.

The damage process is derived in terms of the following
irreversible, dissipative evolution equations

_x ¼ _j
og
oY
¼ _jH; H ¼ oGðYÞ

oY
; ð17Þ

where _j is the damage consistency parameter, which de-
fines damage loading/unloading according to the Kuhn–
Tucker complementarity conditions:

_j P 0; gðY ;vtÞ 6 0; _jgðY;vtÞ 	 0: ð18Þ

In addition, we define _vt ¼ _jH and the parameter _j is
determined from the consistency condition _g ¼ 0, from
which follows

_j ¼ � _Y and _Y ¼ � r

ð1�xÞ : _�: ð19Þ

The internal state variable evolves in a monotonically
increasing fashion and we assume unloading towards the
origin. It should be noted that the damage model leads to
loss of strong material ellipticity and the associated
numerical computations tend to exhibit mesh bias. To ad-
dress this issue, we adopt the viscous regularization ap-
proach proposed by Simo and Ju (1987b). The evolution
equations for _x and _vt that govern the visco-damage
behavior are obtained by replacing the damage consistency
parameter _j as

_x ¼ _jH! _x ¼ lg and _vt ¼ _jH! _vt ¼ g; ð20Þ

where l denotes the damage viscosity coefficient. As l
tends to zero, one recovers the instantaneous elastic
behavior, while for l approaching infinity, the rate-inde-
pendent response is obtained.
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3.2. Irreversible cohesive law

As indicated in Section 1, a key objective of this paper is
to study the effect of the properties of inclusion-matrix
interface on the type of failure taking place in the adhesive
layer and on the resulting macroscopic traction-separation
law. To model the failure of the inclusion-matrix interface,
we could adopt a cohesive failure law that could itself be a
result of another continuum or atomistic multi-scale anal-
ysis. In this work, however, we opt for the rate-indepen-
dent exponential cohesive failure law proposed by Ortiz
and Pandolfi (1999). Only the essential details of the model
are summarized below.

Denoting by w the cohesive free energy density per unit
area, we write the cohesive traction vector t0 as

t0 ¼
ow
od
; t0 ¼

t̂

d̂
t; t ¼ b2dþ ð1� b2Þðd � NcÞNc

� 	
; ð21Þ

where d ¼ ~uþ � ~u� denotes the displacement jump vector,
b 2 ½0; 1� is the mode mixity factor, and Nc represents the
unit normal to the particle–matrix cohesive surface. The
effective displacement jump d̂ is defined as

d̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2d̂2

s þ d̂2
n

q
; ð22Þ

where d̂s and d̂n denote the sliding and normal displace-
ment jumps, respectively, and are given by

d̂s ¼ jdsj; ds ¼ ð1� Nc � NcÞd; d̂n ¼ d � Nc: ð23Þ

In this work, we adopt the simple and computationally
convenient exponential cohesive law (Fig. 2) described by

w ¼ er̂c d̂c 1� 1þ d̂

d̂c

 !
exp

�d̂

d̂c

 !" #
; ð24Þ

t̂ ¼ ow

od̂
¼ er̂c

d̂

d̂c

exp
�d̂

d̂c

 !
; ð25Þ

where e = exp(1), r̂c denotes the maximum effective cohe-
sive traction and d̂c is the critical effective opening dis-
placement jump beyond which the interface experiences
damage. The cohesive fracture energy per unit area, i.e.,
the area under the traction-separation law bGc described
by (25), is given by
δδc

cσ

)
max,δ( tmax

cG

Tension

Volumetric
element

t

(Deformed)

element
cohesive

Fig. 2. Schematic of microscopic cohesive element and irreversible
cohesive law.
bGc ¼
Z 1

0
t̂ dd̂ ¼ er̂c d̂c; ð26Þ

which relates the material parameters bGc; r̂c and d̂c .
The failure processes occurring within the heteroge-

neous materials are quite complex and involve loading,
unloading and contact along the particle–matrix interfaces.
This necessitates accurate tracking of the history of failure
of cohesive interfaces. The loading/unloading of the internal
state variable, d̂max, is assumed to be similar to the formula-
tion presented in Ortiz and Pandolfi (1999) and is given by

_̂dmax ¼ _̂d if d̂ ¼ d̂max and _̂d P 0;
¼0 otherwise: ð27Þ

As shown in Fig. 2, the unloading is assumed to be di-
rected towards the origin:

t̂ ¼ t̂max

d̂max

d̂ if d̂ < d̂max: ð28Þ

Upon closure, however, noticing that friction and con-
tact are external to the cohesive law, we separate the nor-
mal and shear responses. The shear response under normal
closure is assumed to be the same as in opening, while we
adopt the following form of the normal traction in order to
enforce the contact constraint on the cohesive surfaces:

t̂n ¼ er̂c exp
�d̂max

d̂c

 !
1
a

sinh
a�dn

d̂c

� �
8d̂n < 0; ð29Þ

where a is a dimensionless parameter that controls the
growth of compressive normal traction t̂n (a = 50 for the
examples considered in this paper). Relation (29) is chosen
to be continuously differentiable at origin in the t̂n � d̂n

space even after partial failure of the interface, i.e.,

otn

od̂n

� �
d̂n¼0�

¼ otn

od̂n

� �
d̂n¼0þ

: ð30Þ

4. Numerical implementation

In this paper, we use the finite element method to
solve the micro-scale equilibrium (9) subject to purely
kinematic boundary conditions (6) and an imposed mac-
roscopic displacement jump d�uc to obtain the macro-
scopic tractions (10). To solve the micro-scale
equilibrium problem, we decompose the micro-scale do-
main H into open, non-overlapping subdomains, denoted
by He, e ¼ 1;2; . . . ;nele. The weak form of the equilibrium
on the micro-scale (9) can be discretized to obtain the
non-linear finite element form as

R eU� �
	 1
jHej A

nele

e¼1

Z
He
½B�T rf gdHe|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

volumetric contribution

þ
Z

Ce
coh

½P�T t0 dCe

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
interfacial contribution

8>>><>>>:
9>>>=>>>;¼0;

ð31Þ

where [B] represents the standard finite element strain-
displacement matrix, while Ce

coh denotes the inclusion-ma-
trix cohesive interface. The [P] matrix in the interfacial



M.G. Kulkarni et al. / Mechanics of Materials 41 (2009) 573–583 577
contribution involves standard one-dimensional shape
functions. The symbol A in (31) denotes the finite element
assembly operator, and we adopt Voigt notation to repre-
sent the symmetric stress tensor at the micro-scale as
rf g ¼ ð1�xÞ½L� ��þ ~�f g. The term involving the macro-

scopic strain �� acts as the external force at the micro-scale,
while the internal force consists of the fluctuating strain ~�

and the interfacial contribution. The micro-scale set of
non-linear equations (31) are solved for the micro-scale
degree-of-freedom vector, eU , using Newton–Raphson iter-
ative solution procedure. The consistent tangent is imple-
mented in the numerical framework, which ensures the
optimal quadratic rate of convergence. The numerical inte-
gration of the rate form of damage constitutive equations
is carried out using the backward Euler scheme (Matouš
et al., 2008).

The high initial stiffness of the cohesive elements, cou-
pled with loss of matrix integrity due to damage evolution,
poses convergence difficulties for the numerical solution.
Several loading/unloading events occurring due to the
damage localization in matrix, particle debonding and con-
tact along the particle–matrix interface further exacerbate
the convergence issues. We have adopted an adaptive
time-stepping procedure that allows us to vary the loading
step size without loosing accuracy. The procedure is based
on the value of maximum increment in the damage param-
eter ðDxÞ or cohesive internal variable ðDd̂maxÞ at any inte-
gration point (see Matouš et al., 2008 for more details). In
addition, as discussed in Section 3.2, the normal and shear
response for the particle–matrix interface behavior are
separated upon closure. We also impose constraint (30)
to enforce the continuity of derivatives at the origin in
t̂n � d̂n space.
5. Results and discussion

Although the formulation presented in the previous
sections is 3D, all the examples discussed hereafter are
solved in a 2D plane strain setting. The macroscopic load-
ing rate is kept constant for all loading cases (mode I or
mixed mode) such that _��33¼0:1s�1; _��23¼0:1s�1 and d�u2c=
d�u3c¼1:0 for mixed loading. The material properties cho-
sen for the examples are listed in Table 1. The damage evo-
lution of a simulated brittle epoxy matrix is captured using
the isotropic damage model described in Section 3.1. The
damage viscosity entering (20) is chosen as l = 19.0 s�1

in the remainder of the manuscript. This value is chosen
to eliminate the mesh bias of the finite element solution,
while providing a brittle behavior for the epoxy matrix
for the specified macroscopic strain rate. The inclusions
are assumed to have a linear elastic response and are 10
times stiffer than the matrix. This essentially simulates
the response of stiff particles in a compliant-brittle matrix.
Table 1
Material properties for stiff particle/soft matrix example.

E (GPa) m Yin (N/mm2) p1 p2 l (1/s)

Matrix 2.4 0.34 0.32 2.5 8.0 19.0
Inclusion 24.0 0.34 – – – –
The interface properties ðr̂c¼50MPa; d̂c¼0:0026mm;

b¼0:8Þ are chosen in such a way that the interface failure
strength r̂c is lower than the maximum matrix strength
and complete interface failure occurs within the applied
range of loading. In all the examples presented hereafter,
it is made sure that the finite element solution is spatially
and temporally converged. In the remainder of this section,
we first present the study of RVE size and later focus our
attention on analyzing the effect of particle size, volume
fraction, and inclusion-matrix interface properties on the
microscopic failure details and macroscopic traction-sepa-
ration law of heterogeneous adhesives.

5.1. RVE size

To be representative, the RVE should be large enough to
contain sufficient information about the microstructural
geometry and failure events, but small enough so that
the argument of scale separation is applicable and compu-
tational analysis is feasible. The question of existence and
size of RVE is relatively unanswered for brittle materials
with strong softening (Gitman et al., 2007). In order to
investigate the size of RVE, we consider eight different val-
ues of RVE width w ranging from 150 to 4000 lm, while
maintaining the RVE height (lc = 300 lm), particle size (/
= 80 lm), and volume fraction (Vf = 22.34%) constant. The
choice RVE height is motivated by practical size of adhe-
sive films. The values of / and Vf correspond to the refer-
ence problem analyzed in this study. The statistical effect
of particle distribution is taken into account by considering
10 randomly oriented microstructural realizations for each
RVE width. The macroscopic traction-separation curves for
a few representative cases (3 of 8) under mixed-mode
loading are shown in Fig. 3. Here, we highlight the fact that
it usually suffices to perform the representativeness study
under mixed-mode loading, when the effective properties
are more sensitive to the effect of semi-periodic boundary
conditions than under the mode I loading. However, legit-
imate conclusions about the RVE size can be obtained only
Fig. 3. Effect of RVE size on the macroscopic traction-separation curve
under mixed-mode loading.
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by computing the bounds. The macroscopic curves corre-
spond to the mean of the 10 different particle realizations.
For w P 2000 lm, the macroscopic curves are indistin-
guishable under mixed-mode loading. The effect of RVE
width on the macroscopic mode I adhesive fracture tough-
ness GIc and failure strength �rmax is depicted in Fig. 4(a)
and (b), respectively. The curves correspond to the mean,
while the size of the error bars is given by standard devia-
tion of the 10 random realizations. The fracture toughness
is computed by evaluating the area under macroscopic
traction-separation curve as

GI=IIc ¼
Z d�ucf

0

�tn;tðd�ucÞdd�u3;2c; ð32Þ

where GI=IIc denotes the mode I or mode II fracture tough-
ness and d�ucf is the displacement jump associated with the
complete failure of the adhesive layer. The peak stress in
macroscopic traction-separation curve is designated as
failure strength. As shown in Fig. 4(a) and (b), the mean
values of GIc and �rmax become insensitive to the RVE width
for w P 500 lm, with the error bars becoming small for
Fig. 4. Effect of RVE size on mode I and mixed-mode fracture toughness
(a) and failure strength (b).
w P 3000 lm. In the remainder of the examples presented
in this paper, we choose a conservative value of
w = 3000 lm, so as to have a sufficiently large domain to
analyze the micro-scale failure details, although a width
of about 1000 lm would be most likely sufficient to obtain
the effective macroscopic properties.

To conclude this section on the RVE size study, let us
emphasize that a more rigorous analysis of RVE size that
takes into account a wide range of volume fractions, parti-
cle size and elastic property mismatch would be necessary
in order to determine the representative dimensions appli-
cable for a general class of brittle materials that exhibit
softening.

5.2. Effect of particle size

Five representative cells having equal volume fraction
(Vf = 22.34%) and containing 10, 15, 21, 40, and 103 parti-
cles of diameter / = 160.0, 130.7, 110.4, 80.0, and
50.0 lm, respectively, are chosen to study the effect of
the particle size on the failure of the adhesive system.
The effect of particle size on the macroscopic constitutive
Fig. 5. Effect of particle size on macroscopic traction-separation curve (a)
and macro-scale fracture toughness and failure strength (b) under mode I
loading.
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law is presented in Fig. 5(a). Since the number of cohesive
surfaces across the particle–matrix interface increases
with increase in the number of particles, the slope of the
macroscopic traction-separation curve in the initial linear
regime decreases. This is due to the intrinsic nature of
the adopted cohesive law, i.e., the cohesive surfaces con-
tribute to the apparent stiffness of the heterogeneous
adhesive. The failure process gets delayed with decrease
in particle size leading to a shift of the softening
(downward) part of the macroscopic cohesive curve to
higher displacement jump values. As before, the macro-
scopic failure properties, namely, the mode I fracture
toughness GIc and failure strength �rmax can be extracted
from the traction-separation law (Fig. 5(b)). The error bars
represent the standard deviation computed for five ran-
dom particle realizations. Increasing the particle size re-
sults in a higher failure strength. The prolonged failure
for smaller particle sizes, on the other hand, results in an
exactly opposite trend for the fracture toughness, in gen-
eral agreement with the experimental observations re-
ported by Spanoudakis and Young (1984a) for lower
volume fractions. The effect of particle size on macroscopic
properties is more pronounced for smaller particles than
for larger ones.

The damage pattern at complete failure for three cases
are shown in Fig. 6(a)–(c). We observe that some of mi-
cro-cracks that initiate at the particle–matrix interface
are arrested, while others coalesce together to form a dom-
inant macrocrack leading to complete failure of the heter-
ogeneous layer. The dominant macrocrack is formed by the
Fig. 6. Effect of particle size on micro-scale damage pattern under mode I
loading. The contours correspond to values of the damage parameter x
introduced in (13). The results are displayed on the deformed mesh.
combination of matrix failure and particle–matrix inter-
face debonding. Similar fracture surfaces consisting of ma-
trix microcracking and particle–matrix debonding has
been reported in Kawaguchi and Pearson (2003b) for
glass-filled epoxy. Overall, the crack propagation direction
is perpendicular to the macroscopic loading. The damage
zone in the matrix is about 6–8 elements thick. The large
damage zones observed in Fig. 6 are an effect of strain con-
centration in the damaged elements on the deformed
mesh. Fig. 6(b) also shows a more detailed view of damage
in the vicinity of two debonded particles. The amount and
location of debonding is associated not only with the mac-
roscopic loading direction (right zoomed view) but also
with the interaction with neighboring particles (left
zoomed view). Furthermore, we notice that, with decrease
in the particle size, the damage pattern is more distributed,
which explains the associated increase in the fracture
toughness.

Fig. 6(d) shows the damage pattern for the 40-particles
case with perfect particle–matrix interface. The material
properties for the matrix and inclusions are exactly the
same as before (Table 1), but no cohesive elements are
introduced along the particle–matrix interfaces. By con-
trasting Fig. 6(b) and (d), we see that the failure is com-
pletely cohesive in the former case, while it is adhesive–
cohesive in the latter. In the present study, where no par-
ticular model is introduced to capture the behavior at the
interface between adhesive and adherends, adhesive fail-
ure refers to damage inside the matrix in the vicinity of
adherend, while cohesive failure alludes to fracture well
inside the heterogeneous layer. Restricting the failure to
cohesive type could be of particular importance in design-
ing adhesives that are usually considered as a weak link in
the bonded structure and are susceptible to interfacial or
adhesive failure. Thus, controlling the particle–matrix
interface properties may play an important role in deciding
the failure type of an adhesive.
Fig. 7. Fraction of cohesive interfaces not failed, failing, and failed as a
function of loading history for 40-particles case under mode I loading. The
inset of the figure shows the characterization of a cohesive interface into
different categories based on the value of the particle–matrix displace-
ment jump d̂.
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To gain some insight on the evolution and extent of the
particle–matrix interfacial debonding, we focus in Fig. 7 on
the failure status of cohesive interfaces as a function of
loading history for the 40-particles case under mode I load-
ing. For a macroscopic loading d�u3c > 0:005 mm, about 25%
of the cohesive interfaces start to fail leading to a substan-
tial change in the shape of the macroscopic cohesive law
(Fig. 5(a)). Only after sufficient opening is achieved, the
fraction of fully failed interfaces becomes non-zero and is
accompanied by a reduction in the number of failing inter-
faces. It is a mere coincidence that the fraction of failing
and failed cohesive interfaces asymptote at the same level.
It should also be noted that the sum of fractions of cohesive
interfaces at any instant of loading is unity.
Fig. 8. Effect of particle size on macroscopic traction-separation curve (a)
and damage pattern (b)–(e) under mixed-mode loading.
The effect of the particle size on the macroscopic effec-
tive properties under mixed-mode loading is illustrated in
Fig. 8(a), while the corresponding damage patterns at fail-
ure are shown in Fig. 8(b)–(d). As expected, the maximum
normal macroscopic tractions are lower than under mode I
loading (Fig. 5(a)) due to the coupling between the normal
and shear modes. A clear size effect is observed indicating
increased fracture toughness with decrease in particle
diameter. The damage patterns are much more distributed
compared to the mode I loading and the semi-periodicity
of the heterogeneous layer is evident under mixed-mode
loading. For the 21-particles case (Fig. 8(b)), only one dom-
inant macro-crack is observed, while for the 103-particles
case (Fig. 8(d)) several microcracks normal to direction of
loading result in a complete failure. The particle debonding
is also observed to be normal to the loading direction.
Again, as in the mode I case, the failure is completely cohe-
sive or contained within the layer. The damage pattern for
the 40-particles perfect interface case under mixed-mode
loading, shown in Fig. 8(e), indicates a adhesive–cohesive
failure, as opposed to the cohesive failure for the weak
interface (Fig. 8(c)).
5.3. Effect of distribution in particle size

As opposed to Section 5.2, where the inclusion diameter
within each realization is assumed to be constant, we con-
sider in this section a Gaussian distribution of particle
sizes. The mean particle diameter is assumed to be
80 lm with the standard deviation (r) ranging from 0.2
to 15 lm. The heterogeneity volume fraction (22.34%)
and the number of particles (40) are maintained constant.
The effect of particle size distribution on the macroscopic
cohesive law and damage pattern at failure is depicted in
Fig. 9. Although the particle distribution does not show
an appreciable effect on the macroscopic cohesive law
(Fig. 9(a)), differences can be observed in the microscopic
failure pattern (Fig. 9(b)–(d)): the micro-cracks tend to
coalesce so as to bridge the bigger size particles, which de-
bond sooner than smaller ones (Nicholson, 1979; Gent,
1980). The macroscopic fracture toughness is, however,
hardly affected by the distribution in particle size since
the energy dissipated in damaging the matrix is the major
factor contributing to fracture toughness as opposed to the
change in cohesive failure energy introduced by practical
distribution in particle size. The adhesive failure strength,
which is dictacted by formation of a macro-crack in the
matrix, is also independent of the spread in particle size.

5.4. Effect of volume fraction

The effect of volume fraction Vf on the failure character-
istics of heterogeneous adhesives is examined using nine
different volume fractions ranging from 2.79% to 30.15%,
while maintaining the particle diameter constant (/
= 80 lm). The statistical nature of particle distribution is
taken into account by considering five random particle
realizations for each volume fraction. The effect of volume
fraction on the effective traction-separation law of the
layer is depicted in Fig. 10(a), which shows the mean of



Fig. 9. Effect of variation of particle size on macroscopic traction-separation (a) and on the damage pattern (b)–(d) law under mode I loading.

Fig. 10. Effect of volume fraction on the macroscopic traction-separation
law (a) and macroscopic fracture toughness and failure strength (b).
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the five random realizations for four values of Vf. Although
the particles are stiffer than the matrix, an increase in the
particle volume fraction results in a slight reduction of the
slope of the initial linear regime and lower failure strength
due to the increased number of weak particle–matrix
interfaces. The softening regime of the macroscopic cohe-
sive law is characterized by failure of particle–matrix
interfaces and the failure is prolonged with increase in
the number of particles.

The macroscopic failure strength �rmax and fracture
toughness GIc of the adhesive extracted from the macro-
scopic traction-separation laws are shown in Fig. 10(b).
The error bars are again calculated as standard deviation
about mean of five random particle realizations. As pointed
out before, the failure strength decreases with increase in
particle volume fraction. On the other hand, the fracture
toughness increases with higher volume fraction. This
can be attributed to the more distributed nature of damage
and increasingly higher amount of energy spent in the deb-
onding of particle–matrix interface.

5.5. Effect of micro-scale particle–matrix interface
parameters

We now study the effect of the two physical parameters
of the cohesive law employed to model the particle–matrix
interface failure (Section 3.2), namely, the critical strength
r̂c and fracture toughness Gc . The study is performed on
five randomly chosen particle realizations consisting of
40 particles of 80 lm diameter constituting a volume frac-
tion of 22.34% under mode I loading. The effect of variation
of r̂c , the particle–matrix interface strength, on the macro-
scopic properties, while maintaining the interface tough-
ness, Gc , constant, is presented in Fig. 11(a). The
maximum macroscopic failure strength increases indicat-
ing a more brittle type of failure with increase in the inter-
face strength. As shown in the inset of Fig. 11(a), for lower
values of r̂c , failure type is completely cohesive with parti-
cle debonding, while higher values of the interface
strength preclude debonding and direct the microcracks



Fig. 11. Effect of microscopic interfacial failure strength r̂c (at constant
fracture toughness Gc) on macroscopic traction-separation law (a) and
macroscopic fracture toughness and failure strength (b). The inset of (a)
shows details of the failure processes at the micro-scale. Units for
r̂c and d̂c in (a) are MPa and mm, respectively. Fig. 12. Effect of particle–matrix interfacial fracture toughness bGc on the

(a) macroscopic traction-separation law and (b) fracture toughness and
failure strength. The inset of (a) shows details of the failure processes at
the micro-scale. Units for bGc and d̂c in (a) are N/mm and mm,
respectively.
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away from the inclusions resulting in an adhesive–cohe-
sive type of failure. The value of macroscopic displacement
jump ðd�u3cÞ at which maximum macroscopic strength
ð�rmaxÞ occurs appears to be independent of the critical dis-
placement jump d̂c. Lower values of interface strength re-
sult in a prolonged failure of the heterogeneous adhesive.
The effect on the macroscopic fracture toughness and fail-
ure strength is further studied in Fig. 11(b). Both macro-
scopic fracture toughness and maximum strength
increase by making the particle–matrix interface stronger
resulting in increase in the amount of damage in the ma-
trix. However, both would saturate as the perfect parti-
cle–matrix interface limit is approached, which is
apparent from flattening of both the curves for r̂c > 60.

The effect of variation of particle–matrix interface
toughness, bGc , is shown in Fig. 12(a), while keeping the
critical interface strength constant ðr̂c ¼ 50 MPaÞ. A brittle
interface is characterized by an overall brittle macroscopic
failure in the heterogeneous adhesive. Increasing the
microscopic interfacial fracture toughness improves the
macroscopic fracture toughness by prolonging the failure
processes in the adhesive film. Unlike in the previous case,
changing the microscopic interfacial fracture toughness bGc

affects not only the value of the peak cohesive traction but
also the critical value of the displacement jump �u3 at which
that peak occurs. Increasing the energy needed to fail the
particle–matrix interface leads to a corresponding increase
in the macroscopic effective fracture toughness GIc of the
adhesive layer (Fig. 12(b)). This increase is associated not
only with the additional energy dissipated along the inclu-
sion-matrix interface but also in the amount of damage in
the matrix, resulting in a non-linear relation between
GIc and bGc.

The macroscopic failure strength �rmax, on the other
hand, has a non-monotonic dependence on Gc , reaching a
maximum of about 69.4 MPa for bGc 
 0:25 N=mm before
decreasing with increasing bGc. In all the cases, the damage
in the heterogeneous adhesive layer starts in the matrix
due to the particle–matrix or particle-to-particle interac-
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tion. For more brittle particle–matrix interfaces (lower val-
ues of bGc), this initial matrix damage is augmented by the
stress concentration present at the tips of particle–matrix
interface cracks, which are active only for a short time after
their critical opening is reached. These two effects lead to
localization in the matrix, resulting at the macro-scale in
a lower peak cohesive traction. For more ductile interfaces
(higher values of bGc), the delayed failure of the interfaces
reverses the synergy between particle–matrix interaction
and interfacial cracks that can take larger opening before
failure. In that case, the stress concentration due to the
localized matrix failure promotes the interfacial failure,
again leading to a lower value of �rmax. For intermediate val-
ues of bGc , these two effects compete, resulting in an opti-
mum value of the macroscopic failure strength �rmax. In
addition to the competition between particle–matrix inter-
action and interfacial cracks, the penalty type cohesive
model might also attribute towards such behavior.

6. Conclusions

A multi-scale cohesive scheme has been used to study
the failure processes occurring at the micro-scale in heter-
ogeneous adhesives and their effect on the macroscopic
cohesive response. A study of the RVE size has shown that
the microscopic domain width has to be about 2 or 3 times
the layer thickness for the macroscopic response to be rep-
resentative for the loading histories considered. The effect
of particle size, volume fraction and particle–matrix inter-
facial parameters on the failure response and effective
macroscopic properties has been analyzed. In contrast to
the perfect particle–matrix interface case, where the fail-
ure is of adhesive–cohesive nature, a weak interface be-
tween the constituents generally results in a cohesive
type of failure. The presented response curves (Figs. 5(b),
10(b), 11(b), and 12(b)) could be used as design diagrams
to yield a potentially new heterogeneous adhesive with de-
sired macroscopic properties.
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