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SUMMARY

Interfacial damage nucleation and evolution in reinforced elastomers subjected to finite strains is
modelled using the mathematical theory of homogenization based on the asymptotic expansion of
unknown variables. The microscale is characterized by a periodic unit cell, which contains particles
dispersed in a blend and the particle matrix interface is characterized by a cohesive law. A novel
numerical framework based on the perturbed Petrov–Galerkin method for the treatment of nearly
incompressible behaviour is employed to solve the resulting boundary value problem on the microscale
and the deformation path of a macroscale particle is predefined as in the micro-history recovery
procedure. A fully implicit and efficient finite element formulation, including consistent linearization,
is presented. The proposed multiscale framework is capable of predicting the non-homogeneous micro-
fields and damage nucleation and propagation along the particle matrix interface, as well as the
macroscopic response and mechanical properties of the damaged continuum. Examples are considered
involving simple unit cells in order to illustrate the multiscale algorithm and demonstrate the complexity
of the underlying physical processes. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the pioneering work of Hill [1, 2] and Hashin and Shtrikman [3], it has been widely
recognized that phenomena occurring at lower scales often have a major impact on the macro-
scopic behaviour of heterogeneous systems and that multiscale modelling may lead to more
accurate predictions of the overall material response. A wide range of approaches has been
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proposed to achieve the link between macro- and micro-levels. Many coupling procedures
are based on micromechanics [4, 5]. Advantages of such approaches include simple evalua-
tion of the micro-level fields, easy data transfer and analytical description of the macroscopic
behaviour. However, micromechanics-based methods usually rely on limiting assumptions (low
particle volume fraction, simple constitutive models, etc.) that are needed to obtain closed-form
constitutive formulas at the macroscale. Another class of multiscale approaches, based on Hill’s
averaging lemma and/or the mathematical theory of homogenization, links the deformation of
the microstructure to the local deformation of the macro-continuum. In particular, the mathe-
matical theory of homogenization, which uses an asymptotic expansion of displacement, strain
and stress fields about macroscopic values, has been used by several researchers for analysing
multiscale responses [6, 7]. Other recent models devoted to multiscale modelling of hetero-
geneous systems at small and finite strains are those of Michel et al. [8], Miehe et al. [9],
Kouznetsova et al. [10] and Gosh et al. [11] to name just a few. An effective local-global
technique based on the hierarchical decomposition of field variables has also been proposed
by Garikipati and Hughes [12] while Strouboulis and co-workers [13] proposed a generalized
finite element method using mesh-based handbook functions. Finally, Fish and Chen [14] have
used the multigrid method for solving heterogeneous media with strong scale mixing.

In the present work, the damage nucleation and propagation along the particles matrix inter-
faces in particulate reinforced elastomers under finite strains are modelled using a multiscale
analysis procedure within a cohesive finite element framework. Analysis of damage evolu-
tion in reinforced elastomers is quite complex, especially for those characterized by a high
volume fraction of the reinforcing phase, such as solid propellants. In these highly filled elas-
tomers, experimental observations have shown that the failure process is primarily driven by
the debonding of the larger particles, with the smaller particles playing the role of stiffener for
the matrix [15, 16].

The number and complexity of these phenomena have led most of the modelling efforts
reported in the literature to rely on homogenized continuum models to capture some of these
key features of the mechanical response. For example, Bergstrom and Boyce [17] have proposed
a dual-network model to predict the non-linear viscoelastic response of carbon-black reinforced
rubbers, with emphasis on capturing the large deformation and Mullins effects. Drozdov and
Dorfmann [18] also used the network theory of rubber elasticity to capture the non-linear
equilibrium response of filled and unfilled elastomers. Various homogenized models have been
also proposed to simulate the damage evolution: see, for example, the analysis presented by
Farris [19], Schapery [20], Ha and Schapery [21], Simo [22], Ravichandran and Liu [23].
Other approaches rely on micromechanics [5, 24, 25]. Most theories, however, are based on
phenomenological continuum models of various features of the constitutive response of filled
elastomers. Examples include Dorfmann and Ogden’s analysis of the Mullins effect [26], Kaliske
and Rothert’s work on the internal friction [27] and Miehe and Keck’s stress decomposition
model of damage evolution [28].

Another complexity is associated with the numerical treatment of these materials. As men-
tioned earlier, the matrix material is nearly incompressible and a special numerical formula-
tion has to be employed. A mixed finite element method that interpolates the pressure and
displacement fields separately is required. For Galerkin methods, the choice of interpolation
functions must satisfy the Babuška–Brezzi condition (see, e.g. Reference [29]) in order to
achieve uniqueness, convergence and robustness. Without balancing the interpolations properly,
significant oscillations in the solution typically result. Considerable effort has been devoted in
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recent years to develop novel numerical techniques that give stable solution [30–32]. Espe-
cially, stabilized theories, where Babuška–Brezzi stability condition is circumvented, have been
recently explored [33–35].

To achieve a better description of the microstructural damage process, Zhong and Knauss
[36, 37] performed a cohesive finite element analysis of unit cell models to study the progressive
decohesion of the particles. However, their analysis was performed in a 2D setting and did
not involve a multiscale formulation and a consistent data transfer. Therefore, the macroscopic
constitutive response presented in their work is likely to be strongly affected by the boundary
conditions applied on the unit cell. Moreover, due to the numerical scheme used to solve the
set of non-linear equations, the scope of their analysis was limited.

In this work, we build on Zhong and Knauss’ preliminary investigation and perform a
multiscale analysis where the microscale is characterized by a unit cell containing particles
dispersed in a blend. The particle/matrix interface is modelled by a cohesive law describing
the dewetting process in accordance to a prescribed traction-separation relation that accounts
for mode mixity [38, 39]. However, unlike in Zhong and Knauss’ study, we emphasize the link
between the damage taking place at the particle level and the macroscopic constitutive response
of the filled elastomer by adopting the mathematical theory of homogenization to couple the
micro- and macro-domains. Moreover, a novel numerical solver is used to solve the resulting
boundary value problem at the microscale in a fully 3D setting, and the micro-history recovery
procedure by Fish et al. [40] is applied to describe the response of a material point at the
macroscale.

In Section 2, we present the mathematical theory of homogenization based on an asymptotic
expansion of unknown fields. Section 3 describes the cohesive model characterized by an expo-
nential traction-separation law that accounts for mode mixity. A stabilized variational framework
based on a Lagrangian formulation is presented in Section 4. The non-linear solver based on an
arc-length procedure and consistent linearization are presented in Section 5. Section 6 describes
constitutive laws characterizing the mechanical behaviour of individual constituents. We then
present a set of examples involving simple unit cells to demonstrate the multiscale algorithm
and complexity of the underlying physics (Section 7).

Adopting conventional symbolic notation practices, we herein denote second-order tensors
with upper case boldface italic and lower case boldface Greek letters, e.g. P and �. The trace
of a second-order tensor is denoted by tr(A), and the tensor operations between two second-
order tensors S and E are indicated as SE for the tensor contraction (a second-order tensor)
and S : E for the scalar product (a double contraction). Other notational conventions adopted
in this paper are introduced as needed.

2. MATHEMATICAL THEORY OF HOMOGENIZATION

We describe, in this section, the mathematical theory of homogenization in the finite strain set-
ting. This theory was used successfully by several researchers, but has been primarily limited to
small strain problems [6, 7]. Finite strain homogenization procedures, based on Hill’s averaging
lemma, have also been proposed [9, 10]. However, to our knowledge, the mathematical theory
of homogenization that includes the cohesive zone modelling of interfacial damage evolution
in heterogeneous solids subjected to finite deformations has not yet been proposed.
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Figure 1. Kinematic decomposition of deformation gradients,
and microscopic and macroscopic domains.

Let us consider a composite material composed of hyperelastic particles embedded in a
hyperelastic matrix. The composite is assumed to be locally periodic (Y -periodic) with the period
of microstructure defined by a statistically representative volume element (SRVE), denoted by
�0, as shown in Figure 1. This body undergoes the motion �(X, Y ), and F (X, Y ) = ∇�(X, Y )

denotes the deformation gradient with the Jacobian given by J = det(F ). Here X ∈ R3

designates the position of a particle in the reference macroscopic configuration �0 ⊂ R3 in
the Cartesian co-ordinate system. Next, consider Y = X/� be the microscopic position vector
in �0 ⊂ R3 in the Cartesian co-ordinate system. Henceforth, � denotes a very small positive
number that, roughly speaking, corresponds to the size of a microstructure; X and Y are
referred to as slow and fast variables, respectively.

Next, let the heterogeneity be enclosed by a cohesive surface S0 with a unit normal N0,
and let x = �(X, Y ) be the spatial co-ordinates of a particle, with x = X + u(X, Y ), where
the displacement field u is approximated in terms of the double-scale asymptotic expansion on
� × � as

u(X, Y ) ≈ 0u(X, Y ) + �1u(X, Y ) + h.o.t. (1)

Here the left superscripts 0,1,... represent the asymptotic order. Using a Lagrangian formulation
and employing the indirect macroscopic spatial derivatives, ∇X(�(X, Y = X/�)) = ∇X� +
(1/�)∇Y �, the deformation gradient reads

F = �x

�X
= 1 + ∇Xu ≈ �−1∇Y

0u + �0[1 + (∇X
0u + ∇Y

1u)] + h.o.t. (2)

where 1 represents the second-order identity tensor. The higher-order terms h.o.t. ≡ �1(∇X
1u+

∇Y
2u) + �2(· · ·) + · · · are not considered in this analysis. Thus, the deformation gradients for
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the first two asymptotic orders �−1 and �0 are given by

(−1)F = ∇Y
0u

0F = [1 + (∇X
0u + ∇Y

1u)]
(3)

where ∇X and ∇Y denote gradients with respect to the X and Y co-ordinates, respectively.
The constitutive relations in terms of the first Piola–Kirchoff (P–K) stresses for various

asymptotic orders i are given by

iP = �W

�F

∣∣∣∣ F = iF
(4)

and the resulting asymptotic expansion of the stress field yields

P (X, Y ) ≈ �−1(−1)P + �0(0)P + · · · (5)

where a free energy density function, W , is introduced in Section 6.
Described in terms of the reference configuration, the governing equations, including the

contribution of the cohesive zone, are

∇ · P + f = 0 in �0

P · N = t on �(��P )

u = ū on �(��u)

�P · N0� ≡ �t0� = 0 on S0

(6)

where t0 represents the cohesive tractions across S0, f (X, Y ) denotes body forces and t(X)

represents prescribed macroscopic tractions on the boundary �(��P ). We also consider Dirichlet
boundary conditions ū on �(��u). Moreover, the symbol �•� = (•+ −•−) denotes the jump of
a quantity • across the cohesive surface and ± represents plus and minus sides of the cohesive
surface, S±

0 .
Following standard variational methods, the principle of virtual work reads∫

�0

P : ∇�u d�0 +
∫

S0

t0 · ��u� dS0 −
∫

�0

f · �u d�0 −
∫

��0

t · �u dA0 = 0 (7)

for all admissible variations �u satisfying

�u ∈ U ⊂ [H 1]N, �u = 0 on �(��u) (8)

where N is the space dimension and H 1 represents the Sobolev space.
As apparent in (7), the presence of a cohesive surface results in an additional term in the

principle of virtual work, which can be deduced from the unbounded part of the gradient of
the weighting function [41]. Note, however, that in this work, the discontinuity is always con-
tained between volumetric elements as opposed to the generalized finite elements methods [41].
Hence, the test functions lie in the space of bounded variations since they are discontinu-
ous across the interface. The cohesive tractions perform work on the displacement jumps or
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‘opening displacements’ over the cohesive surface:

� ≡ ��(X, Y )� = �u� (9)

The detailed derivation of the cohesive part is presented in Section 3.
Introducing the asymptotic expansions (1) and (5) into (7), taking the limit when � → 0+

and making use of the indirect spatial derivatives, the principle of the virtual work (7) holds
in the terms of the same power of �,

O(�−2) : 1

|�0|
∫

�0

∫
�0

(−1)P : ∇Y �u d�0 d�0 = 0 (10a)

O(�−1) : 1

|�0|
∫

�0

∫
�0

[(−1)P : ∇X�u +0P : ∇Y �u] d�0 d�0

+ 1

|�0|
∫

�0

∫
S0

t0 · ��u� dS0 d�0 = 0 (10b)

O(�0) : 1

|�0|
∫

�0

∫
�0

0P : ∇X�u d�0 d�0 − 1

|�0|
∫

�0

∫
�0

f · �u d�0 d�0

−
∫

��0

t · �u dA0 = 0 (10c)

for all �u ∈ V�×�, where

V�×� = {�u(X, Y ) | �u(X, Y ) ∈ � × �, �u(•, Y ) is Y -periodic, �u|��u
= 0} (11)

Note that the following integration rules have been applied:

lim
�→0+

∫
�0

•(X/�) d�0 = 1

|�0|
∫

�0

∫
�0

•(Y ) d�0 d�0

lim
�→0+ �

∫
S0

•(X/�) dS0 = 1

|�0|
∫

�0

∫
S0

•(Y ) dS0 d�0

(12)

to integrate the Y -periodic function • [7].
Let us first consider the O(�−2) equation (10a). Since the variation of the displacement

field �u is an arbitrary, one can choose �u = �u(Y ). Then, integrating by parts, applying the
divergence theorem and noting that the terms on the opposite faces of the unit cell cancel due
to the periodicity condition, we obtain

∇Y ·(−1)P = 0 and 0u = 0u(X) ⇒ (−1)F = (−1)P = 0 (13)

The deformation gradient (2) and displacement jump (9) across the cohesive surface can now
be rewritten as

F ≈ [1 + ∇X
0u] + ∇Y

1u = F + ∇Y
1u

� ≡ �u� = �1u�
(14)
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where F = [1 + ∇X
0u] denotes the macroscopic deformation gradient and ∇Y

1u represents
the gradient of the fluctuation microscopic displacement field. Here and henceforth, a quantity
marked by an underline • denotes a quantity • at the macroscale.

Focusing on one macroscopic material point and choosing �u = �1u, the O(�−1) equation

1

|�0|
∫

�0

0P : ∇Y �1u d�0 + 1

|�0|
∫

S0

t0 · ��1u� dS0 = 0 (15)

with

1u = Y -periodic on �(��) and �1u ∈ U, �1u = 0 on �(��) (16)

represents the weak form of the equilibrium at the microscale for purely kinematic boundary
conditions. In addition, due to the periodicity assumption and in order to satisfy the equilibrium
with the neighbouring SRVEs, the tractions on the SRVE boundary, ��0, will also be periodic.
The computational approach for solving (15) is described in Sections 4 and 5.

Finally, the O(�0) equation with �u = �0u denotes the weak form of the equilibrium equation
at the macroscale∫

�0

P : ∇�0u d�0 −
∫

�0

f · �0u d�0 −
∫

��0

t · �0u dA0 = 0 (17)

where the macroscopic first P–K stress and the macroscopic body force are defined as

P = 1

|�0|
∫

�0

0P d�0

f = 1

|�0|
∫

�0

f d�0

(18)

with

0u = ū on �(��u) and �0u ∈ U, �0u = 0 on �(��u) (19)

In other words, the volume average of the variation of the work performed on the SRVE equals
the local variation of the work at the macroscale, and the microscale fluctuation field does not
contribute to the average variation of the work. The macroscopic boundary value problem is
not solved numerically in this work. The deformation path of a macroscale material point is
rather predefined as in the micro-history recovery procedure by Fish et al. [40]. For a more
detailed description of the mathematical theory of homogenization in a small strain setting, see
References [6, 7, 40].

3. FINITE STRAIN IRREVERSIBLE COHESIVE LAW

Here we describe the finite strain irreversible cohesive law introduced in Equations (6) and
(7) and subsequently in the boundary value problem at the microscale (Equation (15)). Let us
recall that the displacement jump, Equation (9), is reduced by Equation (14) to

� ≡ ��(X, Y )� ≡ �u� = �1u� (20)
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Figure 2. Geometry of cohesive element and irreversible cohesive law.

Please note that � vanishes identically when the body undergoes a rigid transformation, as
required of a proper deformation measure. The cohesive element is shown schematically in
Figure 2 together with the effective traction-separation law, which is described in what follows.

By recourse to Coleman and Noll’s method [42, 43], it is possible to show that the local
tractions t0 take the form

t0 = ��

��
(21)

It is worth noting in this regard that the cohesive free energy � is subject to the restric-
tions imposed by material frame indifference. Following the approach proposed by Ortiz and
Pandolfi [39], the unique deformed cohesive surface S̄ is defined in terms of the mean defor-
mation mapping

�̄(X, Y ) = 1
2 [�+(X, Y ) + �−(X, Y )], �±(X, Y ) = �̄(X, Y ) ± 1

2� (22)

and the traction separation law is given by

t0 = t̃

�̃
t̂, t̂ = [�2� + (1 − �2)(� · N)N ] (23)

where � assigns different weights to the sliding and normal opening displacements and N

denotes the unit normal of the cohesive surface S̄ in the current configuration.
The present work adopts the simple and computationally convenient cohesive law [39, 44, 45]

(Figure 2)

� = e�c�c

[
1 −

(
1 + �̃

�c

)
e−�̃/�c

]
(24a)

t̃ = ��

��̃
= e�c

�̃

�c
e−�̃/�c (24b)
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where e = exp(1), �c denotes the characteristic opening displacement and �c is the maximum
effective cohesive traction. The effective opening displacement �̃ is defined by

�̃ =
√

�2�̃2
s + �̃2

n (25)

while the normal and tangential displacement jump components are

�̃n = � · N , �̃s = |�s |, �s = (1 − N ⊗ N)� (26)

where ⊗ denotes dyadic product. As in Reference [39], we shall assume loading if �̃ = �̃max
and ˙̃� � 0. The evolution of the internal state variable, �̃max, is given by

˙̃�max =
{ ˙̃� if �̃ = �̃max and ˙̃� � 0

0 otherwise
(27)

We also assume unloading to be directed towards the origin (Figure 2), giving

t̃ = t̃max

�̃max
�̃ if �̃ < �̃max or ˙̃� < 0 (28)

For the cohesive model described by (24), the cohesive fracture energy per unit area of the
cohesive surface is given by

Gc =
∫ ∞

0
t̃ d�̃ = e�c�c (29)

It bears emphasis that, upon closure, the cohesive surfaces are subjected to a (possibly
frictional) contact constraint. Instead of a more complex numerical treatment of the contact
between the crack faces, such as in Reference [46], we enforce the contact constraint with
the aid of a non-sliding (stick) exponentially increasing compressive constraint on the effective
cohesive traction (Figure 2):

t̃ = �̃�c
�̃ + �c

�2
c

e(�̃+�c/�c) ∀�̃ > 0 if �̃n < 0 (30)

Please note that the effective opening displacement and effective tractions are always positive,
that contact is detected for negative normal opening displacement, �̃n < 0, and that the first
derivatives of (24b) and (30) evaluated at �̃ = 0 are identical.

4. STABILIZED FINITE ELEMENT FORMULATION

We now outline the variational formulation and numerical treatment by the finite element
method of the elliptic boundary value problem of the micro-continuum (O(�−1), Equation 15),
with special emphasis on the derivation of a consistent linearization of the non-linear problem
and on the accurate numerical treatment of the near-incompressible response of a matrix.

On the latter issue, the present finite element procedure is based on a stabilized
Petrov–Galerkin formulation to treat volume constraints arising from the nearly incompressible
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hyperelastic material behaviour. Employing the additive decomposition of the free energy density
into distortional and volumetric components

W(C) = Ŵ (C) + U(J ) (31)

the second P–K tensor in the reference configuration is obtained in the standard manner:

S = 2
�Ŵ

�C
+ �JC−1

� = dU

dJ

(32)

where C = F TF denotes the Cauchy–Green deformation tensor. Note that the scalar multiplier
� is equal to the hydrostatic stress ‘pressure’, � ≡ p = 1/3 tr(�), only if the energy density is
a homogeneous function of zeroth order [47]. We can therefore express the energy function W

in terms of the distortional component of the right Cauchy–Green tensor Ĉ = (det C)−1/3C

to give a formally modified energy functional Ŵ (C) = W(Ĉ). Details of this substitution are
derived in Reference [47] and the same approach was used by Klaas et al. [34]. As expected,
the first and second P–K stresses defined on �0 are related by P = FS. In this work, we use
the following simple expression for the volumetric function U(J ):

U(J ) = 1
2�(J − 1)2

p = �(J − 1)
(33)

where � is the bulk modulus. Note that the asymptotic order 0 was dropped from the equations
since F = 0F + O(�) and P = 0P + O(�) and only the first term of the asymptotic expansion
is considered. The distortional component of a free energy density function is introduced in
Section 6.

As described by Klaas et al. [34], mesh-dependent terms that are functions of the Euler–
Lagrange equations from finer scale are added to the variational statement (15) and the pres-
sure p is interpolated as an independent variable. In particular, the push-forward of the gradient
of pressure weighting function, F−T∇�p, is used to perturb the Galerkin weighting space. Thus,
the strong form of equilibrium equations is integrated with the weighting function

�v = �1u + �F−T∇�p (34)

where the perturbation is applied elementwise and � is chosen following Hughes et al. [33]
as

� = 	h2
e

2

(35)

Here, he denotes the characteristic element length, 
 represents the shear modulus of the
material and 	 is a non-dimensional, non-negative stability parameter.

Using the standard variational procedure, inserting (32) into (15), taking into account (34)
and enforcing (33) in a weak sense, we obtain the following stabilized mixed formulation
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of the microscopic problem:

Ru ≡ 1

|�0|
∫

�0

S̃ : (F T∇�1u) d�0 + 1

|�0|
∫

�0

JpF−T : (∇�1u) d�0

+ 1

|�0|
∫

S0

t0 · ��1u� dS0 = 0 (36a)

Rp ≡ 1

|�0|
∫

�0

[
(J − 1) − p

�

]
�p d�0 − 1

|�0|
ne∑
el

�
∫

�e
0

J (F−1F−T) : (∇p ⊗ ∇�p) d�e
0

+ 1

|�0|
ne∑
el

�
∫

�e
0

(∇ · [FS̃])︸ ︷︷ ︸
= 0 for P1/P1 elements

· (F−T∇�p) d�e
0 = 0 (36b)

where S̃ represents the deviatoric part of S, ne denotes the number of elements and �1u and
�p are arbitrary functions satisfying

�1u ∈U, �1u = 0 on �(��) and 1u = Y -periodic on �(��)

�p ∈ L2

(37)

In particular, equal-order interpolations for the displacement and pressure (e.g. P1/P1) are
supported by the present formulation. Due to the linear interpolation of the displacement
field, the last term in (36b) is zero. For a more detailed description of mixed and stabilized
formulations, see References [30, 32, 34].

It should be noted that the periodicity conditions are considered as constraints imposed to
the discrete unknowns in the finite element solution procedure. Such conditions are simply
fulfilled by assigning the same deformation identification numbers to the corresponding degrees
of freedom related to the nodes on opposite sides of the unit cell. However, this requires that
the mesh as well as the microstructure have the appropriate periodicity. Moreover, the corners
of the unit cell are all associated with the same point and are thus fully prescribed.

The finite element method is combined with an arc-length procedure to solve the non-linear
system of equations described by (36). The formulation of a consistent tangent stiffness tensor is
thus essential to maintain a quadratic rate of convergence [48], if one is to employ a Newton’s-
type algorithm to solve the system of non-linear equations. The linearization procedure and the
non-linear solver are presented in the next section.

5. NON-LINEAR SOLVER AND LOAD STEPPING PROCEDURE

In this work, the macroscopic deformation history, F , is applied to the unit cell with the
loading parameterized by a scalar load multiplier, �, as

F = F (�) ⇒ F = F (�) + ∇Y
1u (38)
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The system of non-linear equations (36) thus yields

Ru(F (�),1u, p) = 0

Rp(F (�),1u, p) = 0
(39)

The arc-length procedure [46] is used to solve the above system for the unknown displacement
1u, pressure p and the load multiplier �. The linearized form of the system of equations is
then given by

Ru + DRu[��] + DRu[�1u] + DRu[�p] = 0

Rp + DRp[��] + DRp[�1u] + DRp[�p] = 0
(40)

and the arc-length constraint can be written as

�r · �r + ��2 = �l2, �r = [�1u, �p] (41)

where �l is a prescribed incremental arc length. Here, the linearized terms DRu[��] and
DRp[��] denote the forcing (load) components. The notation Rk+1

y ≈ Rk
y + DRy[�y] = 0 is

employed in this paper for the consistent linearization of a non-linear system Ry = 0.

5.1. Consistent linearization about (1u, p)

A consistent linearization for the set of non-linear equations about a configuration (1u, p) yields

DRu[�1u] = 1

|�0|
∫

�0

⎧⎪⎨
⎪⎩[F T(∇�1u)] : L : [∇(�1u)]︸ ︷︷ ︸

material contribution

+ [(∇�1u)T∇(�1u)] : S̃︸ ︷︷ ︸
geometric contribution

+ pJ [tr(F−1∇(�1u))tr(F−1∇�1u) − tr(F−1∇(�1u)F−1∇�1u)]︸ ︷︷ ︸
pressure geometric contribution

⎫⎪⎬
⎪⎭ d�0

+ 1

|�0|
∫

S0

Dt0[�1u±] · ��1u�︸ ︷︷ ︸
cohesive model contribution

dS0 (42a)

DRu[�p] = 1

|�0|
∫

�0

J tr(F−1∇�1u)�p d�0 (42b)

DRp[�1u] = 1

|�0|
∫

�0

J tr(F−1∇(�1u))�p d�0 − 1

|�0|
ne∑
el

�
∫

�e
0

J [tr(F−1∇(�1u))C−1

−F−1∇(�1u)C−1 − C−1(∇(�1u))TF−T] : [∇p ⊗ ∇�p] d�e
0 (42c)
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DRp[�p] = − 1

|�0|
∫

�0

1

�
�p�p d�0

− 1

|�0|
ne∑
el

�
∫

�e
0

J [F−1F−T] : [∇(�p) ⊗ ∇�p] d�e
0 (42d)

with the tangent hyperelastic pseudo-moduli given by

L = 2
�S̃

�C
A = CA (43)

Here we use the notation A for the fourth-order tensor 1/2(�C/�F ). The deviatoric part of
the material stiffness tensor C = 2�S̃/�C is derived for a particular free density function
in Section 6. The resulting tangent stiffness tensor is non-symmetric in the present analysis.
Several finite element approximation schemes can be used within the proposed variational
framework provided by (36). In this work, continuous displacement and pressure interpolations
are assumed, i.e. we use the so-called P1/P1 elements. The system of linear equations (40)
is solved using the sparse direct solver UMFPACK [49]. The consistent linearization of the
cohesive model contribution, Dt0[�1u±], present in (42a), is described next.

5.2. Consistent linearization of cohesive model contribution

Let us first recall that the cohesive surface contribution in the principle of the virtual work is

1

|�0|
∫

S0

t0 · ��1u� dS0 ≡ 1

|�0|
∫

S0

t̃

�̃
t̂ · ��1u� dS0 (44)

with the displacement jump and its weighting function defined by

� = (1u+ − 1u−) (45a)

��1u� ≡ �1u+ − �1u− (45b)

In addition, we recall that the cohesive tractions t0 are dependent on both the opening dis-
placement � and the normal N :

t0 = t0(�, N) (46)

Following the framework outlined in Section 3, all geometrical operations such as the com-
putation of the normal, N , are carried out on the middle surface S̄ with co-ordinates given
by

ȳ = 1
2 (y+ + y−) (47)

Moreover, the microscale deformation is assumed to be driven by the macro-deformation F

such that the spatial co-ordinates of a particle at the microscale are

y = F (�)Y +1u (48)
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The normal is expressed in terms of the tangent basis vectors e1 and e2 as

N = e1 × e2

|e1 × e2| (49)

where e1 and e2 are obtained using the standard isoparametric element procedure, i.e. e1 =
�ȳ/�y1, e2 = �ȳ/�y2.

The linearized cohesive model contribution is then

Dt0[�1u±] = �t0

��

��

�1u± �1u± + �t0

�N

�N

�ȳ

�ȳ

�1u± �1u± (50)

where, based on (23)–(25) and (49),

�t0

��
= �

′′
�̃ − t̃

�̃3
t̂ ⊗ t̂ + t̃

�̃
[�21 + (1 − �2)N ⊗ N ]

�t0

�N
= �

′′
�̃ − t̃

�̃3
[�2(� · N)2N + (1 − �2)(� · N)�] ⊗ t̂ + t̃

�̃
(1 − �2)[� ⊗ N + (� · N)1]

�N

�ȳ
= 1 − (N ⊗ N)

|e1 × e2|
�(e1 × e2)

�ȳ

(51)

and

�
′′ ≡ �2�

��̃2
= �t̃

��̃
= �c e(−(�̃−�c)/�c)(�c − �̃)

�2
c

(52)

Please recall that 1 is the second-order identity tensor and ⊗ denotes the dyadic product.
Finally, a simple calculation gives

��

�1u± = 1+ − 1− and
�ȳ

�1u± = 1
2 (1+ + 1−) (53)

5.3. Consistent linearization with respect to load multiplier �

As mentioned earlier, the micro-history recovery procedure by Fish et al. [40] is used in this
work to describe the response of a macroscale material point. For the sake of simplicity, the
macro-deformation F is prescribed and the loading program is parameterized by a scalar load
multiplier, � (Equation (38)).

The linearized load multiplier contributions in the residuals are

DRu[��] = 1

|�0|
∫

�0

{[F T(∇�1u)] : L : [�F��] + [(∇�1u)T�F��] : S̃

+pJ [tr(F−1�F��)tr(F−1∇�1u) − tr(F−1�F��F−1∇�1u)]} d�0

+ 1

|�0|
∫

S0

Dt0[��] · ��1u� dS0 (54a)
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DRp[��] = 1

|�0|
∫

�0

J tr(F−1�F��)�p d�0 − 1

|�0|
ne∑
el

�
∫

�e
0

J [tr(F−1�F��)C−1

−F−1�F��C−1 − C−1�F T��F−T] : [∇p ⊗ ∇�p] d�e
0 (54b)

where �F ≡ �F/�� and the tangent pseudo-modulus L is given by Equation (43).
Let us now turn our attention to the linearized cohesive contributions corresponding to the

load multiplier � (Equation (54a)). The linearized load multiplier contributions in the cohesive
residual are

Dt0[��] = �t0

��

��

��
�� + �t0

�N

�N

�ȳ

�ȳ

��
�� (55)

where the linearized terms �t0/��, �t0/�N and �N/�ȳ are listed in Equation (51).
Substituting (45a) and (47) into (55), taking (48) into account and performing the corre-

sponding partial derivatives, the linearized contribution yields

Dt0[��] = ±1

2

�t0

�N

�N

�ȳ

�FY�� (56)

Please note that the linearized contributions described by (54) and (56) are in construction
very similar to those relative to a configuration 1u (Equation (42)). Hence, their computation
and assembly add only a relatively small computational cost and are performed at the same
time the tangent stiffness matrix is constructed.

6. CONSTITUTIVE LAWS

Although the multiscale model developed in this work pertains to many reinforced elastomeric
materials, we focus our attention in the examples presented hereafter on the damage evolution
in an idealized solid propellant composed of ammonium perchlorate (AP) particles embedded
in a rubbery binder. As mentioned earlier, to achieve high energy content, solid propellants are
typically characterized by high particle volume fractions obtained through a bimodal distribution
of particle sizes. The small particles have a mean diameter of about 20 �m, while that of the
larger particles is in the 100–300 �m range.

As described in the introductory section, damage initiation in these materials is often asso-
ciated with the debonding of the larger particles and the role of the smaller ones is primarily
to stiffen the binder. In the examples presented below, we assume a 64% concentration of AP
particles, with 34% of large particles. The remaining 30% of small particles is then combined
with the 36% of binder to create a homogenized matrix (blend).

To capture the mechanical behaviour of the compressible AP particles and the nearly
incompressible matrix, two hyperelastic material models are introduced. These models dif-
fer by the expression of the deviatoric component of their free energy density function: the
functional form of the volumetric contribution is the same for both AP particles and the blend
and is given by the simple relation (33).
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6.1. AP particles

The deviatoric behaviour of particles is described by the following distortional component of
the free density function:

Ŵ = 
E : E (57)

where E = 1/2(C − 1) is the Green–Lagrange strain tensor, 
 denotes the shear modulus and
the deviatoric part of the second P–K stress reads

S̃ = 2
E = 
(C − 1) (58)

For this model, the Lagrangian tensor C entering (43) is given by

C = 2
I (59)

where I denotes the fourth-order identity tensor.

6.2. Homogenized blend

The homogenized matrix is modelled as a nearly incompressible Neo-Hookean material with
the distortional component of the free density function given by

Ŵ = 1
2
[tr(Ĉ) − 3], Ĉ = (det C)−1/3C (60)

where 
 denotes the shear modulus obtained from homogenization. The deviatoric part of the
second P–K stress is then given by

S̃ = 
(det C)−1/3[1 − 1
3 tr(C)C−T] (61)

The corresponding expression of the fourth-order Lagrangian tensor C is

C = 2
(det C)−1/3[ 1
9 tr(C)C−1 ⊗ C−1 − 1

3 1 ⊗ C−1 − 1
3C−1 ⊗ 1 + 1

3 tr(C)B] (62)

where the fourth-order tensor B in indicial notation reads

BIJMN = C−1
NI C−1

JM (63)

The homogenized mechanical properties of a blend, (
, �), are obtained by a homogenization
procedure. As pointed out by Dvorak et al. [50], various estimates of the composite stiffness
L̄ of any statistically homogeneous representative volume element (RVE) consisting of r =
1, 2, . . . , N phases can be written as

L̄ =
[

N∑
r=1

cr(L
∗ + Lr )

−1
]−1

− L∗ (64)

where cr and Lr , respectively, denote the volume fraction and elastic stiffness of constituent
r; L∗ = L0S

−1(I − S) corresponds to Hill’s constraint tensor, L0 represents the stiffness of
a comparison medium, S is the Eshelby tensor [51] and I is the identity matrix. Moreover,
Walpole [52, 53] proved that (64) satisfies the Hashin–Shtrikman [3] first-order variational
bounds on the actual overall elastic properties, where the bounds L̄+ and L̄− on the actual
stiffness L̄ are obtained by selecting the stiffness L0 of a comparison medium. In this work,
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Table I. Mechanical properties of individual constituents. E∗ denotes
Young’s modulus, 
 represents shear modulus and � is Poisson’s ratio.

Constituent E∗ (MPa) 
 (MPa) �

AP particle 32.447 × 103 14.19 × 103 0.1433
Binder 2.400 0.8003 0.4995
Homogenized blend 7.393 1.2328 0.4991

Table II. Mechanical properties of binder/particle interface.

�c (MPa) �c (�m) Gc (J/m2) �

0.5 0.75 1.02 0.8

we adopt the Mori–Tanaka homogenization scheme for the blend, in which the matrix serves
as the comparison medium, i.e. L0 = Lm. This assumption provides a lower bound on the
overall compliance of the composite medium.

7. EXAMPLES

We now apply the multiscale scheme to several examples involving an idealized solid propellant.
All constituents are assumed to be isotropic hyperelastic solids with the free energy density
described in Section 6. Only the damage response of larger particles is considered here: the
stiffening effect of smaller particles on the mechanical response of the binder is modelled by
considering a homogenized blend. The elastic moduli of the various components, including
those of the homogenized blend, are listed in Table I. Note the very high stiffness mismatch
between the particle and the blend and the near incompressibility of the blend, as quantified
by Poisson’s ratio approaching 1/2.

All finite element meshes are composed of four-node tetrahedral elements and have been
generated using the T 3D generator developed by Rypl [54]. The stability parameter 	 entering
(36) through � = 	h2

e/2
 was set to one, which was shown to be adequate in finite elasticity
problems [34] and no pressure oscillations were observed.

The failure behaviour of the interface between the blend and the particles is characterized
by the irreversible exponential cohesive law. The cohesive parameters of the binder/particle
interface adopted in the simulations presented hereafter are listed in Table II.

7.1. One-particle composite system

The first example is devoted to the damage nucleation and propagation along the particle/matrix
interface in a perfectly periodic array of reinforcing particles. The SRVE is thus composed of
a single particle chosen to be of spherical shape with a diameter of 174 �m. The unit cell
dimensions are chosen to be 200 × 200 × 200 �m, which corresponds to a particle volume
fraction of about 34%. We realize that this particular choice of the SRVE is too simple to
capture the complexity of actual solid propellant microstructures usually characterized by a
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Table III. Finite element discretization for the one-particle unit
cell. nn, ne, nce and ndof denote the number of nodes, elements,

cohesive elements and degrees of freedom, respectively.

nn ne nce ndof

Periodic mesh 2450 10 584 612 8476

bimodal distribution and a high concentration of particles. However, the main goal of this work
is to demonstrate the ability of the multiscale numerical framework to capture the physical
complexity of decohesion process taking place along a particle/matrix interface and its effect
on the stress and strain fields in the surrounding matrix.

The mesh characteristics for the one-particle periodic SRVE are listed in Table III. Three
loading cases are considered characterized by the following macroscopic deformation gradients:
volume preserving tension:

F =

⎡
⎢⎢⎢⎢⎣

1

(1 − �)2
0 0

0 1 − � 0

0 0 1 − �

⎤
⎥⎥⎥⎥⎦ loading case (A) (65)

triaxial tension-compression loading

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

(1 − �)2
0 0

0 1 − 1

2
� 0

0 0 1 − 1

2
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

loading case (B) (66)

and simple shear

F =

⎡
⎢⎢⎣

1 � 0

0 1 0

0 0 1

⎤
⎥⎥⎦ loading case (C) (67)

where � is the scalar load multiplier entering (38). The logarithmic strain  was selected as
the macroscopic strain measure:

 = ln(U) (68)

where U is the macroscopic stretch tensor defined by

F = RU (69)

with R denoting the macroscopic rotation tensor.
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Figure 3. Effective opening displacement and effective cohesive tractions at the end
of the loading process. Loading case (A).

Figure 4. Normal stress �11 in the blend at the middle of the unit cell at the end of the loading
process. Loading case (A). Cut-off plane Y = {0, 0, 100}.

Figure 3 shows the effective opening displacement and the effective tractions across the
cohesive surface for loading case (A). As expected, progressive debonding is observed in the
Y1-direction while compressive regions are obtained in the Y2- and Y3-directions, respectively.
This effect is due to the large lateral compressive stresses induced by the volume-preserving
macroscopic deformation described by (65). The compliant blend is compressed against the
hard particle, thereby preventing the propagation of the debonding crack. A lemon-like void
shape is obtained as the material flows under the lateral compression in the Y1-direction, and
the void forms along the poles of the particle. This peculiar void/particle shape is shown
in Figure 4, together with the �11 Cauchy stress distribution. As shown there, the condition
of the incompressibility of the macroscopic deformation leads to the surprising result that
only a relatively small region in the unit cell experiences a tensile stress in the Y1-direction.
Equally unexpected is the computed homogenized (macroscopic) response presented in Figure 5,
which indicates that the macroscopic normal Cauchy stress �11 initially positive, as expected,
becomes increasingly negative. Due to the problem symmetry and aforementioned strong lateral
compression on the particle, the other two macroscopic stresses �22 and �33 are identical,
and both increasingly negative also. These somewhat counter-intuitive results are, once again,
associated with the volume preserving nature of the imposed macroscopic deformation and
can be understood from a simple reasoning based on the small strain theory described in
Appendix A.
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Figure 5. Macroscopic stress–strain curves for loading case (A).

Figure 6. Effective opening displacement and effective cohesive tractions at the end
of the loading process. Loading case (B).

When the isochoric assumption of the macroscopic deformation is relaxed and the lateral
constraint is partially relieved, as in the second loading case (B) defined by (66), one obtains
the effective opening displacement and cohesive traction distributions shown in Figure 6. As
apparent there, the damage zone size is substantially larger than in case (A), with only small
non-damaged regions oriented in the Y2- and Y3-directions still connecting the particle to the
matrix. The cohesive traction distribution along the particle/matrix interface, therefore, vanishes
everywhere except in those small regions. The resulting void takes the egg-like shape, shown
in Figure 7, which also displays the normal �11 distribution in the unit cell. As expected,
most of the domain is under tensile stress in the Y1-direction and the maximum value of the
microscopic normal stress �11 is obtained at the points of contact between the particle and the
matrix. These stress concentrations would very likely initiate tearing of the matrix and ultimately

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:190–223



210 K. MATOUŠ AND P. H. GEUBELLE

Figure 7. Normal stress �11 in the blend at the middle of the unit cell at the end of the loading
process. Loading case (B). Cut-off plane Y = {0, 0, 100}.
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Figure 8. Macroscopic stress–strain curves for loading case (B).

lead to coalescence of the voids. The resulting macroscopic stress–strain curves, shown in
Figure 8, are substantially different from those associated with loading case (A). The evolution
of �11 stress component clearly shows the initial stiff response of the composite, followed by
the extensive softening associated with the particle debonding. Then comes a secondary re-
hardening corresponding to the response of the damaged medium and characterized by a much
lower stiffness than that of a virgin undamaged system. Due to the substantial debonding of
the particle in the SRVE, the macroscopic response of the SRVE approaches a lower bound of
the solution corresponding to behaviour of a fully voided matrix (denoted by the dash–dotted
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Figure 9. Effective opening displacement and effective cohesive tractions at the end
of the loading process. Loading case (C).

Figure 10. Shear stress �12 in the blend at the middle of the unit cell at the end of the loading
process. Loading case (C). Cut-off plane Y = {0, 0, 100}.

curve in Figure 8), with the small difference due to the constraining presence of the particle
that prevents the lateral deformation of the void.

The third macroscopic deformation history, (C), imposed on the micro-continuum corresponds
to a plane strain simple shear loading. Please note that, while the applied macroscopic gradient
(67) is 2D, the fluctuation displacement field 1u is fully 3D. Although the applied F corresponds
to a shear loading, the particle/matrix interface experiences both shear and tensile failure, as
illustrated in Figure 9, which presents the displacement jump and cohesive traction distributions
along the particle/matrix interface. Tensile failure is observed with the principal axes of the
void rotated by about 55◦ with respect to the Y1-direction. The characteristic shape of the void
and the shear stress field in the surrounding matrix are shown in Figure 10 for a value of the
loading parameter � equal to 0.498. Note the very large shear deformation experienced by the
SRVE. The macroscopic stress–strain law is displayed in Figure 11.

To conclude the discussion of the single-particle SRVE results, we present in Figure 12
the void volume fraction for the three loading cases, (A)–(C), as a function of the effec-
tive logarithmic strain. Here, the ‘true’ volume of voids is defined as a volume of damaged
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Figure 11. Macroscopic stress–strain curves for loading case (C).
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Figure 12. Evolution of porosity obtained for the three loading cases.
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Table IV. Finite element discretization for the unit cell con-
sist of four spherical particles.

nn ne nce ndof

Periodic mesh 12 921 61 536 3020 48 284

cohesive elements

Vv =
∫

S0

�̃n dS0 if �̃ > �c ∀�̃n > 0 (70)

where �̃n denotes the normal opening across the cohesive surface. This representation of the void
volume in the SRVE is different from that usually adopted in micromechanics-based studies,
where the whole particles are treated as voids upon damage nucleation. Such definition would
possibly lead to unrealistically large void concentrations and neglect the effect of the remaining
partially bonded particles. As apparent from Figures 3, 6 and 9, the largest void formation is
induced by loading history (B). For this loading program, the void volume fraction reaches
almost 15% as shown in Figure 12. Much lower void volume fractions were obtained for both
(A) and (C) loading histories (Figure 12), which are both volume preserving at the macroscale.
For these two cases, since the blend is nearly incompressible, the volume of any void created
along the particle/blend interface is balanced primarily by a reduction of the particle size. For
example, in loading case (A), the maximum value of the macroscopic logarithmic strain 11 is
about 18.7% and the final void volume change 1.016%. The volume change in the binder is
only about 0.3%.

7.2. Four-particle composite system

We now turn our attention to a second example devoted to the damage evolution in a unit cell
consist of four spherical particles of diameter 174 �m. The particles are dispersed in the unit
cell of dimensions 400 × 200 × 400 �m with the same volume fraction to that of one-particle
cell. The finite element mesh characteristics are listed in Table IV and the unit cell geometry
is displayed in Figure 13. The individual particles are not organized into perfect lattice; rather,
a slight centre perturbation is introduced (Table V).

When the four-particle unit cell is subjected to the same loading history (A) as the one-
particle unit cell, the remarkable agreement is obtained in the macroscopic stress–strain space
for the analysed portion of loading as shown in Figure 14. Although the positions of the
particles are perturbed, these perturbations are relatively small and the microstructure is still
very organized. The constitutive responses for the one- and four-particle unit cells therefore
coalesce since these constitute a representative sampling of the material. This agreement also
suggests the spatial convergence of the solution as different discretizations are used in the two
unit cells.

Bifurcation is a common phenomenon in non-linear continuum mechanics and appears even
in seemingly simple problems involving fairly standard constitutive models [55, 56]. Here we
analyse the bifurcation of the solution obtained for two different loading histories in the
four-particle unit cell problem subjected to the following macroscopic deformation gradient
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Figure 13. Geometry of four-particle unit cell.

Table V. Perturbations (given in �m) of the particle
centre location for the four-particle unit cell.

Particle # Y1 Y2 Y3

1 0 +10 −10
2 +10 0 +10
3 −10 −10 −10
4 0 0 0

described by

F =

⎡
⎢⎢⎣

1 1
2� 0

0 1 0

0 0 1 + �

⎤
⎥⎥⎦ (71)

where, as before, � denotes the scalar load multiplier used in the micro-history recovery
procedure. As apparent from (71), the imposed macroscopic deformation involves a combination
of tensile (in the 33-direction) and shear (in the 1–2 plane) components. When solved with the
same discretization but with two different loading histories, each characterized by a different
initial arc-length size, this problem leads to the bifurcation result shown in Figure 15 in terms
of the macroscopic stress (�33) versus strain (33) relation. In this work, the bifurcation points
are not detected directly as this detection would require a specific numerical procedure as
in Reference [55]. However, the complexity of the damage process and differences in the
bifurcated solutions are important to discuss.
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Figure 14. Comparison of macroscopic stress–strain response obtained for the one-
and four-particle unit cells for loading case (A).
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Figure 15. Macroscopic stress–strain response obtained for the four-particle unit cell.
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As apparent in Figure 15, the first solution leads to a more typical non-linear stress–strain
response characterized by a progressive reduction of the material stiffness that eventually leads
to a softening response, for which the macroscopic stress decreases with increasing strain.
This reversal takes place after a limit point is reached. At, or in the vicinity of this limit
point, the macroscopic stress–strain curves for the two loading paths diverge. The second
loading history yields to a snap-back response, for which failure processes taking place at the
microscale initially lead to a decrease in both the macroscopic stress and strain. Then, the
macroscopic constitutive response follows a softening trend that brings the material response
for the second solution path back to the evolution provided by the first one. This type of result
emphasizes the importance of the robustness of the numerical solver: capturing these complex
events requires special numerical treatments (such as the arc-length scheme adopted in this
study) as a conventional Newton algorithm typically fails.

The difference between the two macroscopic stress–strain curves can be traced to phenomena
taking place at the microscale, as illustrated in Figures 16 and 17, which present the effective

Figure 16. Effective opening displacement (left) and effective tractions (right) at the
end of the loading process for solution path 1.
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Figure 17. Effective opening displacement (left) and effective tractions (right) at the
end of the loading process for solution path 2.

opening displacement and the effective traction distributions across the cohesive surface for
solution paths 1 and 2, respectively. These two figures have been obtained at the end of the
loading paths shown in Figure 15, i.e. for a macroscopic strain 33 equal to about 1.1%. The
comparison between these figures and a study of the damage evolution up to the final value
of the applied macroscopic strain lead to the following observations. For the case of the first
solution path (Figure 16), particle debonding is first detected at the pole of particle 2, in the
vicinity of particle 4, since the small distance that separates these two particles generates a
higher stress concentration. The debonding of particle 2 leads to the unloading of this matrix
region, and the next debonding is observed in the vicinity of the top pole of particle 3. These
debonding events take place in a relatively progressive fashion and the resulting macroscopic
stress–strain curve is relatively smooth past the limit point. The situation is quite different for
the second solution path, for which extensive and sudden damage is first obtained along the
outer surface of particle 1 (Figure 17). This unstable debonding process corresponds to the
aforementioned stress–strain curve reversal observed in Figure 15 and is followed by a plateau
in the macroscopic constitutive response, where additional dewetting of particle 1 is observed
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Figure 18. Evolution of porosity in the four-particle unit cell.

without increase in the resulting macroscopic stress. A second inflection point is then observed
in the macroscopic stress–strain curve, which corresponds to the onset of failure at the lower
pole of particle 4, leading to a macroscopic softening response similar to that obtained for the
first solution path.

The difference between the two solution paths is also illustrated from the evolution of the
void volume fraction shown in Figure 18. As expected, the onset of damage, corresponding
to a macroscopic strain of about 0.4% is the same in both cases. Even when the material is
macroscopically unloaded during the second solution path, the void volume fraction continues
to grow. Due to the form of the applied macroscopic deformation (71) with a substantial part of
damage associated with shear loading, the maximum value of the void volume fraction (about
0.8%) is quite small. Despite the extensive damage present in the SRVE, the overall strain is
also limited (slightly over 1%). It is however important to note that, at the microscale, the
strain distribution is quite heterogeneous, with maximum values exceeding 8%, as illustrated in
Figure 19, which shows the effective Almansi (Eulerian) strain distribution in the matrix. This
result emphasises the importance of the finite strain formulation for this class of problems.
Please note that the Almansi strain measure was selected at the microscale over the Logarithmic
strain used at the macroscale, since the Logarithmic strain is local to the material points and
isocontours would not be smooth.

8. CONCLUSIONS

The mathematical theory of homogenization based on the asymptotic expansion of the dis-
placement, deformation gradient and stress fields has been derived and used in modelling
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Figure 19. Microscopic effective Almansi strain, eq, in the blend at the middle of the unit cell at
the end of the loading process for solution path 1. Cut-off plane is Y = {0, 100, 0}.

debonding (or dewetting) damage evolution in reinforced elastomers subject to finite strains.
The microscale description is based on a periodic unit cell consisting of particles dispersed in
a blend and incorporates the local non-homogeneous stress and deformation fields present in
the unit cell during the failure of the particle/matrix interface. A novel numerical procedure
is based on a stabilized Lagrangian formulation and adopts a decomposition of the pressure
and displacement fields to eliminate the volumetric locking due to the nearly incompressible
behaviour of a matrix. The consistent linearization of the resulting system of non-linear equa-
tions has been derived and leads to an efficient solution of the complex highly non-linear
problem.

The hyperelastic behaviour of an individual constituents is defined by hyperelastic potentials
and the particle matrix interface is characterized by a cohesive law. A fully implicit non-linear
solver, based on the arc-length procedure is applied allowing for large loading steps.

Various examples involving simple unit cells and macroscopic deformation histories of an
idealized solid propellant have been considered to study the link between the failure process
taking place at the particle scale and its effect on the macroscopic stress–strain curves and
the evolution of the void volume. One of these examples has illustrated the appearance of a
bifurcation phenomenon associated with the progressive or sudden debonding of particles.

The emphasis of this work has been on the development of the 3D multiscale computa-
tional framework for the simulation of damage evolution in reinforced elastomers. To provide
reliable predictive results, this multiscale model must allow for the simulation of a larger
more representative assembly of particles, possibly of different sizes. For many materials, it
should also incorporate a more complex, rate-dependent description of the matrix or blend
response. These two requirements will increase the computational costs associated with the
multiscale analysis, therefore requiring an efficient parallel implementation of the multiscale
scheme. On the modelling side, the next step also involves the incorporation of a matrix
tearing model needed to capture the initiation and propagation of matrix cracks between
the voids.
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APPENDIX A: LOADING CASE (A): SMALL STRAIN REASONING

To support the macroscopic results associated with case (A), let us consider the following
simple linearly elastic small strain analysis of the one-particle unit cell with Y2 ≡ Y3 sym-
metry subjected to the volume preserving macroscopic strain field 22 ≡ 33 = −11/2. The
macroscopic constitutive equations for normal stress components are

�11 = L1111 + L1222 + L1333

�22 = L1211 + L2222 + L2333

�33 = L1311 + L2322 + L3333

(A1)

where Lij denotes the unknown damaged macroscopic moduli (in matrix notation).
Let us first consider the special case of a composite with no internal damage. The response

of such a system would correspond to the upper bound of the solution. In this case, the
macro-continuum has the cubic symmetry

L11 ≡ L22 ≡ L33

L12 ≡ L13 ≡ L23

(A2)

and the macroscopic stresses are expressed as

�11 = [L11 − L12]11

�22 ≡ �33 = − 1
2�11

�eq = 3
2 |�11|

(A3)

where �eq denotes the von Mises effective stress. In the presence of damage with Y2 ≡ Y3
symmetry, we have

L11 �= (L22 ≡ L33)

L12 ≡ L13 �= L23

(A4)

The macroscopic stress–strain response becomes

�11 = [L11 − L12]11

�22 ≡ �33 = [L12 − 1
2 (L22 + L23)]11

(A5)

For the sake of simplicity, let us consider a model material with exponentially decaying elastic
constants L11 = L∗

11e(−11) and L12 = L∗
12e(−0.511). Such softening can be expected since,

for the type of damage considered in this work, damage degradation in 11 direction is more
pronounced than in 12 direction. Using the virgin (non-damaged) material properties L∗

ij listed
in Table AI, we obtain the constitutive curves shown in Figure A1, which are similar to those
displayed in Figure 5.
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Table AI. Mechanical properties of a model composite.

Stiffness L∗
11 ≡ L∗

22 ≡ L∗
33 (MPa) L∗

12 ≡ L∗
13 ≡ L∗

23 (MPa)

Modelled material 303 292
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Figure A1. Macroscopic stress–strain curves for a model material subjected to loading case (A).
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