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SUMMARY

We develop a three-dimensional, hierarchically parallel, finite strain multiscale solver capable of computing
nonlinear multiscale solutions with over 1 billion finite elements and over 574 million nonlinear equations
on 1552 computing cores. In the vein of FE2, we use the nested iterative procedure and devote the solver
to multiscale cohesive modeling of heterogeneous hyperelastic layers. The hierarchically parallel multiscale
solver takes advantage of a client-server non-blocking communication matrix that limits latency, starvation,
and overhead by overlaying computations at different scales. We perform simulations of real-scale engi-
neering devices and bridge O.106/ in length-scales, spanning from O.101/ mm to O.101/ nm in spatial
resolution. Verification of the hierarchically parallel solver is provided together with a mesh convergence
study. Moreover, we report on the scaling performance. Copyright © 2014 John Wiley & Sons, Ltd.

Received 21 February 2014; Revised 23 June 2014; Accepted 7 July 2014

KEY WORDS: multiscale cohesive modeling; computational homogenization; high-performance
computing; heterogeneous layers; adhesives

1. INTRODUCTION

Multiscale phenomena are ubiquitous in engineering science and are increasingly important in
design of structures and materials. For instance, current structural designs frequently make use of
adhesive joints in favor of more traditional fastening techniques for ease of manufacturing and
reduction of stress concentrations. Most modern adhesives are highly heterogeneous, containing a
wide range of sizes, shapes, and material properties of reinforcing constituents. Examples include
rubber particles added for toughening effects [1], microcapsules of healing polymers for strength
recovery [2], or silver flakes for increased electrical conductivity [3]. Other examples of hetero-
geneous layers in engineering are polymeric sealants, such as 3M VHB tape consisting of an
epoxy-impregnated foam. Unfortunately, these adhesive joints and/or layers are often the weak link
in the load-bearing capacity of structures and detailed understanding of the complex multiscale
behavior is essential.

One of the techniques that simultaneously captures all continuum spatial and temporal
scales is direct numerical modeling (DNM) (commonly called DNS in the fluid mechanics
community). However, even with recent increases in performance and availability of super-
computing environments, DNM often remains prohibitively expensive. The large DNM simulations
demand access to tens of thousands of computing cores and require long computing times
[4, 5]. Furthermore, many methods for solving the large systems of equations arising from the dis-
cretized DNM problem do not scale well beyond a few thousand cores without specialized and often
problem-specific or hardware-specific considerations [5–7]. Even generating the computational
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domains (meshes) for complex DNM simulations is difficult and time consuming. Therefore, there
is a great need for computational tools capable of spanning the large range of spatial and temporal
scales to aid in design of novel material formulations and safety assessments of components.

In this work, we develop a highly scalable, hierarchically parallel, 3D finite strain multiscale
solver for simulating heterogeneous hyperelastic layers. In particular, we focus on the parallel
implementation, performance, and potential for engineering application. The solver is capable of
computing multiscale problems with more than 1 billion finite elements and over 574 million non-
linear degrees of freedom (DOFs) on less than 1600 computing cores. The solver is based on the
multiscale cohesive modeling formulation, originally proposed by Matouš et al. [8] and extended
by many others thereafter [9–12]. This theory collapses the macroscopic layer to a surface and
attaches a representative unit cell (RUC) with thickness lc , equal to the thickness of the layer,
at each macroscopic point. The macroscale and microscale are linked through Hill’s principle of
energy equivalence [13] extended to interfaces in [8]. The coupled multiscale problem is solved
by a nested iterative scheme [9, 10, 14]. This nested solution method, typically referred to as FE2,
has also been extensively used in multiscale modeling of bulk materials [15–18].

In the nested solution process, each microstructure can be solved independently of both the
macroscale and other microstructures, allowing for effective parallelization. There have been a few
parallel implementations of the nested solution process [14, 17, 19–22], but they often require that
the macroscale and individual microscale domains be computed on a single computing core or set
of shared-memory processors. In this work, we present a method for efficiently computing both the
macroscale and microscale solutions in a hierarchically parallel fashion that is scalable to many
thousands of distributed computing cores.

FE2 is known to be highly accurate, but it is often imprecisely regarded as too expensive to be
practical [23–25]. While FE2 may be too expensive for deployment in full component design and
optimization codes, we show that it is possible to accurately simulate engineering scale domains
including the full resolution of the microscale with reasonable computational resources. We show
that this framework can bridge O.106/ in length scales, providing sufficient detail to simulate a
O.101/mm large device with numerical resolution of O.101/ nm. Such a device can easily be exper-
imentally tested to provide validation data for our hierarchically parallel FE2 solver. Once validated,
such a tool can prove invaluable in generating a rich database, that is, Virtual Materials Testing,
to aid in development of reduced order models [23, 25] employed in light-weight modeling and
simulation tools. Furthermore, such a tool can aid in discovery of previously unknown or not easily
captured (by computations) phenomena.

The remainder of the manuscript is organized as follows. In the next section, we summarize
the multiscale cohesive modeling formulation in the 3D finite strain setting for completeness of the
presentation. Then, in Section 3, we describe the novel computational implementation including
the hierarchically parallel communication structure and solution procedure. Finally, in Section 4,
we present a simple verification and convergence study, followed by a strong scaling test, and a large
simulation of mixed-mode loading conditions.

2. GOVERNING EQUATIONS

Consider a macroscale body�0 � R3 consisting of material pointsX 2 �0 with the boundary @�0
decomposed such that @�0 D @�u0[@�

t
0 and @�u0\@�

t
0 D ;. Next, let @�u0 and @�t0 represent the

boundaries of applied displacement Nu and traction Nt, respectively. Let the heterogeneous interface
with thickness lc > 0 be described by an oriented manifold �0 2 R2 with the unit normal 0N .X/
in the reference configuration (Figure 1). For the remainder of the presentation, let 0.�/ and 1.�/
represent quantities at the macroscale and microscale, respectively. The interface decomposes �0
into two bodies (adherends) denoted by �˙0 . The deformation of the adherends is described by the
deformation map 0'.X/ D X C 0u.X/ 8X 2 �˙0 and deformation gradient, 0F .X/ D rX 0' D
1CrX

0u 8X 2 �˙0 , where 0u is the macroscopic displacement. The deformation of the interface,
�0, is represented by the average deformation gradient
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750 M. MOSBY AND K. MATOUŠ

Figure 1. Multiscale modeling of heterogeneous interfaces with widely varying length-scales. In this figure,
L is the dimension of the macroscale interface, lRUC is the size of the RUC, and lc is the thickness of the

interface. The RUC contains heterogeneities with characteristic size d .

0F .X/ D 1C
1

lc
�0u�.X/˝ 0N .X/ 8X 2 �0; (1)

where �0u� D 0'C � 0'� D 0uC � 0u� is the displacement jump across the interface.
Neglecting inertia and body forces, the quasi-steady equilibrium of a body with an interface is

governed by

rX �
0.FS / D 0 2 �˙0 ;

0.FS / � 0N D Nt on @�t0;
0u D Nu on @�u0 ;

0tC C 0t� D 0 on �0;

(2)

where 0S D 2@ 0W=@ 0C is the macroscopic second Piola-Kirchhoff stress tensor, 0C D 0F T 0F is
the macroscopic right Cauchy-Green deformation tensor, 0t˙ represents the macroscopic traction
vector across the interface, and 0W is the macroscopic strain energy density function that defines
the behavior of the adherends. Applying the standard variational procedure leads to a typical macro-
scopic variational problem: Find 0u.X/ 2 C�0¹

0u W �0 ! R3j det.0F / > 0 in�0 and 0uj@�u
0
D Nuº

such that

R0u WD

Z
�˙
0

0S W
�
0F TrXı

0u
�sym

dV C
Z
�0

0t � �ı0u� dA �
Z
@�t
0

Nt � ı0u dA D 0; (3)

holds for variations ı0u.X/ 2 V�0¹ı0u W �0 ! R3
ˇ̌
ı0uj@�u

0
D 0º. We note that in this work, 0t is

constructed numerically using microscale solutions.
Let each macroscpic point X 2 �0 consist of a RUC denoted by ‚0 � R3. Next, let each RUC

‚0 � R3 consist of material points Y 2 ‚0. We assume that the microscale deformation is a
function of both macro-variables and micro-variables as

'.X ;Y / D 0F .X/Y C 1u.Y / 8Y 2 ‚0;

F .X ;Y / D 0F .X/CrY
1u.Y / 8Y 2 ‚0;

(4)

where 1u.Y / is the microscale displacement fluctuation vector. The boundary of the RUC, @‚0,
is decomposed into non-overlapping sections @‚˙0 and @�˙0 corresponding to the Y ˙1;2 and Y ˙3 faces
respectively (Figure 1). In this work, ‚0 is Y1;2-periodic. Note that different admissible boundary
conditions can also be used [9]. We comment on the field and material periodicity when we solve
particular examples. Neglecting body and inertia forces, the equilibrium problem at the microscale
reads

rY � .F
1S / D 0 2 ‚0;
1u D 0 on @�˙0 ;

1uC � 1u� D 0 on @‚˙0 ;
1tC C 1t� D 0 on @‚˙0 :

(5)
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In Equation 5, 1S D 2@ 1W =@C is the microscale second Piola-Kirchhoff stress tensor, C D F TF

represents the microscale right Cauchy-Green deformation tensor, and 1W is the microscale strain
energy density potential that defines material behavior of the layer.

The macroscale and microscale are linked through the Hill-Mandel condition for interfaces
originaly proposed by Matouš et al., [8] which reads

inf
�0u�

0 .�0u�/ D inf
�0u�

inf
1u

lc

j‚0j

Z
‚0

1W
�
0F CrY ı

1u
�

dV; (6)

and minimizes the potential energy at both scales. First, taking variations of Equation 6 with
respect to 1u yields the variational problem: Find 1u.Y / 2 C‚0¹

1u W ‚0 ! R3j det.F / >
0 in ‚0; 1uj@�˙

0

D 0 and 1u is Y1;2 � periodic on @‚˙0 º such that

R1u WD
lc

j‚0j

Z
‚0

1S W
�
F TrY ı

1u
�sym

dV D 0; (7)

holds for all variations ı1u.Y / 2 V‚0¹ı
1u W ‚0 ! R3

ˇ̌
ı1uj

@�˙
0

D 0 and ı1u is Y1;2–periodic

on @‚˙0 º. Equation 7 is a weak form of the microscale equilibrium (Equation (5)). Second, taking
variations of Equation 6 with respect to �0u� yields

0t D
1

j‚0j

�Z
‚0

F 1S dV

�
� 0N; (8)

which is the closure equation for the macroscale traction in Equation 3.

2.1. Finite-element discretization

The macroscale and microscale are discretized by standard linear tetrahedron finite elements.
Moreover, the interface is discretized by linear surface/cohesive elements. Therefore, each macro-
scopic cohesive element contains one microscale RUC. The displacement field is approximated in
the macroscale adherend, interface, and microscale elements (�e , �e and ‚e) as

0uh D

nn2�eX
a

0 QN a
0ua; �0u�h D

nn2�eX
a

� QN a
0ua; and 1uh D

nn2‚eX
a

1 QN a
1ua:

Here, nn is the number of nodes on the element, and 0 QN , � QN , and 1 QN are finite element shape
function operators. The gradients within the volumetric elements are approximated by

rX
0uh D

nn2�eX
a

0 QBa
0ua; rY

1uh D

nn2‚eX
a

1 QBa
1ua;

where 0 QB and 1 QB are the finite element gradient operators at the different scales.
The discrete weak forms of the equilibrium at both scales (Equations (3) and (7)) are given by

R0 WD

�˙
0

A
e

"Z
�
˙;e
0

0S W
h
0F

T0 QB
isym

dV �
Z
@�
t;e
0

Nt � 0 QN dA

#
„ ƒ‚ …

R0j
�˙
0

C

�0

A
e

"Z
@�e
0

0t � � QN dA

#
„ ƒ‚ …

R0j�0

D 0; (9)

R1 WD

‚0

A
e

lc

j‚0j

Z
‚e
0

1S W
h
F

T1 QB
isym

dV D 0; (10)

whereA is the assembly operator. The discrete form of the traction vector (Equation 8) reads

0t D

‚0

A
e

1

j‚0j

"Z
‚e
0

F 1S dV

#
� 0N : (11)
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We solve the discrete nonlinear equations, Equations (9) and (10), using implicit Newton’s
method. The multiscale consistent tangent matrix is obtained through typical linearization:�

K00j�˙
0

C K00j�0 K01

K10 K11

�²
�0u

�1u

³
D �

²
R0j�˙

0

C R0j�0
R1

³
: (12)

Here, K00j�˙
0

D @ R0j�˙
0

=@0u, K00j�0 D @ R0j�0 =@
0u, K01 D @ R0j�0 =@

1u, K10 D

@R1=@
0u, and K11 D @R1=@

1u. In this work, the nonlinear system of equations is solved using a
staggered approach. The discrete tangents are derived in Appendix A.

2.2. Nested iterative solution procedure

Monolithic solution of Equation 12 will achieve a quadratic rate of convergence, but becomes pro-
hibitively expensive for detailed numerical simulations. Therefore, we solve the multiscale system
of equations using a nested iterative procedure as suggested in [9, 10].

Assume that all macro-variables and micro-variables at loading step n are known and equilibrated.
Holding all macro-variables constant at iteration i , we first prescribe �0u�

.i/
nC1 at the microscale.

The microscale equilibrium is reached by Newton’s algorithm as

K11

�
0u.i/; 1u.j /

	
��1u.jC1/ D �R1

�
0u.i/; 1u.j /

	
; (13)

where nC1 subscripts are implied. Algorithm 1 provides the detailed microscale solution procedure.
Given the converged solution of the microscale problem in Equation 13, we proceed to compute the
macroscale equilibrium

K .i/��0u.iC1/ D �R0

�
0u.i/; 1u

	
CK01K

�1
11R1

�
0u.i/; 1u

	
„ ƒ‚ …

D0

; (14)

where n C 1 subscripts are implied and 1u is the equilibrated microscale solution. The Schur
complement evaluated for

�
0u.i/; 1u

�
reads

K D K00j�˙
0

C K00j�0 �K01K
�1
11K10„ ƒ‚ …

K j�0

: (15)

Note that the Schur complement involves matrix operations with large mixed-scale matrices.
Furthermore, the direct factors of K�111 are too expensive to compute and store. Thus, we first solve
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the matrix system of equationsK11A D K10 by successive calls to the sparse iterative linear solver
(we use HYPRE [26]). Then, we compute K j�0 D K00j�0 � K01A by a simple matrix prod-
uct and subtraction. Both K00j�0 and R0j�0 are constructed at the microscale along with K01 and
K10. Algorithm 2 gives the nested iterative solution procedure.

3. PARALLEL COMPUTATIONAL IMPLEMENTATION

In this section, we describe our new hierarchically parallel implementation that is capable of
computing large multiscale problems. We use our in-house highly scalable finite element library
PGFem3D. The hierarchically parallel multiscale solver is based on a non-blocking client-server
communication structure that allows overlay of computations at the different scales. Both PGFem3D
and the hierarchically parallel multiscale solver are implemented using the Message Passing
Interface (MPI).

3.1. Parallel finite element library, PGFem3D

The finite element library PGFem3D is based on a traditional Domain Decomposition (DD) concept
[7]. The finite element domain is decomposed into Np parts using the parallel graph partitioning
algorithm ParMETIS [27]. The decomposition minimizes the number of shared nodes while main-
taining a nearly equal number of elements in each domain. A sparse non-blocking point-to-point
communication structure based on the decomposition is then constructed for efficient computation
and assembly of the distributed global system of equations. The global system of equations is solved
using the HYPRE library [26]. We use the GMRES solver paired with the Euclid preconditioner
[28]. Figure 2 shows weak scaling of the PGFem3D parallel finite element library for a single scale
simulation. On each core, we use a block with a spherical void loaded by uniform void growth.
The 1024 voids/cores domain contains 11.97 million nodes, 61.6 million elements, and 28.9 mil-
lion DOFs. Each simulation computes four nonlinear loading steps with a total of 12 linear solves.
Thus, we perform one linear finite element solve (including assembly, etc.) consisting of 28.9 mil-
lion equations in� 8:69 s on 1024 cores. Figure 2 shows only a 26% increase in execution time over
a 64-fold increase in computing cores. This small increase in execution time over the ideal scaling
is partially due to the GMRES solver.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:748–765
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3.2. Hierarchically parallel multiscale solver

The hierarchically parallel multiscale solver uses the client-server communication structure outlined
schematically in Figure 3 to link each scale. Both the macroscale and microscale are solved using the
parallel finite element library PGFem3D. As shown in Figure 3(a), the macroscale (adherends) are
decomposed into Np domains. Each domain is computed on a single computing core or macroscale
‘client’ (Figure 3(a)). The microscale solutions are computed on Ns groups of computing cores or
‘servers’ (Figure 3(b)). Each microscale server is composed of np cores and evaluates the response
from cn;s RUCs that are assigned by the macroscale clients. Similarly to the macroscale DD,
the RUC is decomposed to np domains that are executed on a particular server using np cores as
described earlier. This allows us to exploit the hierarchical parallelism stemming from the multiscale
theory derived in section 2.

We assign RUCs to the servers using round-robin scheduling to balance the load between
microscale servers and to reduce data starvation at the macroscale. Figure 3(c) shows the com-
munication pattern between the clients and servers. As shown, each server consists of np cores,

Figure 2. Weak scaling of the parallel finite element library PGFem3D. The number of finite elements per
computing core is held constant for all simulations. (a) shows the computational domain containing 512
voids loaded by uniform void growth computed on 512 cores. (b) shows the weak scaling up to 1024 cores.

Figure 3. The hierarchically parallel communication pattern. (a) shows the macroscale adherends decom-
posed into Np D 6 domains (clients) that are computed on six cores. (b) shows the Ns microscale servers s
that compute the microscale response from cn;s RUCs each. Each RUC is decomposed into np domains and
computed using all np cores in the microscale server s. (c) shows the hierarchically parallel communication

between Np macroscale processors and the Ns master cores of each server s containing np cores each.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:748–765
DOI: 10.1002/nme



HIERARCHICALLY PARALLEL MULTISCALE SOLVER 755

Figure 4. The hierarchically parallel implementation of the nested iterative solution procedure given in
Algorithm 2. Macroscale and microscale computations are overlaid via non-blocking point-to-point com-
munication patterns. Note that there are Ns microscale servers that simultaneously compute microscale

contributions for the Np macroscale clients.

with n D 1 designated the ‘master’ and the remaining np � 1 cores designated as ‘slaves’.
The clients and servers communicate only through the master cores, but all clients can communicate
with all servers and vice versa. Communication between clients and servers is performed using
point-to-point non-blocking send and receives. This non-blocking communication pattern enables us
to overlay computation and communication at both scales and thereby reduce latency and overhead.
Figure 4 depicts a flowchart of the hierarchically parallel implementation of the nested iterative
solution procedure using the client-server communication structure. After solving the linearized
macroscale iteration, the macroscale client loops over all cohesive elements and sends requests to
the assigned servers to compute the microscale response from �0u�. After sending all of the requests,
the macroscale clients compute the element tangent and residuals for the adherends (K00j�˙

0

and
R0j�˙

0

). The master on each server processes requests from the clients as they arrive. When a
request is received, the master broadcasts the information to the waiting slaves. Simultaneously
with the macroscale, the microscale servers compute the response from �0u� on their lists of cn;s
RUCs as described in Algorithm 1. Upon equilibrium, the contributions to the macroscale tan-
gent and residual (K j�0 and R0j�0) are computed and condensed on the master. The master
sends a response to the client with the computed results and moves on to process the next request.
When the macroscale clients finish computing the tangent and residual for the adherends, they pro-
cess the responses from the microscale servers as they arrive. After assembling the contributions
from the microscale servers, the relative norm of the residual is checked for convergence.

4. NUMERICAL EXAMPLES

In this section, we present three numerical examples using the hierarchically parallel multiscale
solver for modeling nonlinear response of a heterogeneous hyperelastic layer. The first example is
a simple verification problem and convergence study. The second example shows the strong scaling
performance of the hierarchically parallel multiscale solver, using up to 2048 processing cores. The
last example shows the solver’s ability to perform large and detailed engineering simulations that
would unlikely be possible by DNM with the same computational resources. In particular, we per-
form a multiscale simulation with � 1:1 billion elements and � 575 million nonlinear equations on
only 1552 computing cores. Similarly sized simulations presented in the literature [4] are typically

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:748–765
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computed on several thousand computing cores. In all examples, we use hyperelastic material
potentials for both scales given by

0W � 1W D
G

2

�
tr OC � 3

	
C

E

6.1 � 2�/
Œexp.J � 1/ � ln.J / � 1� ; (16)

where E is Young’s modulus, G is the shear modulus, and � is Poisson’s ratio. The Jacobian of the
deformation is given by J D det.C /1=2, and OC D J�2=3C is the deviatoric right Cauchy-Green
deformation tensor. Note that the appropriate macroscale and microscale deformation tensors (0C
and C , respectively) are used in Equation 16 to evaluate the macroscale and microscale potential
functions, 0W and 1W , respectively. The material properties for the adherends and interface are
listed in Table I.

We note that the theory presented in Section 2 relies on the assumption of both field and material
Y1;2-periodicity. This assumption is often unsatisfied due to the macroscopic boundary data, and
boundary correction terms are required at the microscale [29]. However, the boundary correction
terms are usually neglected in engineering practice because of their exponential decay away from
the boundary [30]. In this work, we follow this common simplification and neglect the boundary cor-
rection terms. The effect of this simplification on fully coupled 2D multiscale cohesive simulations
has been shown in our previous work [10].

4.1. Verification study

For the verification study, we compute the force-displacement response of the domain shown in
Figure 5 by DNM and FE2. This example is presented purely as a numerical test to verify the
correctness of the FE2 implementation, consistent with practices presented in [31]. The problem
consists of two unit cube adherends (L D 1mm) connected by a heterogeneous layer with thickness
lc D 0:0625 mm (Figure 5(a)). The top adherend is loaded in the vertical direction by an incre-
mental displacement, ı, and all other surfaces are constrained in the normal directions. In the FE2

simulation, the layer with thickness lc is collapsed to a surface.
To maintain a reasonable computational size for the finest resolution DNM simulation, the hetero-

geneous layer (Figure 5(b)) is constructed by a tessellation of 16 copies of the simple computational
cell shown in Figure 5(c). The computational cell contains ten 40 �m diameter voids (cv D 8:58%).
The void centers relative to the cell center are listed in Table II. The overall computational cell
dimensions are lc D 0:0625 mm and lRUC D 0:25 mm. The macroscale domain for FE2 is dis-
cretized with 16 cohesive elements. Thus, the overall heterogeneous layer for FE2 modeling also
contains 16 computational cells and is geometrically equivalent to the DNM heterogeneous layer
shown in Figure 5(b).

We perform the verification study using three different mesh refinements. For DNM, the mesh
refinement is focused inside the layer. However, the adherends are also refined to maintain mesh
continuity. For FE2, only the discretization of the computational cell is refined. The FE2 mesh of
the adherends remains constant for all levels of refinement and contains 1038 nodes, 4478 ele-
ments, and 2524 DOFs. Table III shows the mesh size for one cell at each level of refinement in the
FE2 study. Table IV shows the total mesh size for the three levels of refinement. The total number
of elements in the FE2 and DNM microstructures are held to within 3% of each other. Figure 6
shows the force-displacement response computed by DNM and FE2 for the three mesh refinements
described in Table IV. There is good agreement between the DNM and FE2 response for all levels
of refinement, and the solutions converge together as the mesh is refined within the layer. Notice

Table I. Material properties for all numerical examples.

Young’s modulus Shear modulus Poisson’s ratio
E (MPa) G (MPa) � (�)

Adherends 15 � 104 6:000 � 104 0.25
Interface 5 � 103 1:866 � 103 0.34

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:748–765
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Figure 5. Verification problem computed by DNM and FE2. (a) shows adherends withL D 1mm connected
by a heterogeneous layer of thickness lc D 0:0625 mm. (b) shows the microscale layer for the DNM
simulation based on a regular tessellation of the microstructure identified by the dotted box. (c) shows the
cell used in the FE2 simulation with lRUC D 0:25 mm containing 10 voids with 40 �m diameter. Note that

the FE2 simulation uses 16 computational cells, one for each macroscale cohesive element.

Table II. Coordinates of the void centers relative to the cell geometric center in �m (Figure 5(c)).

Void Number

1 2 3 4 5 6 7 8 9 10

Y1 65.718 62.821 �96.900 �10.177 �90.417 61.285 �15.104 �6.424 �92.506 �53.979
Y2 18.430 �44.074 �86.026 �87.556 �15.196 84.004 �2.400 51.745 51.484 �58.404
Y3 �2.262 �2.815 �3.408 �5.185 �3.795 0.808 1.981 �1.770 �6.055 �0.081

Table III. Mesh size for each refinement of one
computational cell in the FE2 verification study.

Nodes Elements

Coarse 7298 36,688
Medium 49,672 273,013
Fine 375,275 2,166,525

the highly nonlinear character of the solution. Figure 7 compares the effective Eulerian/Almansi
strain kek D



1=2 �1 � .FF T/�1
�

 in an interior region of the DNM layer (highlighted by the dot-

ted box in Figure 5(b)) and a FE2 computational cell at the end of the load history. The deformed
microstructures are clipped at the mid-plane to view the interior strains. The deformation within the
interior of the DNM layer is very similar to that of the computational cell used in the FE2 simula-
tion. Notice the very large strains (� 300%) in highly refined ligaments between voids, confirming
the requirement of finite strain simulations. We also note that neglecting the boundary correction
terms in the FE2 simulation (i.e., neglecting field and material periodicity at the microscale bound-
ary) does not introduce a noticeable error in both the macroscopic and microscopic response because
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Table IV. Mesh sizes for three levels of refinement of the verification problem in Figure 5.

Total (Macroscale + Microscale) size Microscale size

Nodes Elements DOFs Nodes Elements

Coarse
DNM 225,008 1,276,095 666,498 125,623 579,382
FE2 117,806 591,486 288,988 116,768 587,008

Medium
DNM 1,245,614 7,175,565 3,715,116 913,672 4,489,367
FE2 795,790 4,372,686 2,225,644 794,752 4,368,208

Fine
DNM 6,892,081 39,929,638 20,616,407 6,771,950 34,545,812
FE2 6,005,438 34,668,878 17,451,964 6,004,400 34,664,400

Figure 6. Comparison of force-displacement response between DNM and FE2 for the meshes in Table IV.

Figure 7. Effective Almansi strain in the mid-plane of the deformed heterogeneous layer. The cell-labeled
DNM is cropped from the full layer as shown in Figure 5(b).

of the homogeneous macroscopic boundary conditions. Finally, we mention that there is savings in
terms of the number of DOFs for similar accuracy in the solution when using the FE2 method over
DNM (Table IV).

4.2. Scaling performance

As alluded to in Section 3.2, the hierarchically parallel client-server execution model takes full
advantage of the parallelism inherent in the multiscale theory derived in Section 2. This leads to
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Figure 8. Speedup of the hierarchically parallel fully coupled multiscale solver with respect to the number
of microscale servers.

Figure 9. Dimensions, loading conditions, and microscale morphology for the 1.1 billion element FE2 sim-
ulation. (a) shows the dimensions and loading conditions of the macroscale adherends. (b) shows the RUC

for the heterogeneous layer containing 40 arbitrarily located 40 �m diameter voids (cv D 17:17%).

significant gains in computational performance, particularly in terms of strong scaling speedup.
We measure the speedup of our implementation by timing the first loading step of the finest FE2

simulation described in Section 4.1. Traditionally, a single processing core is used as the unit of com-
putational resources for speedup analysis. Here, we use a microscale server as the unit of resources,
with each server consisting of 128 processing cores. An additional 16 cores are used to solve the
macroscale problem for all cases. Figure 8 shows that the hierarchically parallel multiscale solver
exhibits ideal speedup to 2048 cores (16 servers computing one cell each). The computations were
performed on up to 129 IBM nodes, each with dual eight-core Intel Xeon 2.60 GHz processors and
32 GB of RAM, connected by Mellanox FDR InfiniBand.

4.3. 1.1 Billion element FE2 simulation

We now present the capability of the hierarchically parallel FE2 solver by simulating a complex
multiscale nonlinear example devoted to hyperelastic porous interfaces. Figure 9(a) shows the dual
cantilever beam (DCB) specimen loaded by mixed-mode opening displacement. Table V provides
the macroscale dimensions and loading direction. The RUC (Figure 9(b)) is lc D 0:125 mm thick,
lRUC D 0:25 mm wide and contains 40 arbitrarily placed 40 �m diameter voids (cv D 17:17%).
The microstructure is generated using a random sequential addition algorithm (see, e.g., [32]).
More complex microstructures may be generated using the packing algorithm described in [33], for
example. Figure 10 shows the in-plane isotropic two-point probability functions, Srs , computed
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Table V. Dimensions and the loading direction for the DCB adherends shown in Figure 9(b).

L (mm) W (mm) H (mm) A0 (mm) lc (mm) Loading direction, Ou

22.0 10.0 5.0 2.0 0.125 ¹1=
p
3; 1=

p
3; 1=

p
3ºT

Figure 10. The in-plane isotropic two-point probability functions for the RUC shown in Figure 9(b). The
subscripts m and v denote the matrix and void phases, respectively.

Table VI. Number of nodes, elements, and DOFs for the DCB
FE2 example. Each RUC in the simulation has 1.6 million

nodes, 9.2 million elements, and 4.8 million DOFs.

Nodes Elements DOFs

Macroscale 731 2684 1878
Microscale 193,873,920 1,098,283,920 574,612,560

TOTAL 193,874,651 1,098,286,604 574,614,438

using our statistical sampling tool Stat3D [34]. The saturation of the probability functions shows
that the RUC is sufficiently large to capture the geometric characteristics of the material and that
the microstructure has no long-range order. Because the focus of this paper is on the development
of the numerical method, we do not investigate material representativeness of this cell [35].

The size ratio between macroscale and microscale domains is L=lc D 160 and L=lRUC D 80,
respectively. The ratio between macrosize and void size is L=d D 500. The macroscale is dis-
cretized such that the effective area of the cohesive element is � 27� larger than that of the RUC,
l2RUC . The length of the cohesive element is� 5� larger than the size of RUC, lRUC . This provides
a good separation of scales, yet the coupled simulation still resolves the physics of the complete
multiscale problem since the macroscopic discretization is sufficiently refined (the cohesive ele-
ment size is � 1:96 mm). The resulting interface discretization contains 120 cohesive elements,
corresponding to 120 microstructures. The RUC is discretized with a similar resolution as the finest
mesh in the verification study of Section 4.1. Within the RUC, the nominal element size ranges from
hmin D 0:05 �m to hmax D 2:922 �m, with hmean D 1:713 �m. Thus, in this simulation, we resolve
L=hmin D O.106/ in length-scales. The mesh characteristics for the macroscale and microscale
domains are given in Table VI. Note that we again neglect the boundary correction terms at the
microscale boundary due to the non-periodic fields arising from non-periodic boundary macro-data.

The macroscale problem is computed on 16 processing cores, while the microscale solutions are
computed on 12 servers responsible for 10 RUCs each. Each microscale server employs np D 128

processing cores. Therefore, we use 12 �128C16 D 1552 total processing cores to simulate the fully
coupled multiscale problem. We are effectively computing the nonlinear solution of � 370; 241
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Figure 11. Multiscale solution of the DCB problem with a heterogeneous interface. (a) shows contours
of displacement magnitude on the deformed adherends at the end of the load history. The deformation is

magnified 10�. (b) shows the nonlinear force-displacement response of the free end of the top adherend.

Figure 12. Macroscopic response of the interface. (a) shows the magnitude of traction vector with the loca-
tions of microstructures used in the analysis. The distance A0 displays the pre-crack. (b) shows the normal

and shear components of the traction vector for the cohesive elements 1, 3, and 4.

DOFs per core using our hierarchically parallel multiscale solver. The solution was computed in
less than 48 hours using the same hardware as in Section 4.2. We note that similar computations
usually require several thousand processing cores [4, 6]. Figure 11 shows the deformed adherends
at the end of the load history and the nonlinear force-displacement response of the free end of the
top adherend. Figure 11(b) shows that the shear responses, f1 and f2, are not equal. This is due to
the complex mixed-mode loading conditions (Figure 9(a)) resulting in compressive loading of the
bottom adherend and tensile loading of the top adherend in the X1-direction (Figure 11(a)).

Figure 12 shows the macroscopic traction-displacement (ı) response of the interface. Figure 12(a)
shows the non-uniform distribution of the magnitude of traction on the interface at the end of the
loading history. Figure 12(b) shows normal and shear components of the macroscopic traction-
displacement response of selected microstructures. The normal traction is given by tn D 0t3, and

the shear traction is evaluated as ts D
q
0t21 C

0t22 . Figure 12(b) shows that microstructures away
from the applied opening (cells 1 and 3) experience compressive loading (tn < 0), while cells near
the applied opening experience large tensile loading. Figure 12(b) also shows that the compressive
normal traction in cell 3 is higher than in cell 1. This is expected as the compressive normal traction
tends to zero at the far end from the opening. Figure 13 shows the effective Eulerian/Almansi strain,
kek, in the microstructures corresponding to the six marked interface elements in Figure 12(a).
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Figure 13. Effective Eulerian/Almansi strain in the microstructures at marked points on the macroscale
interface.

The high levels of strain detected (80%) show the importance of finite strain modeling. We also note
that strains in cells 4 and 6 are not symmetric because of the mixed-mode loading. As expected,
the strains substantially increase for cells closer to the leading edge where opening displacement is
applied (Figures 9(a) and 12(a)).

5. CONCLUSIONS

We have developed a fully coupled, multiscale cohesive solver for modeling heterogeneous layers.
The hierarchically parallel multiscale solver is based on a point-to-point non-blocking client-server
communication scheme and is scalable to many thousands of distributed computing cores. We show
that the well established FE2 method can be practical to accurately simulate engineering scale
domains with resolution from O.101/ nm to O.101/ mm (O.106/ in spatial scales). Engineering
devices of this size can easily be tested experimentally to provide validation data for the new hier-
archically parallel FE2 multiscale framework. Such a validated framework lends itself to predictive
scientific studies and Virtual Materials Testing in order to develop reduced order models for applica-
tion in industry-ready modeling and simulation tools. A rigorous verification and mesh refinement
study is performed and shows excellent agreement between DNM and FE2 solutions. Using the ver-
ified multiscale framework, we solve an example with over 1 billion finite elements and over 574
million nonlinear equations on only 1552 computing cores. The solver provides the nonlinear solu-
tion to � 370; 241 unknowns per processing core. Additionally, the proposed high-performance
solver shows excellent strong scaling performance. With this parallel multiscale solver in hand,
future studies can now be performed to investigate the influence of boundary conditions as well as
microstructure morphology on the overall behavior of bonded systems.
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APPENDIX A: MULTISCALE DISCRETE TANGENTS

The discrete multiscale tangents are derived by linearizing Equations (9) and (10) with respect to
the macroscale and microscale variables. The macroscale tangent

K00 D
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0
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is obtained by differentiating Equation 9 with respect to the macroscale displacements. In
Equation A.1, 0L D 2@0S=@0C is the material tangent stiffness at the macroscale and
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(A.2)
is obtained by differentiation of Equation 11, where 1L D 2@1S=@C is the material tangent stiffness
at the microscale. The macro-to-micro tangent
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is derived by differentiating Equation 9 with respect to the microvariables, where
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is obtained by differentiation of Equation 11.
The microscale tangent
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is computed by differentiating Equation 10 with respect to the microscale displacements. Finally,
the micro-to-macro tangent yields
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where we have differentiated Equation 10 with respect to �0u�.
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