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We present the asynchronous multi-domain variational time integrators with a dual domain decomposition
method for the initial hyperbolic boundary-value problem in hyperelasticity. Variational time integration
schemes, based on the principle of minimal action within the Lagrangian framework, are constructed for the
equation of motion and implemented into a variational finite element framework, which is systematically
derived from the three-field de Veubeke-Hu-Washizu variational principle to accommodate the
incompressibility constraint present in an analysis of nearly-incompressible materials. For efficient parallel
computing, we use the dual domain decomposition method with local Lagrange multipliers to ensure the
continuity of the displacement field at the interface between subdomains. The α-method for time
discretization and the multi-domain spatial decomposition enable us to use different types of integrators
(explicit vs. implicit) and different time steps on different parts of a computational domain, and thus
efficiently capture the underlying physics with less computational effort. The energy conservation of our
nonlinear, midpoint, asynchronous integration scheme is investigated using the Energy method, and both
local and the global energy error estimates are derived. We illustrate the performance of proposed
variational multi-domain time integrators by means of three examples. First, the method of manufactured
solutions is used to examine the consistency of the formulation. In the second example, we investigate
energy conservation and stability. Finally, we apply the method to the motion of a heterogeneous plane
domain, where different integrators and time discretization steps are used accordingly with disparate
material data of individual parts.
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1. Introduction

In time-dependent scientific simulations, where different multi-
physics solvers are often coupled, the time integrator is an
important component. Typically, the partial differential equations
(PDEs) are solved by discretizing the domain spatially using finite
elements or finite volumes, then integrating over time using a
numerical ordinary differential equation (ODE) solver. Both the
coupling between domains and the time integration must be
handled with care to avoid numerical instability, since the stability
and accuracy of such coupling are dictated not only by the individual
local time step limits, but also by the data transfer method across
the interface. Moreover, the stability and accuracy requirements for
different domains may necessitate different time steps. For example,
a stiff material domain may require small time steps for numerical
stability, or a fluid domain may require small time steps to resolve
boundary layers accurately, while other material domains may
permit a larger time step.

Another challenge when solving these problems is in the spatial
discretization, allowing the ability to link domains with non-matching
discretizations. Due to their size, these simulations often require
parallel computing, which can be effectively done using domain
decomposition. For elliptic problems, Farhat and Roux [16] proposed
the popular FETI method, which was subsequently extended to
transient problems [14]. It enforces continuity between domains by
adding an additional constraint with Lagrange multipliers. Park et al.
[36] developed a variant using local Lagrange multipliers that
constrains domains to an intermediate interface rather than directly
to each other. Such an intermediate interface is used in Park et al. [37]
and Brezzi and Marini [9] to handle domains with non-matching
meshes, as illustrated in Fig. 1.

To achieve an efficient, stable, and accurate integrator, several
issues must be addressed. For accurate long time integration, it is
desirable that the integrator conserves energy and preserves
momentum. It is well known, that ODE integrators that discretize
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Fig. 1. Domain decomposition with a common interface between domains. Arrows
represent the local Lagrange multipliers constraining each domain to the interface.

Fig. 2. Problem description.
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the differential equation itself, such as Runge-Kutta methods, often
artificially dissipate energy to achieve numerical stability. To relax
the time step constraint imposed by stability requirements, mixed
methods or multi-time methods with different time steps for each
domain were proposed. Belytschko and Mullen [6,7] were the first
to use a mixed explicit–implicit method with a nodal partition,
while Hughes and Liu [26,27] introduced a mixed method using an
element partition. Belytschko et al. [8] introduced subcycling for
first-order problems, and later extended it to non-integer time step
ratios [5]. Neal and Belytschko [33] developed subcycling with non-
integer ratios for second-order structural problems. Although
popular, the stability of second-order subcycling methods has been
elusive. Smolinski and Sleith [40] contrived an explicit subcycling
algorithm for second-order problems that was proved stable [41],
but is less accurate than other algorithms. Daniel [11] showed that
Neal and Belytschko's algorithm is “statistically stable”, but unstable
for certain time steps smaller than the expected stability limit. More
recently, Combescure and Gravouil [10,21] developed a FETI-like
transient method that enforces continuity of velocities and is proved
stable but dissipative for subcycling. Prakash and Hjelmstad [38]
improved this method to be stable and non-dissipative for subcycling,
but their method is based on binary trees for parallelism and additive
operator split, rendering it less popular for nonlinear problems and
high-performance computing.

Another set of integrators proposed in recent years are the
Variational Integrators. These are derived by discretizing the
Lagrangian and applying variational calculus, resulting in methods
that preserve momentum, do not dissipate energy and are symplectic.
As a result they are superior for long time integration. Variational
integrators have been developed by Veselov [42], Wendlandt and
Marsden [43], and Marsden and West [31], among others. Kane et al.
[29] showed that the popular Newmark method [34] can also be
derived variationally. Lew et al. [30] developed an asynchronous
variational integrator (AVI) and presented its explicit implementa-
tion, where each element has its own time step. The parallel
implementation of AVI was presented in Kale and Lew [28].

Time integrators for nonlinear problems and their stability
have also generated a high degree of interest. Especially, the
energy-controlling or conserving methods have been investigated
[19,20,22]. Time integration schemes that conserve the momenta
and dissipate the energy in order to diminish unresolved high
frequency modes, while maintaining good accuracy were delineated
in [3]. Recently, energy-dissipative momentum-conserving time
stepping algorithms for finite strain multiplicative plasticity were
presented by Armero [2].

Based on the promising results of the variational integrators and
their deep mathematical structure, in Section 3 we present a
method for integrating nonlinear problems with domain decompo-
sition. In particular, we build on our previous work focused on ODEs
[18] and extend it to PDEs for nearly-incompressible materials.
Quasi-incompressible material behavior is treated by a three-field
de Veubeke-Hu-Washizu variational principle [19,32,39]. Note that
modeling of nearly-incompressible materials is challenging, espe-
cially for explicit integrators, since the wave speed →∞ as ν→1/2,
and thus Δt→0. We develop an asynchronous integrator that allows
each domain to use its own arbitrary time step and integrator. We
use a variational approach based on the generalized α-method to
take advantage of its favorable properties and enforce the continuity
of displacements with a common interface. The constraint is applied
by using local Lagrange multipliers in context of the dual domain
decomposition method. Displacement constraints avoid disconti-
nuities between domains in the cases where continuity of velocities
is only enforced.

In Section 4, we present the energy conservation analysis of our
integrators for both the synchronous and asynchronous time
stepping using the midpoint rule, α=1/2. We follow the approach
by Hauret and Le Tallec [22]. By treating the constraints variation-
ally, we ensure stability in domain coupling. The synchronous
implicit midpoint version achieves a conditional stability with
O(Δt3), while with asynchronous steps it is conditionally stable with
a local criterion O((Δtk)2). However, we show that for our common
interface, the global energy control still holds with O(Δt3). Our
method accommodates nonlinear problems very naturally and the
high degree of parallelism is preserved. Note that rigorous nonlinear
stability analysis is not part of this investigation. For linear stability
analysis of AVI, we point the interested reader to the work of Fong
et al. [17].

We present examples in Section 5 involving the convergence
study, energy conservation study, and the mixed implicit/explicit
integration test that demonstrates the potential of the method for
error control. Finally, several conclusions are made in Section 6.

The main contributions of the present work are: i) Combination
of the most recent advances in asynchronous multi-domain
variational time integrators with a dual domain decomposition
method in the context of a mixed three-field de Veubeke-Hu-
Washizu variational principle for nearly-incompressible solids. ii)
Introduction of a linearly interpolated common interface and the
local Lagrange multiples in the space/time domain that allow for
mixed, asynchronous implicit/explicit integration amenable to
parallel computation. iii) The energy conservation analysis of the
midpoint integrator by the Energy method. iv) Unique examples,
based on the Method of Manufactured Solutions, that provide a
rigorous verification testbeds.
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2. Governing equations — continuum problem
Let the open set Ω0⊂R3 be the reference configuration of a given (compressible or nearly-incompressible) body at time t0. Each point X is
associated by a bijective map with its position in that configuration: X→X∈Ω0, as shown in Fig. 2.

In the absence of displacement discontinuities, a unique differentiable deformation map ϕ:Ω0×[0, T]→R3 describing a motion exists, such
that any displaced position at a current time t∈ [0, T], where [0, T]⊂R+ denotes the time of interest, is determined as x=ϕ(X, t) with the
difference being the displacement field u(X, t)=x−X. The deformation gradient F(X, t) is obtained by taking the gradient of the deformation
map F=∇0ϕ, where ∇0 is the gradient with respect to X, and the Jacobian of the deformation map is given by J(X, t)=det F. We also define the
right Cauchy-Green deformation tensor C(X, t)=FTF.

The initial/boundary-value problem of motion reads

ρ0
∂2u
∂t2

= ∇0 · P + f0 in Ω0 × ð0; TÞ;

u = u0 on ∂Ωu × ð0; TÞ;
P · N0 = t0 on ∂ΩP × ð0; TÞ;
uðX;0Þ = u0 in Ω0;

∂u
∂t ðX;0Þ = u̇0

in Ω0;

ð1Þ

where ρ0(X, t)= Jρ represents the reference mass density and ρ=ρ(X, t) is the deformed mass density, P=P(X, F(X, t)) is the first Piola-
Kirchhoff stress, f0= f0(X, t) denotes the external body force, ū̄0= ū̄0(X, t) is the prescribed displacement on the boundary ∂Ωū̄, t̄̄0= t̄̄0(X, t)
represents the known surface load on the boundary ∂ΩP andN0 represents the unit normal to ∂ΩP. Here

∂u
∂t ðX; tÞ denotes thematerial velocity u̇(X, t)

and ∂2u
∂t2 represents thematerial acceleration ü(X, t), respectively. To render the initial/boundary-value problemwell posed, initial conditions u0

and u
.
0 are given for both displacement u and velocity u̇. Note that ∂Ωū̄0

and ∂ΩP are smooth open disjoint subsets of ∂Ω0 such that

∂Ω0=∂Ωū̄0
∪∂ΩP and the 1-dimensional measure of ∂Ω0−(∂Ωū̄0

∪∂ΩP) is zero.

2.1. A three-field continuous Lagrangian framework

In this work, we are interested in variational integratorswithin the domain decomposition framework to solve the equation of motion, Eq. (1),
in the context of nearly-incompressible material behavior, which requires a special numerical treatment. For clarity and completeness of the
presentation, we start with a continuous variational formulation. The derivation of variational integrators for computing the motion in the
discrete setting will follow analogously. To account properly for a nearly-incompressible material response, we employ a three-field de Veubeke-
Hu-Washizu variational principle [19,32,39].

In general, the volume-preserving part of a deformation gradient reads

F̂ðX; tÞ = J−
1
3F; ð2Þ

and the volumetric term θ(X, t) is given by

θ = J: ð3Þ

Next, we introduce a mixed deformation gradient FðX; tÞ = θ
1
3 F̂, such that an additional variable θ now represents a mixed Jacobian (θ≡det(F)̅).

In the finite element formulation, introduced hereafter, Eq. (3) is satisfied in a weak sense.
A mixed variational formulation, in the Lagrangian frame, is governed by a Lagrangian defined as the kinetic minus the potential energy

Lðu; u̇; θ;pÞ = Tðu̇Þ−Vðu; θ;pÞ; ð4Þ

where

Tðu̇Þ = 1
2
∫Ω0

ρ0
∂u
∂t ⋅

∂u
∂t dΩ0; ð5Þ

and

Vðu; θ;pÞ = ∫Ω0
W Ĉ; θ
� �

dΩ0 + ∫Ω0
pðJ−θÞdΩ0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ein

− ∫Ω0
f 0 ·udΩ0 + ∫∂ΩP

t
0
·udS0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eex

; ð6Þ

with Ein being defined as the internal and Eex representing the external energy, respectively. The total energy E of the system is simply E=T+V.
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As is typical for mixed methods [4,39], the stored energy function W(Ĉ, θ) is additively decomposed into distortional Ŵ and dilatational U
parts

Wð Ĉ; θÞ = ŴðCÞ + UðθÞ; ð7Þ

with ĈðX; tÞ = J−
2
3C being the isochoric part of the right Cauchy-Green tensor. A traditional nearly-incompressible neo-Hookean potential

ŴðCÞ = 1
2
μ tr Ĉ−3
� �

and a simple volumetric function UðθÞ = 1
2
κðθ−1Þ2 are used in this work, where μ is the shear modulus and κ denotes the

bulk modulus, respectively. The hyperelastic constitutive equation yields

P =
∂ŴðFÞ
∂F j

F=F
+

dU
dθ|{z}
p

∂θ
∂F j

F=F
; ð8Þ

where p=p(X, t) (see also Eq. (6)) is the hydrostatic pressure.
Now, we introduce an action integral

A = Aðu; θ; pÞ = ∫t2

t1
Lðu;u̇; θ;pÞdt; ð9Þ

where t1, t2 (t1b t2) are arbitrary times within (0, T) and apply the Hamilton's principle δA(u, θ, p)=0 to obtain a weak form of the initial/
boundary-value problem (1). Find u(X, t)∈C([0, T]; H1,2), θ(X, t)∈C([0, T]; L2(Ω0)) and p(X, t)∈C([0, T]; L2(Ω0)) such that

ℛu = ∫T

0

(
∫Ω0

ρ0
∂u
∂t ·

∂δu
∂t − Ŝ 0 : FT∇0δu

� �
−pJC−1 : FT∇0δu

� �� �
dΩ0

+ ∫Ω0
F0 · δudΩ0 + ∫∂ΩP

t0 · δudS0gdt = 0;

ℛθ = ∫T

0
∫Ω0

p−κðθ−1Þ½ �δθdΩ0

n o
dt = 0;

ℛp = ∫T

0
∫Ω0

ðJ−θÞδpdΩ0

n o
dt = 0;

ð10Þ

hold for every variation δu∈C([0, T]; H1,2), δθ∈C([0, T]; L2(Ω0)) and δp∈C([0, T]; L2(Ω0)). δu ̇(X, t):[0,T]→L2(Ω0)3 is piecewise continuous in [0,
T], δu(X, t)=0 on ∂Ωu ̅×[0, T], u̇(X, t)∈C([0, T]; H0,2) and initial data are given by

uðX;0Þ = u0; ð11Þ

u̇ðX;0Þ =u̇0: ð12Þ

Here Ŝ 0ðX; tÞ = 2∂Ŵ
∂C ðCÞ is the comzputational deviatoric second Piola-Kirchhoff stress. The Hilbert spaces H1,2 and H0,2 introduced above

represent closures of

E Ω0ð Þ = u∈C∞ Ω0
� �3; supp u∩∂Ωu = K

n o
ð13Þ

in the norm W1,2(Ω0)3 and L2(Ω0)3, where W1,2(Ω0)3 denotes the Sobolev space of square-integrable functions with weak derivatives up to first
order with range in R3, and L2(Ω0)3 is a typical Lebesgue space.
Fig. 3. Domain decomposition. ND denotes the number of subdomains.
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Note that we make no attempt to address issues of existence and uniqueness of the solution. Existence can be proven for certain cases in a
suitable Sobolev space [13,25] (typically u∈W1,s(Ω0)3, u̇∈L2(Ω0)3 and p, θ∈Lq(Ω0)3 with 3/s+1/q≤1, as used in [22] for the two-field mixed
method), but a complete existence theory is still an open question.We proceed under the assumptions that the hyperbolic initial/boundary-value
problem in question admits a solution in some sense in spaces defined above, and given this, we continue to construct the numerical
approximation of the solution, and replace the continuous spaces by their discrete counterparts.

2.2. Domain decomposition

To allow for different time steps/integrators to be used in different regions of the domain Ω, we use the dual domain decomposition method
since it is easily parallelizable. We adopt the method of local Lagrange multipliers, introduced by Park et al. [36], where each domain is
constrained to an intermediate interface, Σ, as shown in Fig. 3.
This method is favorable for non-conforming meshes as presented by Brezzi and Marini [9] and Park et al. [37], and eliminates over-constraints
where more than two subdomains meet.

The augmented Lagrange function and augmented action integral yield

L̂ðu; u̇; θ;p;λ;wÞ = Tðu̇Þ−Vðu; θ;pÞ + ∑
ND

k=1
∫Γk Φ

kðu;wÞTλkdS0; Âðu; θ;p;λ;wÞ = Aðu; θ; pÞ + ∫t2
t1
∑
ND

k=1
∫Γk Φ

kðu;wÞTλkdS0dt; ð14Þ

and the constraint function is defined as

Φkðu;wÞ = uk−wk = Bku−Dkw = 0; ð15Þ

where the operators Bk and Dk are the Boolean matrices extracting the interface degrees of freedom from u and the corresponding degrees of
freedom fromw for a particular subdomain k. The relationship between the constraint on displacements, used in this work, or velocities, used by
Prakash and Hjelmstad [38], is explained in Appendix A.

The Euler-Lagrange equations resulting from this augmented action integral for the asynchronous case, which is the main objective of this
paper, are presented in what follows.
3. Discrete asynchronous multi-domain integrators

Since the stability and accuracy requirements for different domains may necessitate different time step sizes, we developed a discrete multi-
domain asynchronous variational integrator, where each domain advances with its own step size and integrator (explicit/implicit). To formulate
such integrators, we follow our earlier work focused on ODEs [18]. More details on discrete variational integrators can also be found in [31,42,43].

3.1. Spatial discretization

We begin by traditional discretization in space by the finite element method:

uh = ΨT
u ũ; uh jΩe

= ∑
NNu

i=1
Ψi

uðxÞũ iðtÞ; ∀uh∈Hh⊂H1;2
;

θh = ΨT
θ θ̃; θh jΩe

= ∑
NNθ

i=1
Ψi

θðxÞ θ̃iðtÞ; ∀θh∈Lh⊂L2 Ω0ð Þ;

ph = ΨT
p p̃; ph jΩe

= ∑
NNp

i=1
Ψi

pðxÞ p̃iðtÞ; ∀ph∈Lh⊂L2 Ω0ð Þ:

ð16Þ
Fig. 4. Substeps of the system time step.
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The interface motion and the corresponding Lagrange multipliers are approximated as follows:

wh = Ξw w̃; wh jΣ = ∑
NNw

i=1
Ξi

wðxÞ w̃iðtÞ; ∀wh∈Φh⊂W
1
2
;2 ðΣÞ3; λh = Ξλ λ̃; λh jΣ = ∑

NNλ

i=1
Ξi

λðxÞ λ̃iðtÞ; ∀λh∈Mh⊂W−1
2
;2 ðΣÞ3: ð17Þ

Here, we denote by Hh and Lh the finite element subspace of the space H1,2 and L2(Ω0), respectively. The finite element trace spaceΦh andMh

are the subspaces of W
1
2
;2 ðΣÞ3 and W−1

2
;2 ðΣÞ3.

3.2. Asynchronous Lagrangian framework

To facilitate the discussion on asynchronous time stepping, we start by introducing a generalized midpoint rule for primary unknowns

u
h
n + α = ð1−αÞuhn + αu

h
n + 1;

θhn + α = ð1−αÞθhn + αθhn + 1;

phn + α = ð1−αÞphn + αphn + 1:

ð18Þ

The discrete deformation gradient now reads

Fn + α = ð1−αÞFn + αFn + 1 = ð1−αÞ 1 + ∇0u
h
n

� �
+ α 1 + ∇0u

h
n + 1

� �
; ð19Þ

where 1 is the second order identity tensor.
Next, we decompose domain, Ω0 = ∪ND

k = 1Ω
k
0 (see Fig. 3), and introduce a substep time Δtk=Δt/sk, which is proportional to the system time

step Δt= tn+1− tn, where sk is the number of substeps for domain k, as shown schematically in Fig. 4.
As in the continuous case, the discrete augmented Lagrangian is a map that approximates the augmented Lagrangian Eq. (14) over the one system
time step

L̂d uh
n;u

h
n + 1; θ

h
n; θ

h
n + 1;p

h
n;p

h
n + 1;λ

h
n;w

h
n

� �
≈∫tn + 1

tn
L̂h uh

; u̇h
; θh;ph;λh

;whÞdt:�
ð20Þ

Employing the generalized midpoint rule, Eq. (18), and taking into consideration a substep Δtk, the discrete augmented Lagrangian L̂d
k(ui

h, ui+1
h ,

θih, θi+1
h , pih, pi+1

h , λi
h, wi

h) for one subdomain with its own substep time yields

L̂
k
d = Δtk L̂kh ui + α;

uh
i + 1−uh

i

Δtk
; θhi + α; p

h
i + α;λ

h
i ;w

h
i

 !
; ð21Þ

where •i= •(tn+ iΔtk) and •i+α=(1−α) •i+α•i+1 (Fig. 4). Following the three-field continuous case, Eqs. (4)–(6), with the domain
decomposition, Eqs. (14) and (15), the discrete augmented Lagrangian for subdomain k and substep Δtk reads

L̂
k
d = Δtk

(
1
2
∫Ωk

0
ρ0

uh
i + 1−uh

i

Δtk

 !
·

uh
i + 1−uh

i

Δtk

 !
dΩk

0 −∫Ωk
0

Ŵ C i + α
� �

+ U θhi + α

� �n o
dΩk

0−∫
Ωk

0

phi + α Ji + α−θhi + α

� �
dΩk

0

+ ∫
Ωk

0

f 0ð Þi + α · uh
i + αdΩ

k
0 + ∫

∂Ωk
P

t0
� �

i + α · uh
i + αdS0 + ∫

Γk
Φk uh

i ;w
h
i

� �T
λh
i

� �k
dS0g:

ð22Þ

The total discrete augmented Lagrangian for a whole body and the corresponding discrete augmented action sum are given by summation over
all substeps (sk), all subdomains (ND) and all time intervals (NT):

L̂d = ∑
ND

r=1
∑
sk−1

i=1
L̂
k
d uh

i ;u
h
i + 1; θ

h
i ; θ

h
i + 1; p

h
i ;p

h
i + 1;λ

h
i ;w

h
i

� �
; Âd = ∑

NT−1

n=0
∑
ND

r=1
∑
sk−1

i=1
L̂
k
d uh

i ;u
h
i + 1; θ

h
i ; θ

h
i + 1; p

h
i ;p

h
i + 1;λ

h
i ;w

h
i

� �
: ð23Þ

In this paper, the position of the common interface wh separating the subdomain Ωk and the supplement Ω−Ωk is linearly interpolated by

wh
i = 1− i

sk

	 

wh

n +
i
sk

	 

wh

n + 1; ∀i = 1;…; sk: ð24Þ

Note that different interface motion interpolations, wi
h, will likely lead to a different response of the integrator and potentially its

conservation/stability criteria.
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Similar to the continuous case, the discrete Hamilton's principle states that the motion makes the discrete action sum stationary δÂd=0. This
leads to system of sk discrete Euler-Lagrange equations for uh, θh and ph:

∂
∂uh
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sk equations for Lagrange multipliers constraining domain Ωk to the interface Σ at each substep:
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∂λh

i + 1

L̂
k
d uh

i + 1;u
h
i + 2; θ

h
i + 1; θ

h
i + 2; p

h
i + 1;p

h
i + 2;λ

h
i + 1;w

h
n;w

h
n + 1

� �
= 0; ð26Þ

and for the interface we have
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The above equation represents a weak form of the force balance at the subdomain interfaces.
The residual form of the discrete Euler-Lagrange Eqs. (25)–(27) prevalent for the numerical implementation is given by

ℛu = −∫Ωk
0
ρ0

uh
i + 1−2uh

i + uh
i−1

Δtk

 !
· δuhdΩk

0

−αΔtk∫Ωk
0
Ŝ 0
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h i
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0
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ð28Þ

with

ℛλ = Δtk∫Γk Bk uh
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� �T− 1− i + 1
sk

	 

Dk wh
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� �T− i + 1
sk

	 

Dk wh

n + 1

� �T� �
· δλhdS0 = 0; ð29Þ

and for the interface we get

ℛw = ∑
ND
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Δtk∫Γr − i

sk

	 

Dk δwh
� �T

· λh
� �k

n−1;i
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sk

	 

Dk δwh
� �T

· λh
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� �k� �
dS0 = 0; ð30Þ

where δuh∈Hh⊂H1,2, δθh∈Lh⊂L2(Ω0), δph∈Lh⊂L2(Ω0), δw
h∈Φh⊂W

1
2
;2 ðΣÞ3, δλh∈Mh⊂W−1

2
;2 ðΣÞ3 and (λh)n−1,i

k =(λh)k(tn−1+ iΔtk). Note that
(λi

h)k≡(λh)n,ik =(λh)k(tn+ iΔtk) (see Fig. 4). For synchronous time stepping sk=1, one can substitute n for i and all equations will collapse to a
simple form with Δt as a single time step.

3.3. Consistent linearization

As usual for a nonlinear problem, the system (Eqs. (28)–(30)) must be solved using some iterative technique, such as Newton's method.
Consistent linearization is required if one wants to achieve the quadratic rate of convergence. We show the general structure of the Jacobian
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matrix derived by consistent linearization of residuals (28), (29) and (30), which has a block-bordered form amenable to parallel computation,
with each block assigned to a different processor:

JgðyÞ =
A11 jA12

AT
12 jA22

 !
; ð31Þ
where

and

and
The solution vector y is assembled as
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Þ ð32Þ

for a simple two domain problem with sk=1=1 and sk=2=2, for example.
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Individual matrices Ki, Li and Ni are derived by consistent linearization of a particular residual with i+1, i and i−1 substeps:

Ki =
Ki
uu 0 ðKi

puÞT
0 Ki

θθ ðKi
pθÞT

Ki
pu Ki

pθ 0

0
B@

1
CA; i = 1;…; sk; Ki

□△ =
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∂Δi + 1

; ð33Þ
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Liuu 0 Lipu
� �T

0 Liθθ Lipθ
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Lipu Lipθ 0

0
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Ni =

Ni
uu 0 Ni

pu

� �T
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θθ Ni
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� �T
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pθ 0

0
BBB@

1
CCCA; i = 3;…; sk; Ni

□△ =
∂ℛ□
∂Δi−1

: ð35Þ

Note that ∀i=3,…,sk we get the equivalence Ni=Ki−1. All the individual linearized components including the coupling matrices Cλu and Cλw
are given in Appendix B.

Several interesting features canbeobservedwhen investigatingEq. (31).After standardmathematical operations, thematrix (31) canbe transformed
to a dual–primal system, which relates the dual Lagrangemultipliers λh to quasi-primary interface displacement degrees of freedomwh, similar to that
from FETI-DP [15]. Once the local Lagrangemultipliersλh and interface displacementswh are known, one can easily evaluate the true primary variables
(uh, θh,ph) since the internal block,A11, is a lower triangularmatrix that canbe solvedby forward substitution row-wise fromtop tobottomwhich simply
amounts to time stepping the initial stateun

h, θnh and pn
h by sk time steps i∀ND. This operation can be performedwith great efficiency in parallel, and for an

explicit integrator will lead to a standard recursion formulawhen a lumpedmassmatrix is used. Moreover, for synchronous time steps and lower order
elements, such as Q1/P0/V0, we can simply statically condense the pressure and the volumetric unknown to get:
(36)
-

where

K = Kuu + KT
pu KpθK

−1
θθ KT

pθ

� �−1
Kpu

� �
: ð37Þ

The residual vector is given by

−Ru = −Ru + KT
puK

−1
pθ Rθ−KT

pu KpθK
−1
θθ KT

pθ

� �−1Rp; ð38Þ

where ℛu=Ru ⋅ δuh, ℛθ=Rθ ⋅ δθh and ℛp=Rp ⋅ δph. However, the static condensation becomes more complicated for asynchronous case
since pi+1

h depends on pi
h and pi−1

h in a non-trivial fashion. Similar complex relationships hold for θh. In this work, we solve for all unknowns
simultaneously by a monolithic method using a direct solver [12]. This monolithic implementation makes our integrators computationally non-
optimal, for some applications, and a solution strategy similar to that adopted in FETI-DP [15] will be important, especially in a 3D setting. In our
initial work, we have not focused on this efficient implementation, but rather on the mathematical and physical characteristics of our integrator,
such as consistency, order of convergence, energy conservation, etc.
4. Conservation analysis

Here, we focus on energy conservation properties of our asynchronous integrators. Note that since we discretize the mixed variational
principle, the conservation properties are not fully known. We investigate the generalized midpoint rule (α=1/2) and assess its discrete energy
evolution, since the energy dissipation is widely regarded as a natural criterion of stability [21,22,38]. Note that we make no claims about the
stability of our midpoint integrator, in this section, since it is known that energy conservation is not sufficient for numerical stability in the
nonlinear range [35]. For linear stability analysis of AVI, we point the interested reader to work of Fong et al. [17]. The external forces are
considered zero without loss of generality in this section.

As has been reported by Hauret and Le Tallec [22], for a standard consistent integrator one can derive an energy error estimate

En + 1=2−En−1=2 = cnΔt
q
; ð39Þ
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where q is typically an exponent of second or third-order and the constant cn dependents on material properties, size of the domain, level of the
discretization, etc., [22]. However, for the asynchronous time stepping presented in this work, the interface force balance is not satisfied time-
wise for an arbitrary substep i even when we “synchronize” at the system time step n (Fig. 5(b)). Rather, we enforce the linear momentum
balance weakly in the space–time domain, Eq. (30), as in the space–time discountinous Galerkin method [1]. Take for example the two domain
problem shown in Fig. 5(b). The force balance at the system time step reads

λh
� �b

n
= −1

4
λh
� �a

n;0
− 1

16
λh
� �a

n−1;1
− 3

16
λh
� �a

n;1
−1

8
λh
� �a

n−1;2
−1

8
λh
� �a

n;2
− 3

16
λh
� �a

n−1;3
− 1

16
λh
� �a

n;3
: ð40Þ

Therefore, we present hereafter an energy evolution criterion, similar to one given by Eq. (39), but for the asynchronous midpoint method
presented in this work. We follow the approach by Hauret and Le Tallec [22], and provide a detailed derivation in Appendix C. For the common
interface (24), one can derive the following global energy error estimate:

Et = ∑
ND

k=1
∑
sk−1

i=0

i
sk

	 

ΔEk

n−1;i + 1− i
sk

	 

ΔEk

n;i = c̃nΔt
3
: ð41Þ

Note that Eq. (41) represents a sum of unbalanced energy projections (Eq. (C.15)) between n−1,i (ΔEn−1,i
k ) and n,i (ΔEn,ik ) substeps over a system

time step Δt, where the projection surface coincides with the linear constraint interpolation (Eq. (24)).
Although the global energy conservation described above is promising, we are still interested in the local energy evolution, from i−1/2 to i+1/2,

as in the synchronous case Eq. (C.12). We start by rewriting Eq. (C.9) in the incremental form

ΔEk
i = Δtk∫Γk Bk ϕh

i + 1−ϕh
i−1

2Δtk

 ! !T

λh
i

� �k
dS0 + ci Δtk

� �3
; ð42Þ

and employing the recurrent formula

ΔEk
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� �3
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Then,

ΔEk
i −ΔEk

i−1 = Δtk
� �2∫Γk Bk u̇h
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� �� �T
λ̇h
i

� �k
dS0 + ci Δtk

� �2
; ð44Þ

and using mathematical induction one gets

Ek
i + 1

2
−Ek

i−1
2
= ci Δtk

� �2
; ð45Þ
Fig. 5. Balance of Lagrange multipliers across a common interface. Note that in general Δta≠Δtb≠Δt.



Fig. 6. Method of manufactured solutions for an incompressible material.
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since conservative mechanical systems are typically used in the stability studies, Δ Ei−1
k =0|t=0 (see [24] for more details). Note that Eq. (45)

holds regardless of how the common interface is interpolated. Also, the estimate Eq. (45) is the strictest estimate on the local energy balance, and
does not preclude the superior conservation in reality. However, using the theory just presented, wewere not able to derive the higher order local
criterion. Some physical interpretations for the above estimates (41) and (45) are presented in Section 5.2. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

5. Numerical examples

In this section, convergence tests, the stability study and the analysis
of the error decay due to asynchronous time stepping are performed to
assess performanceof numericalmethodologies developed in thiswork.
The convergence study is used to examine consistency of the
formulation while energy conservation is performed to investigate
stability of the integrators. Finally, we solve the problem with mixed
integration (implicit/explicit) and lastly show the potential of our
method for engineering applications. The finite elements considered for
these studies are classical two-dimensional plane strain Q1/P0/V0

elements, where displacement field is bi-linear, and pressure and
volume are constant over the element. The Lagrange multiplier field is
selected to be linear over the element edge in this study.

5.1. Convergence study

In this subsection,we perform the convergence study on a bi-material
system to investigate the consistency of the proposed asynchronous
integrators. Both space and time convergence tests are performed using
the Method of Manufactured Solutions (MMS). We select a solution that
satisfies the incompressibility constraint, ∇ ⋅ u⁎=0, albeit in the small
strain setting. The manufactured solution reads

u1⁎ X1;X2; tð Þ = −10X1 1−X1ð Þ 1−2X1ð ÞX2
2 1−X2ð Þ2M1ðtÞ;

u2⁎ X1;X2; tð Þ = 10X2
1 1−X1ð Þ2X2 1−X2ð Þ 1−2X2ð ÞM1ðtÞ;

ð46Þ

where

M1ðtÞ =
cosð103t−π

4
Þ

103t + 1
−

ffiffiffi
2

p

2

2
4

3
5: ð47Þ

The geometry of the bi-material example as well as the manufac-
tured solution (46) are displayed in Fig. 6. The material properties for
this example are listed in Table 1.
Table 1
Material properties for the bi-material convergence example.

ρ0 [kg/m3] E ̅ [Pa] ν [−] μ [Pa] κ [Pa] c̅ [m/s]

Domain 1 500.0 2998.0 0.499 1000.0 5.0×105 2.4487
Domain 2 100.0 29,980.0 0.499 1.0×104 5.0×106 17.3147
Note the differentmaterialwave propagation speeds c = E
P
= ρ0.

The components of the body force used in the numerical implemen-
tation are given by

f ⁎1 = −10X1 1−X1ð Þ 1−2X1ð ÞX2
2 1−X2ð Þ2M2ðtÞ

− ∂
∂X1

P11 u⁎
� �

− ∂
∂X2

P12 u⁎
� �

;

f ⁎2 = 10X2
1 1−X1ð Þ2X2 1−X2ð Þ 1−2X2ð ÞM2ðtÞ

− ∂
∂X1

P21 u⁎
� �

− ∂
∂X2

P22 u⁎
� �

; ð48Þ

where

M2ðtÞ = 106⋅ 2
sin 103t + π

4

� �
103t + 1
� �3 −1

sin 103t + π
4

� �
103t + 1

−2
cos 103t + π

4

� �
103t + 1
� �2

2
4

3
5:

ð49Þ

Fig. 7 displays the motion of the point M, (see Fig. 6(a)), computed
with the midpoint, α1,2=1/2, asynchronous integrator, Δt1/Δt2=1/2.
Although the spatial h and temporal Δt discretizations are mutually
coupled ingeneral, the spatial discretization often influences thevertical
shift (amplitude) whereas the time discretization changes the horizon-
tal variations (frequency) as can be observed in Fig. 7. Note that the zero
motion of pointM in the X2 direction is correctly predicted.
Fig. 7. Motion of point M as shown in Fig. 6. The units used are [m] for h and [s] for Δt.



Fig. 8. Spatial convergence for bi-material test at t=0.004 s.
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Fig. 8 shows the spatial convergence for both the displacement uh and
pressure ph. The H1,2 Sobolev and L2 norms are used for uh and ph,
respectively. Observed in Fig. 8, the optimal convergence rates are
obtained for both the displacement and the pressure in both the
synchronous and asynchronous cases. Structured grids of 4×4, 8×8,
16×16, 32×32 and 64×64 elements are used to compute the
convergence rates (Fig. 8).

Fig. 9 shows the temporal convergence for the bi-material test
problem. Since the ratio of errors between spatial and temporal
discretizations is not known, we evaluate the error as Et=|uh−uex|−
|uh−uh(Δt→0)| to eliminate the discretization error and to allow for
easy visualization. The order of the error can be interpreted as Et=O
(h)+O(Δt)−O(h), which leaves only the time influence. The time
converged solution uh(Δt→0) is computed with Δt one thousand
times smaller than the smallest evaluated time in Fig. 9. The optimal
second-order convergence is obtained for both synchronous and
asynchronous integrators.

Since the material is nearly-incompressible in this study, we apply
an implicit integrator to solve the problem. However, the optimal
convergence rates both in space and time are preserved for explicit,
α=0, α=1, as well as for mixed integration schemes, α1=1/2,
α2=0, and α1=0, α2=1/2 with an arbitrary sub-stepping as has
been tested on a different example, since a fully explicit integrator
might experience numerical difficulties as ν→1/2.
Fig. 9. Temporal convergence for a bi-material test. The error is plotted as Et=|uh−
uex|− |uh−uh(Δt→0)| for easy visualization. Mesh composed of 10×10 elements is
used in this test.
5.2. Stability study

To investigate the stability of our asynchronous integrators we again
use the method of manufactured solutions. However, simple harmonic
motion is now selected in order to establish the stability criteria. The
domain geometry and manufactured solution are shown in Fig. 10. The
manufactured solution u⁎ and the body force f ⁎ are chosen as

u⁎
1 X1;X2; tð Þ = X1 1−X1ð ÞX2 1−X2ð Þ cosð103tÞ−1

h i
;

u⁎
2 X1;X2; tð Þ = X1 1−X1ð ÞX2 1−X2ð Þ cosð103tÞ−1

h i
;

f ⁎1 = −106X1 1−X1ð ÞX2 1−X2ð Þcos 103t
� �

− ∂
∂X1

P11 u⁎
� �

− ∂
∂X2

P12 u⁎
� �

;

f ⁎2 = −106X1 1−X1ð ÞX2 1−X2ð Þcos 103t
� �

− ∂
∂X1

P21 u⁎
� �

− ∂
∂X2

P22 u⁎
� �

:

ð50Þ

In this stability study, the spatial discretization is fixed at 10×10
elements.

Fig. 11 shows themotion of pointM (see Fig. 10(a)) and the energy
evolution during the simulation. Note that the kinetic energy is very
small in this example. Also note that due to the applied body forces,
Eq. (50), our forcing term is non-conservative since f ⁎≠0. Thus, the
total energy in the system is negative.

Fig. 12 shows two inherent instabilities encountered in this problem.
We classify these instabilities as a global instability, Fig. 12(a), and a local
instability, Fig. 12(b), respectively. The error of the energy evolution for
the global instability is depicted in Fig. 13(a). As one can observe, the
energy becomes unbounded for larger time steps whereas the bounded
energy solution, typical for the variational integrators that exactly
conserve the value of a “nearby” Hamiltonian [31], is maintained for
Δt=5e−5 s.On theotherhand, for the local instability, the energygrows
exponentially causing the solution to rapidly diverge,which results in the
collapse of the algorithm in the Newton-Raphson method (Fig. 13(b)).

We are also interested in the evolution of the angular momentum,
since it is an important conserved quantity. Fig. 14 displays the error
dispersion of the angular momentum for the case of global instability
(Figs. 12(a) and 13(a)). Once more, the bounded solution oscillating
around zero is obtained for stable integration while the large error
scattering, for which the motions u1 and u2 become asymmetric, is
observed for the unstable integration. Note that for many variational



Fig. 10. Method of manufactured solutions with a harmonic motion. Material properties are as follows. Domain 1: E ̅=0.55 GPa, μ=0.25 GPa, ρ0=1000 kg/m3, c ̅=741.62 m/s;
Domain 2: E ̅=2.20 GPa, μ=1.00 GPa, ρ0=1000 kg/m3, c ̅=1483.24 m/s.

Fig. 11.Method of manufactured solutions with a harmonic motion. The asynchronous (1:2) and implicit (α1,2=1/2) integrator is used. Note that 10,000 time steps are used to solve
the reference solution.
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integrators the angular momentum is preserved to within machine
precision as shown in prior works [34]. However, the implicit Newmark
algorithm, which is variational under a near-identity change of co-
ordinate forces, also experiences an oscillatory behavior as presented in
Fig. 14, and this oscillatory behavior will persist indefinitely [34]. In our
Fig. 12. Two potential types of instab
case,we have not been able to identify one cause. The common interface
interpolation, asynchronous time stepping andmixed u, p, θ variational
scheme are all potentially contributing to this behavior.

To understand the stability limit further, and to physically interpret
the equations derived in Section 4, we compute the stability limits by
ilities observed for this problem.



Fig. 13. The error in the energy evolution for the global and the local types of instabilities. The exact energy Eex is computed from the manufactured solution (50) using Eqs. (5) and (6).

Fig. 14. The error evolution of the angular momentum. Note that Jex=0 for this example.
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varying the substep ratios on both the stiff and soft sides. We base our
stability analysis on testing whether any position exceeds a bounding
value or whether the nonlinear solution routine fails. The phase error
Fig. 15. Bold solid and dashed lines are stability limits. Thin lines are constant error curves sh
engineering error is in reasonable relationship to stability limits. For α=1/2 integrator, the
becomes independent of the time step ratio. For α=0 integrator, the stability limit increas
represented by thin lines, in Fig. 15, is computed by comparing the
average solution period per(h, Δt)=∑i=1

n peri/n with the reference
solution period per(u⁎). Note that Fig. 15 is very similar to that presented
for the ODEs in our previous work [18].

As indicated by Eq. (C.12), the energy is preservedwith cnΔt3 error.
Conditional stability depicted for 1:1 time integration in both Fig. 15
(a) and (b) is a manifestation of this condition. Regardless of the
substep ratio (1:6 or 6:1), the critical time step drops deeply when
asynchronous time stepping is invoked. The local stability state
bounded by Eq. (45) is likely reason for such a drop. However, the
stability limit does not deteriorate further when the time interval
subdivision is refined more. We contribute this behavior to a global
energy balance represented by Eq. (41). Note again that Eq. (41)
represents a sum of unbalanced energy projections between n−1,i and
n,i substeps, where the projection surface coincides with the linear
constraint interpolation (Eq. (24)).

Fig. 15(a) shows the numerically evaluated stability limit for
varying substeps on the nonstiff subdomain. Due to the selected
material constants, the energy error for a soft domain is smaller and
less influential on coupling than its stiff domain counterpart. Thus, in
this plot the stability limit is largely above the accuracy limit when
changing the number of substeps on the nonstiff side. Fig. 15(b) plots
the stability limit for varying substeps in the stiff region. As can be seen
owing Δt that achieved specified error. For both values of α, the time step to achieve an
stability limit initially drops in changing from synchronous to asynchronous, but then
es by a factor of 1.43 from 1:1 to 6:1 ratio when the stiff side time step is refined.



Fig. 16. The global energy error |Ē̄tex− Ē̄t| over the system time step as predicted by Eq. (16).
The exact global energy error Ē̄tex is computed from the manufactured solution (50) using
Eq. (41), where ΔĒ̄n,iex=Ei+1/2

ex −Ei−1/2
ex and ΔĒ̄n−1,i

ex =En−1,i+1/2−En−1,i−1/2
ex .

Fig. 17. Geometry, boundary conditions and loading history for the composite system.
The loading impulse is prescribed as P(t)=1.0×107sin(100.0πt). The black domain is
made of a stiff and dense material,M2, while the light grey domains are made of a more
compliant and less dense material, M1 (see Table 2). The element size h=0.05 m. The
total number of elements is 980.

Table 2
Material properties for the composite structure example.

ρ0 [kg/m3] E ̅ [Pa] ν [−] κ [Pa] μ [Pa] c ̅ [m/s]

M1 1000.0 1.0×108 0.499 1.6667×1010 3.3356×107 316.2278
M2 1500.0 1.0×109 0.499 1.6667×1011 3.3356×108 816.4966
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in Fig. 15(b), the stability limit drops by factor of 5.75 by going from
synchronous to asynchronous time steps for α=1/2 integrator. For
α=0 integrator, the stability limit increases by factor of 1.43 from a
1:1 to 1:6 ratio, which is due to our space–time force balance
(Eq. (30)). The sharper initial reduction of the stability limit, compared
to the case of varying substeps in the nonstiff domain, is again
attributed to the magnitude of the energy error accumulated and
exchanged through the common interface from the stiff to the soft
domain.

Fig. 16 shows the global energy error as predicted by Eq. (41). We
select the implicit asynchronous time integrator, α1,2=1/2, with a 6:1
ratio (The last bounding value from Fig. 15(a)). All parameters are
fixed in this study, since we are investigating the effect of the time
step on the error measure depicted in Fig. 16. As can be observed, for
Δt=1.5e−4 s the global energy error becomes wildly oscillatory, and
the solution fails in the Newton-Raphson routine. For Δt=1.0e−4 s,
the global energy error becomes bounded and reaches the maximum
value of∼1.5e+6 J (Note that we base our stability analysis on testing
whether any position exceeds a bounding value not an energy, or
whether the nonlinear solution routine fails). When we decrease the
time step by an order from Δt=1.0e−4 s to Δt=1.0e−5 s, the
energy error decays cubically as predicted by the global error estimate
Eq. (41), and reaches the maximum value of ∼1.5e+3 J.

Although we lost the cnΔt3 energy conservation locally in time, we
gained the ability for each domain to use a different time step for the
required accuracy in that domain. Moreover, the global energy error
has been preserved with cñΔt3. In our tests, the stability limit for the
time step still exceeded or coincided with the time step required to
attain a reasonable engineering accuracy (accuracy of ∼5% is achieved
for the asynchronous time stepping at the stability limit). Whether
this holds is of course problem-dependent. It also shows that the
coupling is as important as the individual integrators used in each
subdomain. It is interesting to observe that a simple estimate for the
critical time step, Δtcr=h/ c ̅, provides a reasonable measure of a
stability criterion for an explicit integrator. For our bi-material
example, we compute the conservative estimate Δtcr=h/ c ̅≈10−5 s
(using the wave speed of the stiffer material), which is in agreement
with our numerical study depicted in Fig. 15.

The long time integration is an important issue in many
engineering applications as mentioned in the introduction. Note
that we have investigated only a moderate number of time steps, as
shown in Fig. 10. Further study is essential in assessing the long time
performance of our integrators. For ODEs, we have presented the long
time integration performance in [18].
5.3. Mixed integration study

For problemswhere the accuracy requirement in one domainwould
limit the system time step, asynchronous integrators allow other
domains to use larger time steps. To understand the error evolution for
such scenario, we investigate the composite material system made of
stiff and soft components under an impulse loading. The geometry,
loading history and boundary conditions are shown in Fig. 17. We use
explicit, α2=0, integrator for the stiff domain and the implicit
integrator, α1=1/2, for the soft regions. The material properties are
listed in Table 2.

Fig. 18 shows the motion of a heterogeneous structure at three
different time steps. Very large deformations can be observed for the
soft domains, while a rigid like motion is spotted for the inner stiff
region.

Fig. 19 depicts the motion of the point A (top arm in Fig. 17). Note
that after the initial loading, the motion of the structure becomes
periodic.

Examining how the time refinement affects the error, we see in
Fig. 20 that refining the time step on soft domains reduces the error by
92%, whereas refining on the nonstiff side, which is prone to effect the
stability (Fig. 15(b)), has little effect. In this case, the energy error in
the soft arms and its transfer to the stiff middle one is the main source
of the inaccuracy. This indicates that we can take larger steps on the
stiff side without affecting the accuracy, and smaller steps in the
compliant regions to gain the accuracy required.

This result is somewhat contrary to stability investigations
(Fig. 15), where refining the nonstiff domain had a smaller effect on
the critical time step. However, recall that the energy error, and thus
potentially the stability, is influenced by other factors, such as
material properties, the size of the subdomains, the length of the
common interface, etc. In this example, we attribute this behavior to



Fig. 18. Motion of the heterogeneous structure at three different time steps. The mixed integration with Δt=5e−5 s and s1:s2=2:1 is used in this example.
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vastly different boundary and loading conditions as well as to
different sizes of the stiff/soft subdomains.

To compare the complexity of asynchronous and synchronous
integrators, such as the Newmark method, we investigate the number
of operations required to solve the system Eq. (31). Note that in our
current implementation, we use the consistent and not lumped mass
matrix. Therefore, we solve the system of algebraic equations no
matter if the integrator is explicit or implicit, and thus, our analysis
time is mostly governed by the time required to solve several systems
of algebraic equations. We focus on both Δt/Δt1=8/1 and Δt/Δt2=8/
1 cases. There are 3360 degrees of freedom in soft regions M1,
and 782 degrees of freedom in the stiff middle domain M2 for
Δt=Δt1=Δt2. The computational cost of solving a system of algebraic
equations by a sparse direct solver can be estimated in two-
dimensions as O(N3/2), where N is the number of equations [23].
Since we are dealing with nonlinear problems, we usually have four to
five iterations for a give time step. For a synchronous method to
integrate a give time interval (Δt=Δt1=Δt2=8/8 in this study), we
can estimate the computational cost as 8×4×O(41423/2)≈8.5×106.
First, let us consider the case Δt/Δt1=8/1, i.e., the soft arms are
integrated with a small time step. Note that for this case the error drops
by 92% when compared to a synchronous time stepping, and thus, we
consider eight single steps of synchronous integrator as a good measure.
Since the large domain is integratedwith a small time step, the number of
equations grows toN=27, 662 and the number of operations is given by
4×O(276623/2)≈18.4×106. Although we solve the large matrix, we
eliminate manymatrix assemblies that are quite expensive for nonlinear
problems and are not accounted for in this estimate. Therefore, the
synchronous method is ∼2.16 times faster for this example. However,
when we integrate with the small time step the stiff region M2, only a
small number of equations is added to the system and by the
same estimate the asynchronous integrator is ∼2.23 times faster
Fig. 19. The u1 motion of the point A in Fig. 17. The mixed integration with Δt=5e−5 s
and s1:s2=2:1 is used in this example.
(4×O(96163/2)≈3.8×106) that the synchronous one. Unfortunately,
no gain in accuracy is obtained in this case (Fig. 20). However, different
applications would yield different estimates making the proposed
asynchronous method sometimes more and sometimes less effective.
Also, a solution strategy similar to that adopted in FETI-DP [15], as
mentioned in Section 3, will improve the efficiency.

To indicate optimal rates of convergence of the Newton-Raphson
scheme, the residuals Eq. (28) for the displacement uh, pressure ph

and residuals Eq. (30) for the common interface motionwh after each
Newton-Raphson iteration are listed in Table 3. Note that since the
constraint Eq. (15) is linear, the residuals Eq. (29) for Lagrange
multipliersℛλ attain machine precision values immediately after the
first iteration, as do residuals Eq. (30) for the common interface
motion wh (see Table 3), and are therefore not listed in Table 3. Also,
note that for the simple dilatational strain energy density U(θ) Eq. (7),
the residuals for the volume unknown ℛθ attain machine precision
values immediately after the first iteration and are therefore not listed
in Table 3 as well.

6. Conclusions

In this paper, we have proposed asynchronous multi-domain
variational integrators for nonlinear hyperelastic solids. Variational
time integration schemes have been derived in the context of the
Lagrangian variational framework, and the three-field de Veubeke-
Fig. 20. The change of the error as time steps for stiff domain and nonstiff domains are
refined, with fixed system time step Δt=1e−4 s. As the time step is refined on the
compliant domain, along the left axis, error is reduced by 92% compared to 1:1
integrator. As the time step is refined on the stiff domain, along the right axis, there is
little change in error. The reference solution uref is obtained using synchronous explicit
integrator α1,2=0 with Δt=5e−7 s. The L2 norm is computed for the time interval [0,
0.1] s.



Table 3
Residuals after each Newton-Raphson iteration of the nonlinear solution step for the composite structure in Fig. 17. Residuals are evaluated at time t=0.035 s and the similar
convergence properties are observed throughout the whole transient analysis.

Iteration number ∥ℛu∥ ∥ℛp∥ ∥ℛw∥

1 4.877303e+03 4.693986e−02 2.982091e−01
2 4.193527e−01 1.920041e−02 3.748244e−14
3 3.876491e−04 4.017160e−05 1.199953e−14
4 4.601880e−07 4.010048e−08 1.831532e−14
5 2.013276e−12 1.871391e−13 7.249979e−15
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Hu-Washizu variational principle has been used for the spatial
discretization to accommodate the incompressibility constraint.
The subdomain coupling has been achieved by the Lagrange
multiplier method to ensure the continuity of the displacement
field at the interface between subdomains. In particular, the dual
domain decomposition method has been exploited in order to
preserve the efficient parallelization of the algorithm.

The Energy method has been employed to assess the energy
conservation of the proposed midpoint asynchronous integrator.
The local and the global energy conservation criteria have been
derived. For synchronous time integration, we retain the O(Δt3)
energy evolution while asynchronous time stepping is locally
bounded by the O((Δtk)2) estimate. The global energy balance
across the interface between domains still holds withO(Δt3). Based
on the numerical observations, the investigated integrators are
conditionally stable only. However, we have not investigated the
nonlinear stability of our integrators and their observed condi-
tional stability in detail, and more rigorous study is required.

Several examples have been solved to show the consistency and
robustness of the method. We have adopted the method of
manufactured solutions to show the optimal convergence rates as
well as to investigate the energy evolution and the stability criteria.
The mixed time integration, implicit versus explicit, has been
presented in order to illustrate the solution error control, and the
applicability of the method in engineering applications. Only
moderate time asynchronicity has been investigated in this work,
∼Δt1/Δt2=1/8; future investigation is necessary to extend this
approach to large time step differences. Moreover, a moderate
number of time steps has been studied (∼10,000), and further study
is required to assess the long time performance of our integrators.

The emphasis of this work has been on the development of
asynchronous multi-domain time integrators and their energy
conservation. However, real-size applications are likely to necessitate
solution strategy improvements, when a systemof algebraic equations
is solved, requiring an efficient parallel implementation of the
computational scheme presented above. The extension to three-
dimensions is also of importance. Ultimately, we want to extend the
proposedmethod to examples with non-matching discretizations and
multi-physics problems.

Acknowledgments

The authors gratefully acknowledge support from the Center for
Simulation of Advanced Rockets (CSAR) under contract number
B523819 the U.S. Department of Energy as a part of its Advanced
Simulation and Computing program (ASC). The authors also thank
Prof. Joseph M. Powers from University of Notre Dame for numerous
suggestions that improved the presentation of this paper.
Appendix A. Constraint on displacements or velocities

Here, we compare the constraint on displacements to that on velocities. First, let us consider a split single degree of freedom oscillator with
two domains constrained to a common interface by displacement constraint using local Lagrange multipliers λa and λb, as shown in Fig. A.1.
Fig. A.1. Split single degree-of-freedom system with masses constrained together.
For this scenario, the augmented discrete Lagrangian yields

L̂d = Lad qan; q
a
n + 1

� �
+ Lbd qbn; q

b
n + 1

� �
+ qan + 1−ψn + 1
� �

λa
n + 1 + qbn + 1−ψn + 1

� �
λb
n + 1; ðA:1Þ

where Ld
a and Ld

b are the discrete Lagrangians for each subdomain. With the augmented action sum, Âd=∑n=0
N−1 L ̂d≈∫t0

tNL̂(q, q̇)dt, where N is the
number of time steps, the discrete Euler-Lagrange equations associated with the interface yield

∂ Âd

λa
n + 1

= qan + 1−ψn + 1 = 0; ðA:2Þ

∂ Âd

λb
n + 1

= qbn + 1−ψn + 1 = 0; ðA:3Þ

∂ Âd

ψn
= λa

n + λb
n = 0: ðA:4Þ
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The physical interpretation of the Lagrange multipliers for the displacement constraint is well known, with λ kg m
S2

h i
representing an interface

force.
Next, let us consider a constraint on velocities with discrete Lagrangian given by

L̂d = Ladðqan; qan + 1Þ + Lbdðqbn; qbn + 1Þ +
qan + 1−qan

Δt
−ψn + 1−ψn

Δt

	 

λ̃a
n + 1 +

qbn + 1−qbn
Δt

−ψn + 1−ψn

Δt

 !
λ̃b
n + 1: ðA:5Þ

Here, we have used a simple discrete derivative as in Eq. (21). As in the case of displacement constraint, Âd=∑n=0
N−1 L̂d, and the discrete Euler-

Lagrange equations associated with the interface read

∂ Âd

λ̃a
n + 1

= qan + 1−ψn + 1
� �

+ ψn−qan
� �|fflfflfflfflfflffl{zfflfflfflfflfflffl}=0;

=0; from I:C:

ðA:6Þ

∂ Âd

λ̃b
n + 1

= qbn + 1−ψn + 1

� �
+ ψn−qbn
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}=0;

=0; from I:C:

ðA:7Þ

∂ Âd

ψn
= λ̃a

n + 1− λ̃a
n

� �
+ λ̃b

n + 1− λ̃b
n

� �
= Δ λ̃a

n + Δ λ̃b
n = 0: ðA:8Þ

Assuming that there are no discontinuities at rest, n=0, we can eliminate the second term in Eqs. (A.6) and (A.7) by applying the initial
conditions (I.C.). Thus, the Euler-Lagrange equations associated with the Lagrange multipliers are identical to those from the displacement
constraint. Simple substitution of variables renders Eqs. (A.4) and (A.8) identical also. Finally, let us present the physical interpretation for

the Lagrangemultipliers, λ̃, and Eq. (A.8). Since Eq. (A.5) represents the work kgm2

S2

� �
and the constraint the velocity m

S

h i
, the Lagrangemultipliers

λ̃ denote the generalized interfacemomentum kg m
S

h i
. Thus, Eq. (A.8) states that the change in the discretemomentum rate across the interface is

constant (note that Δt was canceled in Eq. (A.8)).
Appendix B. Consistent linearization

Here, we give individual linearized contributions of Ki and Li, respectively. The matrices Ki read

δuh⋅Ki
uu Δuh

i + 1

h i
= Dℛu Δuh

i + 1

h i
= − 1

Δtk
∫Ωk

0
ρ0Δu

h
i + 1⋅δu

hdΩk
0 + ΔtkV−αð1−αÞ∫Ωk

0
FT
i + α ∇0δu

h
� �h i

: ℒi + α : ∇0 Δuh
i + 1

� �� �h i
dΩk

0

−αð1−αÞ∫Ωk
0

∇0δu
h

� �T∇0 Δuh
i + 1

� �h i
: Ŝ

0
i + αdΩ

k
0 −αð1−αÞ∫Ωk

0
phi + αJi + α tr F−1

i + α∇0 Δuh
i + 1

� �� �
tr F−1

i + α∇0δu
h

� �h i
dΩk

0

+ αð1−αÞ∫Ωk
0
phi + αJi + α tr F−1

i + α∇0 Δuh
i + 1

� �
F−1
i + α∇0δu

h
� �h i

dΩk
0t;

δθh · Ki
θθ Δθhi + 1

h i
= Dℛθ Δθhi + 1

h i
= −αð1−αÞΔtk∫Ωk

0
κ Δθhi + 1

h i
δθhdΩk

0;

δph · Ki
pu Δuh

i + 1

h i
= Dℛp Δuh

i + 1

h i
= −αð1−αÞΔtk∫Ωk

0
δph
� �

Ji + αC
−1
i + α : FT

i + α ∇0 Δuh
i + 1

� �� �h i
dΩk

0;

δph · Ki
pθ Δθhi + 1

h i
= Dℛp Δθhi + 1

h i
= αð1−αÞΔtk∫Ωk

0
δph
� �

Δθhi + 1

h i
dΩk

0;

ðB:1Þ

where

ℒi + α = 4
∂2 Ŵ
∂C∂C C i + α

� �
: ðB:2Þ

The matrices Li read

δuh · Liuu Δuh
i

h i
= Dℛu Δuh

i

h i
=

2
Δtk

∫Ωk
0
ρ0Δu

h · δuhdΩk
0 + ΔtkV−α2∫Ωk

0
FT
i−1 + α ∇0δu

h
� �h i

: ℒi−1 + α : ∇0 Δuh
i

� �� �h i
dΩk

0

−α2∫Ωk
0

∇0δu
h

� �T∇0 Δuh
i

� �h i
: Ŝ

0

i−1 + αdΩ
k
0−α2∫Ωk

0
phi−1 + αJi−1 + α tr F−1

i−1 + α∇0 Δuh
i

� �� �
tr F−1

i−1 + α∇0δu
h

� �h i
dΩk

0

+ α2∫Ωk
0
phi−1 + αJi−1 + α tr F−1

i−1 + α∇0 Δuh
i

� �
F−1
i−1 + α∇0δu

h
� �h i

dΩk
0−ð1−αÞ2∫Ωk

0
FT
i + α ∇0δu

h
� �h i

: ℒi + α : ∇0 Δuh
i

� �� �h i
dΩk

0

−ð1−αÞ2∫Ωk
0

∇0δu
h

� �T∇0 Δuh
i

� �h i
: Ŝ

0

i + αdΩ
k
0−ð1−αÞ2∫Ωk

0
phi + αJi + α tr F−1

i + α∇0 Δuh
i

� �� �
tr F−1

i + α∇0δu
h

� �h i
dΩk

0

+ ð1−αÞ2∫Ωk
0
phi + αJi + α tr F−1

i + α∇0 Δuh
i

� �
F−1
i + α∇0δu

h
� �h i

dΩk
0t; ðB:3Þ

δθh⋅Liθθ Δθhi
h i

= Dℛθ Δθhi
h i

= − α2 + ð1−αÞ2
� �

Δtk∫Ωk
0
κ Δθhi
h i

δθhdΩk
0;

δph⋅Lipu Δuh
i

h i
= Dℛp Δuh

i

h i
= −α2Δtk∫Ωk

0
δph
� �

Ji−1 + αC
−1
i−1 + α : FT

i−1 + α ∇0 Δuh
i

� �� �h i
dΩk

0−ð1−αÞ2Δtk∫Ωk
0

δph
� �

Ji + αC
−1
i + α : FT

i + α ∇0 Δuh
i

� �� �h i
dΩk

0;

δph⋅Lipθ Δθhi
h i

= Dℛp Δθhi
h i

= α2 + ð1−αÞ2
� �

Δtk∫Ωk
0

δph
� �

Δθhi
h i

dΩk
0;
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where

ℒi−1 + α = 4
∂2 Ŵ
∂C∂C Ci−1 + α

� �
: ðB:4Þ

Note that ∀i=3,…, sk Ni=Ki−1.
The coupling matrices are given by

δλh⋅Cλu Δuh
i + 1

h i
= Dℛλ Δuh

i + 1

h i
= Δtk∫Γk Bk Δuh

i + 1

� �� �T
δλhdS0;

δλh⋅Cλw Δwh
n + 1

h i
= Dℛλ Δwh

n + 1

h i
= −Δtk∫Γk Dk Δwh

n + 1

� �� �T
δλhdS0:

ðB:5Þ
Appendix C. Energy error estimate

Here, we derive the Energy error estimate Eq. (41). First, let us recall the discrete residual equation ℛu, Eq. 28(a), given by

0 = −∫Ωk
0
ρ0

uh
i + 1−2uh

i + uh
i−1

Δtk

 !
⋅δuhdΩk

0−
1
2
Δtk∫Ωk

0

∂ Ŵ
∂F F

i−
1
2

 !
+ ph

i−
1
2

J
i−

1
2

F−T

i−
1
2

 !
: ∇0δu

h
� �

dΩk
0

−1
2
Δtk∫Ωk

0

∂Ŵ
∂F F

i + 1
2

	 

+ ph

i + 1
2
J
i + 1

2
F−T
i + 1

2

 !
: ∇0δu

h
� �

dΩk
0 + Δtk∫Γk Bk δuh

� �� �T
λh
i

� �k
dS0:

ðC:1Þ

Next, we take δuh=(ϕi+1
h −ϕi−1

h)/(2Δtk) in Eq. (C.1) and write

0 = −1
2
∫Ωk

0
ρ0

uh
i + 1−uh

i

Δtk

 !
⋅ uh

i + 1−uh
i

Δtk

 !
dΩk

0 +
1
2
∫Ωk

0
ρ0

uh
i −uh

i−1

Δtk

 !
⋅ uh

i −uh
i−1

Δtk

 !
dΩk

0−
1
2
∫Ωk

0

∂Ŵ
∂F F

i−1
2

	 

+ ph

i−1
2
J
i−1

2
F−T
i−1

2

 !
: F

i + 1
2
−F

i−1
2

	 

dΩk

0

−1
2
∫Ωk

0

∂Ŵ
∂F F

i + 1
2

	 

+ ph

i + 1
2
J
i + 1

2
F−T
i + 1

2

 !
: F

i + 1
2
−F

i−1
2

	 

dΩk

0 +
1
2
∫Γk Bk ϕh

i + 1−ϕh
i−1

� �� �T
λh
i

� �k
dS0:

ðC:2Þ

Taking advantage of a standard Taylor expansion, we collect individual terms of the deviatoric energy function (Eq. (7)) as well as of the pressure
geometric term, which yields

0 = − Tk
i + 1

2

−Tk
i−1

2

	 

−∫Ωk

0
Ŵ

i + 1
2
−Ŵ

i−1
2

	 

dΩk

0−∫Ωk
0

ph
i + 1

2

J
i + 1

2
−ph

i−1
2

J
i−1

2

	 

dΩk

0 +
1
2
∫Ωk

0
J
i + 1

2
+ J

i−1
2

	 

ph
i + 1

2
−ph

i−1
2

	 

dΩk

0

+
1
2
∫Γk Bk ϕh

i + 1−ϕh
i−1

� �� �T
λh
i

� �k
dS0 + ci Δtk

� �3
;

ðC:3Þ

where Tk denotes the discrete kinetic energy, Eqs. (5) and (22) (the first term), expressed using the simple midpoint rule, Eq. (21). As in Hauret
and Le Tallec [22], we will say that ci depends on the approximate solution at times i and i+1, respectively. In general, the constants ci are
dependent on material properties, size of the subdomains, length of the common interface for subdomain k, etc. The Taylor expansion of the
potential function Ŵ(F), the pressure geometric contribution pJ and the volumetric function U(θ) are given for clarity in Appendix D.

Similarly, we substitute ph
i + 1

2

−ph
i−1

2

 !
for δph in the discrete residual Rp, Eq. (28)(c), and obtain

0 = −1
2
∫Ωk

0
J
i + 1

2
+ J

i−1
2

	 

ph
i + 1

2
−ph

i−1
2

	 

dΩk

0 +
1
2
∫Ωk

0
θh
i−1

2
+ θh

i + 1
2

	 

ph
i + 1

2
−ph

i−1
2

	 

dΩk

0: ðC:4Þ

After substituting Eq. (C.4) into Eq. (C.3) and using

1
2

θh
i + 1

2
+ θh

i−1
2

	 

ph
i + 1

2
−ph

i−1
2

	 

= −1

2
ph
i + 1

2
+ ph

i−1
2

	 

θh
i + 1

2
−θh

i−1
2

	 

+ ph

i + 1
2
θh
i + 1

2
−ph

i−1
2
θh
i−1

2
;
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we get

0 = − Tk
i + 1

2

−Tk
i−1

2

	 

−∫Ωk

0
Ŵ

i + 1
2
−Ŵ

i−1
2

	 

dΩk

0−∫Ωk
0

ph
i + 1

2

J
i + 1

2
−θh

i + 1
2

	 

−ph

i−1
2

J
i−1

2
−θh

i−
1
2

 ! !
dΩk

0

−1
2
∫Ωk

0
ph
i + 1

2
+ ph

i−1
2

	 

θh
i + 1

2
−θh

i−1
2

	 

dΩk

0 +
1
2
∫Γk Bk ϕh

i + 1−ϕh
i−1

� �� �T
λh
i

� �k
dS0 + ci Δtk

� �3
:

ðC:5Þ

Finally, in the last residual equation ℛθ, Eq. (28), we exchange δθh with θh
i + 1

2

−θh
i−1

2

 !
=Δtk:

0 = − κ
2
∫

Ωk
0

θh
i + 1

2
−1

	 

+ θh

i−1
2
−1

	 
� �
θh
i + 1

2
−θh

i−1
2

	 

dΩk

0 +
1
2
∫

Ωk
0

ph
i + 1

2
+ ph

i−1
2

� �
θh
i + 1

2
−θh

i−1
2

	 

dΩk

0: ðC:6Þ

We again substitute Eq. (C.6) to Eq. (C.5) and use the Taylor expansion of the volumetric function, U(θ), to reduce Eq. (C.5) after substitution of
Eq. (C.6) to

Tk
i + 1

2
+ Vk

i + 1
2

	 

− Tk

i−1
2
+ Vk

i−1
2

	 

=

1
2
∫Γk Bk ϕh

i + 1−ϕh
i−1

� �� �T
λh
i

� �k
dS0 + ci Δtk

� �3
: ðC:7Þ

The final energetic contribution that needs to be added is the discrete energy flowing through the interface due to the domain decomposition
method, (the last term in Eq. (22)). Since we use the variational method for constraint enforcement, Eq. (14), the energy flux through the
interface is naturally balanced by the residual equation ℛλ, Eq. (29), that gives

Iki = ∫Γk Φ
k uh

i ;w
h
i

� �T
λh
� �k

i
dS0 = ∫Γk Bk uh

i

� �
−Dk wh

i

� �� �T
λh
� �k

n−1;i
dS0 = 0; ∀i; ðC:8Þ

where (λh)n−1,i
k =(λh)k(tn−1+ iΔtk).

The total energy evolution from the time step i−1/2 to i+1/2 can now be written as

Ek
i + 1

2

−Ek
i−1

2

= Tk
i + 1

2

+ Vk
i + 1

2

+ Ik
i + 1

2

	 

− Tk

i−1
2

+ Vk
i−1

2

+ Ik
i−1

2

	 

=

1
2
∫Γk Bk ϕh

i + 1−ϕh
i−1

� �� �T
λh
i

� �k
dS0 + ci Δtk

� �3
: ðC:9Þ

Note that for the synchronous time stepping, the integral over the interfaces

∑
ND

k=1

1
2
∫Γk Bk ϕh

n + 1−ϕh
n−1

� �� �T
λh
� �k

n
dS0 = 0: ðC:10Þ

The consequence of this balance is the local force equilibrium, Eq. (30) (Lagrange multipliers are of the same magnitude and an opposite sign as
shown in Fig. 5(a)), that reads

− ∑
ND

k=1
Δtk∫Γr D

k δwh
� �T

λh
� �k

n
dS0 = 0; which holds ∀n: ðC:11Þ

Here, we have used the constraint Eq. (15) to go from Eqs. (C.11)–(C.10). Thus, the energy evolution yields

Ek
n + 1

2
−Ek

n−1
2
= cnΔt

3
: ðC:12Þ

Note again that cn only depends on the approximate solution at times n and n+1 [22].
To investigate the energy evolution for the asynchronous time integrators, we rewrite Eq. (C.9) in the incremental form

Δℰk
n;i =

1
2
∫Γk D

k wh
n;i + 1−wh

n;i−1

� �T
λh
� �k

n;i
dS0 + ci Δtk

� �3
: ðC:13Þ
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Here, we used the constraint function, Eq. (15), to replace the sub-domain displacements, uh, with their counterparts on the common interface
wh. Expanding Eq. (C.13) by recursion formula, we get

Δℰk
n;i =

1
sk
∫Γk D

k wn + 1−wn

� �T λh
� �k

n;i
dS0 + ci Δtk

� �3
; Δℰk

n−1;i =
1
sk
∫Γk D

k wn−wn−1ð ÞT λh
� �k

n−1;i
dS0 + ci Δtk

� �3
; ðC:14Þ

with wn,i+1−wn,i−1=2/sk(wn+1−wn), and similarly for n−1,i time step, which is a consequence of our linear interpolation of the common
interface (Eq. (24)). Now we employ Taylor expansion for the common interface motion as we did for the potential energy functions and write

ΔEk
n;i =

1
sk
∫Γk D

k ẇnΔt +
1
2
ẅnΔt

2 + cnΔt
3Þ

T
ðλhÞkn;idS0 + ciðΔtkÞ3;ΔEk

n−1;i =
1
sk
∫Γk D

k ẇnΔt−
1
2
ẅnΔt

2 + cnΔt
3Þ

T
ðλhÞkn−1;idS0 + ciðΔtkÞ3:

		
ðC:15Þ

Multiplying Eq. (C.15) by (1− i/sk) and Eq. (15) by (i/sk), and summing the equations together, we arrive at

0 = ∑
ND

k=1
∑
sk−1

i=0
½ i

sk

	 

ΔEk

n−1;i + 1− i
sk

	 

ΔEk
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1− i

sk
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i
sk

	 

ðλhÞkn−1;i

	 

dS0−ci Δtk

� �3�:
ðC:16Þ

Note that Dk is a linear Boolean operator (Eq. (15)). Since we are interested in estimating the order, we approximate the third line in Eq. (C.16)
without loss of generality with

− 1
sk
∫Γk Δt

2Dk 1
2
ẅn

	 

1− i

sk

	 

ðλhÞkn;i−

i
sk

	 

ðλhÞkn−1;i

	 

dS0≈− 1

sk
∫Γk Δt

3Dk 1
2
ẅn

	 

c4

ðλhÞkn;i−ðλhÞkn−1;i

Δt

 !
dS0 =

− 1
sk
∫Γk Δt

3Dk 1
2
ẅn

	 

c4ð λ̇hÞkn;i + cnΔt
� �

dS0;

ðC:17Þ

where c⁎ does not depend onΔt. Taking into consideration the last residual equationRw, Eq. (30), whichmakes the second line in Eq. (C.16) zero,
and arbitrariness of δwh, we reduce Eq. (C.16) using Eq. (C.17) to

Et = ∑
ND

k=1
∑
sk−1

i=0

i
sk

	 

ΔEk

n−1;i + 1− i
sk

	 

ΔEk

n;i = c̃nΔt
3
; ðC:18Þ

where c̃n=max{c⁎, cn}.
Appendix D. Taylor expansion of constitutive equations

Here, we describe the Taylor expansion used in the conservation analysis. For the deviatoric part of the potential function we get

Ŵi + α− Ŵi−1 + α =
1
2

∂ Ŵ
∂F F i−1 + α

� �
+

∂ Ŵ
∂F F i + α

� � !
: F i + α−F i−1 + α
� �

+ c
∂3 Ŵ
∂F3 F4ð Þ F i + α−F i−1 + α

� �3

=
1
2

∂ Ŵ
∂F F i−1 + α

� �
+

∂ Ŵ
∂F F i + α

� � !
: F i + α−F i−1 + α
� �

+
ci
8

Δtk
� �3 ∂3 Ŵ

∂F3 F4ð Þ Ḟ i + α + Ḟ i−1 + α

� �3 ; ðD:1Þ

with an unknown matrix F⁎.
The volumetric strain density potential can be expanded as

U θhi + α

� �
−U θhi−1 + α

� �
=

1
2

∂U
∂θh

θhi−1 + α

� �
+

∂U
∂θh

θhi + α

� �	 

: θhi + α−θhi−1 + α

� �
+ ci Δtk

� �3
: ðD:2Þ

Finally, the pressure volumetric contribution can be given by

phi + α Ji + α−phi−1 + α Ji−1 + α =
1
2

J Ci + α
� �

+ J Ci−1 + α
� �� �

⋅ phi + α−phi−1 + α

� �
+

1
2

phi + α Ji + αF
−T
i + α + phi−1 + α Ji−1 + αF

−T
i−1 + α

� �
:

F i + α−F i−1 + α
� �

+ ci Δtk
� �3

:

ðD:3Þ
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