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This sheet reviews some of the probability and statistics that I will assume you still know from your 
previous statistics course.  If none of this looks familiar, you have a lot of work to do to prepare for 
this class!  You need to understand these concepts well.  If necessary, pull out your old stats text and 
notes, or refer to the Appendices in your text to help you further review this material.   
 
Independence 
 
For 2 random variables X and Y, if the outcome of Y is completely unrelated to the outcome of X, then 
X and Y are said to be independent.   
 
Expected Value 
 
The expected value of a random variable X, E(X), is a weighted average of the possible realizations of 
the random variable, where the weights are the probabilities of occurrence.  It is also called µX, or the 
population mean.  More concretely,  
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Important Properties of the Expectations Operator 
 
 1.  E[a] = a 
 2.  E[aX] = aE[X] 

3.  E[aX + b] = aE[X] + b 
 4.  E[X + Y] = E[X] + E[Y] 

5.  E[(aX)2] = a2E[X2] 
6.  If X and Y are independent, then E[XY] = E[X]E[Y] 

 
Variance and Standard Deviation 
 
The variance of a random variable X is a measure of its dispersion around its mean, E(X) and is 
defined as: 
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Since variance is measured in units that are the square of the units in which X is measured, the 
standard deviation, which is the positive square root of the variance, is often reported since it is 
measured in the same units as X.   
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Important Properties of Variance 
 
 1.  Var[a] = 0 
 2.  Var[aX+b] = a2Var[X] 
 3.  Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y] 
 4.  Var[X  - Y] = Var[X] + Var[Y] - 2Cov[X, Y] 
 5.  Var[aX + bY] = a2 Var[X] + b2 Var[Y] + 2abCov[X, Y] 
 
Covariance and Correlation 
 
The covariance is a measure of (linear) association between two random variables.  Let W and Z be 
random variables, then the covariance between W and Z is defined as 

 
Cov[W,Z] = E[(W – E[W])(Z – E[Z])] = E[(W - µW)(Z - µZ)]  

 
where  µW and µZ are the expected values of W and Z, respectively.  Note that using the properties of 
the expections operator, and some algebra, we can also write: 
 
 a. Cov [W, Z]= E[WZ]- E[W]E[Z] = E[WZ] - µWµZ 
 b. Cov [W, Z]= E[(W – E[W])Z] = E[(W - µW)Z] 
 c. Cov [W, Z]= E[(Z- E[Z]) W] = E[Z - µZ)W] 
 
Just as Var[X] is measured in units of X squared, Cov[W,Z] is measured in units that are the product of 
the units of W and of Z.  This can be confusing – if W is dollars and Z is education, Cov[W,Z] is 
measured in education-dollars.  A useful transformation is the correlation coefficient, ρ, which is unit 
free.  It is always between –1 and +1.  The correlation coefficient between W and Z is defined as  
 

ρ[W,Z] = Cov[W,Z]/(σWσZ) 
 
Important Properties of Covariance 
 
 1. Cov [X, X]= Var[X] 
 2. Cov [aX+b, cY+d]= acCov[X,Y] 
 3. If X and Y are independent, then Cov[X,Y]=0 
 
Conditional Expectations and Variance 
  
The expectation of Y conditional on X (the conditional expectation, or conditional mean) is written as 
E[Y|X] and allows for us to characterize the relationship between X and Y, even if it is nonlinear.  We 
can also substitute a conditional mean into the variance formula to obtain the conditional variance. 
 
Important Properties of Conditional Expectations and Variance 
 
 1. If X and Y are independent, then E[Y|X] = E[Y] 
 2. If X and Y are independent, then Var[Y|X] = Var[Y] 



Sample Moments 
 
For a given sample, we can estimate our population moments using the following estimators: 
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The Law of Large numbers implies that the sample mean is always a consistent estimator for the 
population mean.  For large samples, an alternative for the variance and covariance that replaces n – 1 
with n is also consistent. 
 
The Central Limit Theorem 
 
The Central Limit Theorem is a key result from statistics.  It essentially says that if you draw a large 
random sample {Y1, Y2, . . . Y3} from a distribution with mean µ and variance σ2, then you can act as 
if you drew from a normal distribution with mean µ and variance σ2.  More precisely, we can say that 
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=  has an asymptotic standard (i.e. mean 0, variance 1) normal distribution and so does the 

sample counterpart (which substitutes S for σ).  Note also that any linear combination of independent, 
normally distributed random variables will also be normally distributed. 
 
Sampling Distributions 
 
Contrary to what the name might suggest to you, a sampling distribution is not the distribution from 
which your sample is drawn.  Instead, it is defined as “the probability distribution of an estimator over 
all possible sample outcomes.”  To think about what this really means, consider the estimator for the 
population mean, µ, which as noted above is the sample mean X .  Imagine drawing a random sample 
of size n from the population and calculating X .  Now draw a different random sample of size n and 
calculate X again.  Do this over and over and over and over, etc.  You would not expect to calculate the 
same X each time.  Instead, if you plotted all of the calculated sample means, you would get the 
sampling distribution.  We can describe the mean and variance of this distribution, as follows: 
 

 E[ X ] = µ  
Var[ X ] = σ2/n  

 
Given the Central Limit Theorem, we can say that X  is asymptotically normally distributed with mean 
µ and variance σ2/n.  That is, we can treat the sampling distribution of the estimator as asymptotically 
normal. 


