
Electromagnetism 70006 Answers to Problem Set 9 Spring 2006

1. Jackson Prob. 5.1: Reformulate the Biot-Savart law in terms of the solid
angle subtended at the point of observation by the current-carrying circuit.

B(r) =
µ0I

2π

∮
dl′ × (r − r′)
|r − r′|3

= − µ0I

2π

∮
dl′ ×∇ 1

|r − r′|
=

µ0I

2π
∇×

∮
dl′

|r − r′|
Let

V =
∮

dl′

|r − r′|
then

B(r) =
µ0I

2π
∇× V

The ith component of V may be written

Vi =
∮

dl′ · î
|r − r′|

where î is the unit vector along the ith axis. By virtue of Stoke’s theorem
this can be converted into a surface integral

Vi =
∫

S

da

[
∇′ × î

|r − r′|

]
· n′ =

∫

S

da

[
n′ ×∇′ 1

|r − r′|
]
· î

where S is a surface bounded by the circuit and where the direction of
the surface normal n′ is related to the sense of the current (l′) by the
right-hand rule. The above equation can be rewritten as

V = ∇×
∫

S

da
n′

|r − r′|
Therefore

B(r) =
µ0I

4π
∇× [∇×W ]

with

W =
∫

S

da
n′

|r − r′|
Now

∇× [∇×W ] = ∇ (∇ ·W )−∇2W

= −∇
∫

S

da
n′ · (r − r′)
|r − r′|3 + 4π

∫

S

da n′δ(r − r′)

= −∇Ω + 0.
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The second integral vanishes since r′ is on a surface bounding the circuit,
which is away from the observation point r. The first integral is, as shown
on page 33 in Chap. 1 of the text, the solid angle Ω subtended at the
observation point by the circuit that bounds S. Therefore,

B(r) = −µ0I

4π
∇Ω

Example: Consider a point of observation on the z axis above a circular
loop of radius a in the xy plane that carries current I. The loop subtends
a solid angle Ω = 2π(1 − cos θ), where θ is the angle between the z axis
and a line from the point of observation to the loop. Thus

Ω = 2π

[
1− z√

a2 + z2

]

and

∇Ω = 2π

[
− 1√

a2 + z2
+

z2

(a2 + z2)3/2

]
ẑ = − 2πa2

(a2 + z2)3/2
ẑ.

Therefore

B(z) =
µ0I

2
a2

(a2 + z2)3/2
ẑ,

confirming a result obtained in class directly from the Biot-Savart law.

2. Jackson Prob 5.3: Find Bz inside a uniformly wound solenoid. Use result
from Prob. 5.1 to write the contribution from a segment of the solenoid
of length dz as

dBz = −µ0NIdz

4π

dΩ
dz

= −µoNI

4π
dΩ.

where Ω = 2π(1 − cos θ) where θ is the angle that the line from the
observation point to the ring at z makes with the axis. Integrate from end
1 to end 2 to find

Bz =
µoNI

4π
[Ω1 − Ω2] =

µ0NI

2
[cos θ2 − cos θ1] .

In terms of the angles shown in the figure in the text this becomes

Bz =
µ0NI

2
[cos θ1 + cos θ2]

3. Jackson Prob 5.7:

(a) As shown in class and in example with Prob. 5.1, the field of a single
loop in the xy plane at a distance z from its center on the axis is

Bz =
µ0I

2
a2

[a2 + z2]3/2

2



(b) The field near the center of a Helmholtz pair is, therefore,

Bz =
µ0I

2

[
a2

[a2 + (z − b/2)2]3/2
+

a2

[a2 + (z − b/2)2]3/2

]

=
µ0Ia2

d3

[
1 +

3
(
b2 − a2

)
z2

2 d4
+

15
(
2a4 − 6b2a2 + b4

)
z4

16 d8

−7
(
5a6 − 30b2a4 + 15b4a2 − b6

)
z6

16 d12
+ · · ·

]
,

where d =
√

b2 + 4a2.

(c) ρ dependence of of field. On the axis, we may write Bz = σ0 +
σ2z

2 + · · · , where the coefficients σk can be inferred from the above
equation. With the aid of ∇ ·B = 0 we find that near the origin,

∂(ρBρ)
∂ρ

= −ρ
∂Bz

∂z
= −2σ2ρ z + · · ·

Solving for Bρ (taking into account that Bρ = 0 on axis) we find that
near the axis,

Bρ(z, ρ) ≈ −σ2ρ z

From ∇×B = 0, we may write

∂Bz

∂ρ
=

∂Bρ

∂z
≈ −σ2ρ

Solving for Bz, we obtain

Bz(z, ρ) ≈ Bz(z, 0)− σ2
ρ2

2
= σ0 + σ2

(
z2 − ρ2

2

)
+ · · ·

(d) From mathematica the asymptotic series for Bz is

Bz ==
µ0Ia2

|z|3
[
1 +

3
(
b2 − a2

)

2 z2
+

15
(
2a4 − 6b2a2 + b4

)

16 z4

−7
(
5a6 − 30b2a4 + 15b4a2 − b6

)

16 z6
+ · · ·

]
,

which can be obtained from the power series by the replacement
d → |z|.

(e) For a Helmholtz coil one sets b = a. With this choice the terms in
the bracket for the small z expansion become

[· · · ] ≈ 1− 144z4

125a4
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Thus, to differ from uniformity by ≤ ε, the fractional distance must
satisfy z/a ≤ [(125/144) ε]1/4. For ε = 10−4 the limit is 0.097 and for
ε = 10−2 the limit is 0.305. Below is a figure showing the variation
of Bz on the axis between two coils located at a = ±1.
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4. Jackson Prob 5.13: Find the vector potential and magnetic induction for a
uniformly charged sphere of radius a rotating about an axis with angular
momentum ω. We orient ω along the z axis and let r lie in the xz plane.
The vector r′ is used to locate a point on the sphere. The surface current
density at r′ is K(r′) = [ω × r′]σ. The corresponding vector potential is

A(r) =
µ0

4π

∫
J(r′)d3r′

|r − r′| → µ0

4π

∫
K(r′)da′

|r − r′| =
µ0σ

4π

∫
[ω × r′] da′

|r − r′|
We write

[ω × r′] = aω sin θ′(− sin φ′ x̂ + cos φ′ ŷ)

As in the example worked out in Sec. 5.5 of the text, only the y component
can contribute to the integral. Therefore,

Ay(r) =
µ0σa3ω

4π

∫
sin θ′ cosφ′dΩ′√

r2 + a2 − 2ar cos γ
,

where cos γ is the angle between r and r′. Expanding the denominator in
a series of spherical harmonics we obtain

Ay(r) =
µ0σa3ω

4π

∑

lm

rl
<

rl+1
>

4π

2l + 1
Y ∗

lm(r̂)
∫

dΩ′ sin θ′ cosφ′Ylm(r̂′)

We first carry out the φ′ integral to find
∫ 2π

0

dφ′ cosφ′ Ylm(θ′, φ′) = π

√
(2l + 1)(l − 1)!

4π(l + 1)!
P 1

l (cos θ′) (δm1 − δm−1).

Noting that sin θ′ = −P 1
1 (cos θ′), we find

∫ 1

−1

sin θ′P 1
l (µ′)dµ′ = −4

3
δl1
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Putting the previous two results together, we find

∫
dΩ′ sin θ′ cos φ′Ylm(r̂′) = −4π

3

√
3
8π

(δm1 − δm−1)δl1

The sum over lm above becomes

∑

lm

rl
<

rl+1
>

· · · = −16π2

9

√
3
8π

(Y ∗
11(r̂)− Y ∗

1−1(r̂))
r<

r2
>

=
4π

3
sin θ

r<

r2
>

Finally,

Aφ(r) =
µ0σa4ω

3
sin θ

1
r2

r > a

=
µ0σa ω

3
r sin θ r < a

In vector form, this becomes

A(r) =
µ0σa4

3
[ω × r]

r3
r > a

=
µ0σa

3
[ω × r] r < a

The corresponding formulas for the magnetic induction B = ∇×A are

B(r) =
µ0σa4

3

(
3(ω · r̂)r̂ − ω

r3

)
r > a

=
2µ0σa

3
ω r < a

Note: A somewhat different (and simpler) solution to this problem is found
in the text by Griffiths. He chooses coordinates with r be along the z axis
and ω in the xz plane at an angle θ with the z axis.
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