Electromagnetism 70006 Answers to Problem Set 9 Spring 2006

1. Jackson Prob. 5.1: Reformulate the Biot-Savart law in terms of the solid
angle subtended at the point of observation by the current-carrying circuit.
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The ith component of V' may be written
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where % is the unit vector along the ith axis. By virtue of Stoke’s theorem
this can be converted into a surface integral
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where S is a surface bounded by the circuit and where the direction of
the surface normal n’ is related to the sense of the current (I') by the
right-hand rule. The above equation can be rewritten as
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The second integral vanishes since 7’ is on a surface bounding the circuit,
which is away from the observation point 7. The first integral is, as shown
on page 33 in Chap. 1 of the text, the solid angle 2 subtended at the
observation point by the circuit that bounds S. Therefore,
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Example: Consider a point of observation on the z axis above a circular
loop of radius a in the xy plane that carries current I. The loop subtends
a solid angle = 27(1 — cos ), where 0 is the angle between the z axis
and a line from the point of observation to the loop. Thus
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confirming a result obtained in class directly from the Biot-Savart law.
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2. Jackson Prob 5.3: Find B, inside a uniformly wound solenoid. Use result
from Prob. 5.1 to write the contribution from a segment of the solenoid
of length dz as
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where Q = 27(1 — cosf) where 6 is the angle that the line from the
observation point to the ring at z makes with the axis. Integrate from end
1 to end 2 to find
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In terms of the angles shown in the figure in the text this becomes
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3. Jackson Prob 5.7:

(a) Asshown in class and in example with Prob. 5.1, the field of a single
loop in the xy plane at a distance z from its center on the axis is
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(b) The field near the center of a Helmholtz pair is, therefore,
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where d = Vb2 + 4a2.

(¢) p dependence of of field. On the axis, we may write B, = oo +
0922 + - -+, where the coefficients o}, can be inferred from the above
equation. With the aid of V - B = 0 we find that near the origin,
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Solving for B, (taking into account that B, = 0 on axis) we find that
near the axis,
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From V x B = 0, we may write
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Solving for B,, we obtain
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(d) From MATHEMATICA the asymptotic series for B, is
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which can be obtained from the power series by the replacement
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(e) For a Helmholtz coil one sets b = a. With this choice the terms in
the bracket for the small z expansion become
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Thus, to differ from uniformity by < €, the fractional distance must
satisfy z/a < [(125/144) €]*/%. For e = 10~ the limit is 0.097 and for
€ = 1072 the limit is 0.305. Below is a figure showing the variation
of B, on the axis between two coils located at a = £1.

B,(z) for a Helnholtz coil
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4. Jackson Prob 5.13: Find the vector potential and magnetic induction for a
uniformly charged sphere of radius a rotating about an axis with angular
momentum w. We orient w along the z axis and let = lie in the xz plane.
The vector 7’ is used to locate a point on the sphere. The surface current
density at v’ is K(r') = [w x r'] 0. The corresponding vector potential is
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As in the example worked out in Sec. 5.5 of the text, only the y component
can contribute to the integral. Therefore,
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where cos v is the angle between r and 7. Expanding the denominator in
a series of spherical harmonics we obtain
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We first carry out the ¢’ integral to find
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Putting the previous two results together, we find
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The sum over Im above becomes
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The corresponding formulas for the magnetic induction B = V x A are
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Note: A somewhat different (and simpler) solution to this problem is found
in the text by Griffiths. He chooses coordinates with r be along the z axis
and w in the zz plane at an angle § with the z axis.



