1. Jackson Prob. 5.1: Reformulate the Biot-Savart law in terms of the solid angle subtended at the point of observation by the current-carrying circuit.

$$
\begin{aligned}
\boldsymbol{B}(\boldsymbol{r}) & =\frac{\mu_{0} I}{2 \pi} \oint \frac{d \boldsymbol{l}^{\prime} \times\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}} \\
& =-\frac{\mu_{0} I}{2 \pi} \oint d \boldsymbol{l}^{\prime} \times \nabla \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \\
& =\frac{\mu_{0} I}{2 \pi} \nabla \times \oint \frac{d \boldsymbol{l}^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
\end{aligned}
$$

Let

$$
\boldsymbol{V}=\oint \frac{d \boldsymbol{l}^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

then

$$
\boldsymbol{B}(\boldsymbol{r})=\frac{\mu_{0} I}{2 \pi} \boldsymbol{\nabla} \times \boldsymbol{V}
$$

The i th component of \boldsymbol{V} may be written

$$
V_{i}=\oint \frac{d \boldsymbol{l}^{\prime} \cdot \hat{\boldsymbol{i}}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

where $\hat{\boldsymbol{i}}$ is the unit vector along the i th axis. By virtue of Stoke's theorem this can be converted into a surface integral

$$
V_{i}=\int_{S} d a\left[\boldsymbol{\nabla}^{\prime} \times \frac{\hat{\boldsymbol{i}}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\right] \cdot \boldsymbol{n}^{\prime}=\int_{S} d a\left[\boldsymbol{n}^{\prime} \times \boldsymbol{\nabla}^{\prime} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\right] \cdot \hat{\boldsymbol{i}}
$$

where S is a surface bounded by the circuit and where the direction of the surface normal \boldsymbol{n}^{\prime} is related to the sense of the current (\boldsymbol{l}^{\prime}) by the right-hand rule. The above equation can be rewritten as

$$
\boldsymbol{V}=\boldsymbol{\nabla} \times \int_{S} d a \frac{\boldsymbol{n}^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

Therefore

$$
\boldsymbol{B}(\boldsymbol{r})=\frac{\mu_{0} I}{4 \pi} \boldsymbol{\nabla} \times[\boldsymbol{\nabla} \times \boldsymbol{W}]
$$

with

$$
\boldsymbol{W}=\int_{S} d a \frac{\boldsymbol{n}^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

Now

$$
\begin{aligned}
\boldsymbol{\nabla} \times[\boldsymbol{\nabla} \times \boldsymbol{W}] & =\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{W})-\nabla^{2} \boldsymbol{W} \\
& =-\boldsymbol{\nabla} \int_{S} d a \frac{\boldsymbol{n}^{\prime} \cdot\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3}}+4 \pi \int_{S} d a \boldsymbol{n}^{\prime} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \\
& =-\nabla \Omega+0
\end{aligned}
$$

The second integral vanishes since \boldsymbol{r}^{\prime} is on a surface bounding the circuit, which is away from the observation point \boldsymbol{r}. The first integral is, as shown on page 33 in Chap. 1 of the text, the solid angle Ω subtended at the observation point by the circuit that bounds S. Therefore,

$$
\boldsymbol{B}(\boldsymbol{r})=-\frac{\mu_{0} I}{4 \pi} \nabla \Omega
$$

Example: Consider a point of observation on the z axis above a circular loop of radius a in the $x y$ plane that carries current I. The loop subtends a solid angle $\Omega=2 \pi(1-\cos \theta)$, where θ is the angle between the z axis and a line from the point of observation to the loop. Thus

$$
\Omega=2 \pi\left[1-\frac{z}{\sqrt{a^{2}+z^{2}}}\right]
$$

and

$$
\nabla \Omega=2 \pi\left[-\frac{1}{\sqrt{a^{2}+z^{2}}}+\frac{z^{2}}{\left(a^{2}+z^{2}\right)^{3 / 2}}\right] \hat{\boldsymbol{z}}=-\frac{2 \pi a^{2}}{\left(a^{2}+z^{2}\right)^{3 / 2}} \hat{\boldsymbol{z}}
$$

Therefore

$$
\boldsymbol{B}(z)=\frac{\mu_{0} I}{2} \frac{a^{2}}{\left(a^{2}+z^{2}\right)^{3 / 2}} \hat{\boldsymbol{z}}
$$

confirming a result obtained in class directly from the Biot-Savart law.
2. Jackson Prob 5.3: Find B_{z} inside a uniformly wound solenoid. Use result from Prob. 5.1 to write the contribution from a segment of the solenoid of length $d z$ as

$$
d B_{z}=-\frac{\mu_{0} N I d z}{4 \pi} \frac{d \Omega}{d z}=-\frac{\mu_{o} N I}{4 \pi} d \Omega
$$

where $\Omega=2 \pi(1-\cos \theta)$ where θ is the angle that the line from the observation point to the ring at z makes with the axis. Integrate from end 1 to end 2 to find

$$
B_{z}=\frac{\mu_{o} N I}{4 \pi}\left[\Omega_{1}-\Omega_{2}\right]=\frac{\mu_{0} N I}{2}\left[\cos \theta_{2}-\cos \theta_{1}\right]
$$

In terms of the angles shown in the figure in the text this becomes

$$
B_{z}=\frac{\mu_{0} N I}{2}\left[\cos \theta_{1}+\cos \theta_{2}\right]
$$

3. Jackson Prob 5.7:
(a) As shown in class and in example with Prob. 5.1, the field of a single loop in the $x y$ plane at a distance z from its center on the axis is

$$
B_{z}=\frac{\mu_{0} I}{2} \frac{a^{2}}{\left[a^{2}+z^{2}\right]^{3 / 2}}
$$

(b) The field near the center of a Helmholtz pair is, therefore,

$$
\begin{aligned}
B_{z}= & \frac{\mu_{0} I}{2}\left[\frac{a^{2}}{\left[a^{2}+(z-b / 2)^{2}\right]^{3 / 2}}+\frac{a^{2}}{\left[a^{2}+(z-b / 2)^{2}\right]^{3 / 2}}\right] \\
= & \frac{\mu_{0} I a^{2}}{d^{3}}\left[1+\frac{3\left(b^{2}-a^{2}\right) z^{2}}{2 d^{4}}+\frac{15\left(2 a^{4}-6 b^{2} a^{2}+b^{4}\right) z^{4}}{16 d^{8}}\right. \\
& \left.-\frac{7\left(5 a^{6}-30 b^{2} a^{4}+15 b^{4} a^{2}-b^{6}\right) z^{6}}{16 d^{12}}+\cdots\right]
\end{aligned}
$$

where $d=\sqrt{b^{2}+4 a^{2}}$.
(c) ρ dependence of of field. On the axis, we may write $B_{z}=\sigma_{0}+$ $\sigma_{2} z^{2}+\cdots$, where the coefficients σ_{k} can be inferred from the above equation. With the aid of $\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$ we find that near the origin,

$$
\frac{\partial\left(\rho B_{\rho}\right)}{\partial \rho}=-\rho \frac{\partial B_{z}}{\partial z}=-2 \sigma_{2} \rho z+\cdots
$$

Solving for B_{ρ} (taking into account that $B_{\rho}=0$ on axis) we find that near the axis,

$$
B_{\rho}(z, \rho) \approx-\sigma_{2} \rho z
$$

From $\boldsymbol{\nabla} \times \boldsymbol{B}=0$, we may write

$$
\frac{\partial B_{z}}{\partial \rho}=\frac{\partial B_{\rho}}{\partial z} \approx-\sigma_{2} \rho
$$

Solving for B_{z}, we obtain

$$
B_{z}(z, \rho) \approx B_{z}(z, 0)-\sigma_{2} \frac{\rho^{2}}{2}=\sigma_{0}+\sigma_{2}\left(z^{2}-\frac{\rho^{2}}{2}\right)+\cdots
$$

(d) From mathematica the asymptotic series for B_{z} is

$$
\begin{aligned}
B_{z}==\frac{\mu_{0} I a^{2}}{|z|^{3}}[1+ & \frac{3\left(b^{2}-a^{2}\right)}{2 z^{2}}+\frac{15\left(2 a^{4}-6 b^{2} a^{2}+b^{4}\right)}{16 z^{4}} \\
& \left.-\frac{7\left(5 a^{6}-30 b^{2} a^{4}+15 b^{4} a^{2}-b^{6}\right)}{16 z^{6}}+\cdots\right]
\end{aligned}
$$

which can be obtained from the power series by the replacement $d \rightarrow|z|$.
(e) For a Helmholtz coil one sets $b=a$. With this choice the terms in the bracket for the small z expansion become

$$
[\cdots] \approx 1-\frac{144 z^{4}}{125 a^{4}}
$$

Thus, to differ from uniformity by $\leq \epsilon$, the fractional distance must satisfy $z / a \leq[(125 / 144) \epsilon]^{1 / 4}$. For $\epsilon=10^{-4}$ the limit is 0.097 and for $\epsilon=10^{-2}$ the limit is 0.305 . Below is a figure showing the variation of B_{z} on the axis between two coils located at $a= \pm 1$.

4. Jackson Prob 5.13: Find the vector potential and magnetic induction for a uniformly charged sphere of radius a rotating about an axis with angular momentum $\boldsymbol{\omega}$. We orient $\boldsymbol{\omega}$ along the z axis and let \boldsymbol{r} lie in the $x z$ plane. The vector \boldsymbol{r}^{\prime} is used to locate a point on the sphere. The surface current density at \boldsymbol{r}^{\prime} is $\boldsymbol{K}\left(\boldsymbol{r}^{\prime}\right)=\left[\boldsymbol{\omega} \times \boldsymbol{r}^{\prime}\right] \sigma$. The corresponding vector potential is

$$
\boldsymbol{A}(\boldsymbol{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) d^{3} r^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \rightarrow \frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{K}\left(\boldsymbol{r}^{\prime}\right) d a^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}=\frac{\mu_{0} \sigma}{4 \pi} \int \frac{\left[\boldsymbol{\omega} \times \boldsymbol{r}^{\prime}\right] d a^{\prime}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

We write

$$
\left[\boldsymbol{\omega} \times \boldsymbol{r}^{\prime}\right]=a \omega \sin \theta^{\prime}\left(-\sin \phi^{\prime} \hat{\boldsymbol{x}}+\cos \phi^{\prime} \hat{\boldsymbol{y}}\right)
$$

As in the example worked out in Sec. 5.5 of the text, only the y component can contribute to the integral. Therefore,

$$
A_{y}(\boldsymbol{r})=\frac{\mu_{0} \sigma a^{3} \omega}{4 \pi} \int \frac{\sin \theta^{\prime} \cos \phi^{\prime} d \Omega^{\prime}}{\sqrt{r^{2}+a^{2}-2 a r \cos \gamma}}
$$

where $\cos \gamma$ is the angle between \boldsymbol{r} and \boldsymbol{r}^{\prime}. Expanding the denominator in a series of spherical harmonics we obtain

$$
A_{y}(\boldsymbol{r})=\frac{\mu_{0} \sigma a^{3} \omega}{4 \pi} \sum_{l m} \frac{r_{<}^{l}}{r_{>}^{l+1}} \frac{4 \pi}{2 l+1} Y_{l m}^{*}(\hat{r}) \int d \Omega^{\prime} \sin \theta^{\prime} \cos \phi^{\prime} Y_{l m}\left(\hat{r}^{\prime}\right)
$$

We first carry out the ϕ^{\prime} integral to find

$$
\int_{0}^{2 \pi} d \phi^{\prime} \cos \phi^{\prime} Y_{l m}\left(\theta^{\prime}, \phi^{\prime}\right)=\pi \sqrt{\frac{(2 l+1)(l-1)!}{4 \pi(l+1)!}} P_{l}^{1}\left(\cos \theta^{\prime}\right)\left(\delta_{m 1}-\delta_{m-1}\right)
$$

Noting that $\sin \theta^{\prime}=-P_{1}^{1}\left(\cos \theta^{\prime}\right)$, we find

$$
\int_{-1}^{1} \sin \theta^{\prime} P_{l}^{1}\left(\mu^{\prime}\right) d \mu^{\prime}=-\frac{4}{3} \delta_{l 1}
$$

Putting the previous two results together, we find

$$
\int d \Omega^{\prime} \sin \theta^{\prime} \cos \phi^{\prime} Y_{l m}\left(\hat{r}^{\prime}\right)=-\frac{4 \pi}{3} \sqrt{\frac{3}{8 \pi}}\left(\delta_{m 1}-\delta_{m-1}\right) \delta_{l 1}
$$

The sum over $l m$ above becomes

$$
\sum_{l m} \frac{r_{<}^{l}}{r_{>}^{l+1}} \cdots=-\frac{16 \pi^{2}}{9} \sqrt{\frac{3}{8 \pi}}\left(Y_{11}^{*}(\hat{r})-Y_{1-1}^{*}(\hat{r})\right) \frac{r_{<}}{r_{>}^{2}}=\frac{4 \pi}{3} \sin \theta \frac{r_{<}}{r_{>}^{2}}
$$

Finally,

$$
\begin{aligned}
A_{\phi}(\boldsymbol{r}) & =\frac{\mu_{0} \sigma a^{4} \omega}{3} \sin \theta \frac{1}{r^{2}} & & r>a \\
& =\frac{\mu_{0} \sigma a \omega}{3} r \sin \theta & & r<a
\end{aligned}
$$

In vector form, this becomes

$$
\begin{aligned}
\boldsymbol{A}(\boldsymbol{r}) & =\frac{\mu_{0} \sigma a^{4}}{3} \frac{[\boldsymbol{\omega} \times \boldsymbol{r}]}{r^{3}} & & r>a \\
& =\frac{\mu_{0} \sigma a}{3}[\boldsymbol{\omega} \times \boldsymbol{r}] & & r<a
\end{aligned}
$$

The corresponding formulas for the magnetic induction $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$ are

$$
\begin{aligned}
\boldsymbol{B}(\boldsymbol{r}) & =\frac{\mu_{0} \sigma a^{4}}{3}\left(\frac{3(\boldsymbol{\omega} \cdot \hat{\boldsymbol{r}}) \hat{\boldsymbol{r}}-\boldsymbol{\omega}}{r^{3}}\right) & & r>a \\
& =\frac{2 \mu_{0} \sigma a}{3} \boldsymbol{\omega} & & r<a
\end{aligned}
$$

Note: A somewhat different (and simpler) solution to this problem is found in the text by Griffiths. He chooses coordinates with r be along the z axis and $\boldsymbol{\omega}$ in the $x z$ plane at an angle θ with the z axis.

