Electromagnetism 70006 Answers to Problem Set 8 Spring 2006

1. Jackson Prob. 4.1: Multipole expansion for various charge distributions

(a) In the first case, we have 4 charges in the xy plane at distance a from
the origin along the +x and +y axes.
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Compare the last formula with the definition of g, to find

Gim = 2qa’ Y]}, (&) + Y7, (9)]
The polar angles of & and § are: 6, = 0, = 7/2, ¢, = 0, and
¢y = m/2. Therefore,

g1 =—(1—i)/5qa

433 = —1(1+0)/2qa® g3 = 3(1 i),/ % ¢a®

Q55 = —1%(1 _i)\/ gqa5 Q53 = f?(l +1) %qéﬁ Q51 = —%(1 —1) %QGS

All terms g;,,, with [ or m odd vanish. Furthermore g;—,,, = (—1)™q[,,,.
Note: From text, one has

3 . 3
qi1 = — g(pz —%Py) q10 = e

It follows that p = (2qa, 2qa, 0).

(b) In the second case we have charges ¢ at z = +a balanced by a charge



—2q at the origin. We find
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o(r) = 1 {

Again compare with definition to find
Qm = 2qa'Yy;, (%)

As is well known

Yim(2) =\ —— h(1) =

Therefore, for [ = 2, 4, - --

204+1
qzo:\/iqal, Gim =0 for m # 0.
v

The rectangular components of the quadrupole tensor are found by
comparing with the formulas in text

4qa® 0 0
Q= 0 —2qa? 0
0 0 —2qa’®

Plot the dominant contribution for second case as a function of r in
the x — y plane.

1 g |5 1 2ga®

®(r,p) = € 53 Epz(/l) =

P.
4dmeg 13 2(1)
The plot is shown below along with the plot required for the next
item.

Compare the plot required above with a plot of the exact potential.
The two plots are shown together below. The distance a is taken
to be 1 in this case, and we plot 4meq®(r). It can be seen that the
quadrupole potential substantially overestimates the size of the po-
tential (by 40% in this case) at = a but comes into close agreement
as r increases.
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2. Jackson Prob. 4.6: Nucleus in a cylindrically symmetric field.

(a) Show that
OF,

0z

In the principal axis system of a spheroidal nucleus, Quz = Qyy =
—Q:./2. Tt follows that
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With the aid of
OE, OF, n OE,

v 0z + Ox oy 0
Ove finds 1 30E 1 OF
W="5%3% =19 5|,

(b) Given that W = 10 MHz and @ = 1072® m?, find the value of

OB, 4eW
0z Q

in units e/(4megad).
We obtain the following

4
AWV 597133 x 1020 MKS

Q
& = 971758 x 10°" MKS
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(¢) Quadrupole moment of a uniformly charged spheroid with semimajor
axis @ and semiminor axis b:

a by/1—22/a? 87Ta,b2
Q= Qu=dmp, [ dz [ pdp(227 %) = T (@~ gy,
where
- 3
Pa = 2

is the charge density. Therefore, in terms of the total charge ¢ = Ze,

Q= %(a2 —b?) Ze = g(a+ b)RZe,

where R = (a + b)/2. It follows that
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where Q' = Q/e.

3. Jackson Prob. 4.8: A cylindrical shell (outer radius b - inner radius a) is
filled with a material with dielectric constant ¢ and placed in an electric
field normal to it’s axis.

(a) Find the potential and electric field. We expand the potential in a
series In the outer region, r > b, the potential takes the form

0001~ [+ ] e

n

where a; = —E0 and a,, = 0, for n # 0. (Also, by = 0.) As in the case
of a dielectric sphere in an external field, only terms in the expansion
with n = 1 will be nonvanishing once the boundary conditions are
applied. We therefore assume that the potential takes the form

D(p, p) = {—Eoerﬂ cos¢p  b<p

= {czp—i—cg}cosqﬁ a<p<b
p
= C4 PCOS P 0<p<a

The four equations A® =0 at p =a,band AD =0 at p = a,b lead



to the following results for the expansion coefficients:
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The electric field is as usual E = —V®. For the radial component,

we have
C1
Ey(p,¢) = [EoJr;} cos ¢ b<p
c3
:|:—CQ+F:|COS¢ a<p<b
= —cqCO8¢ 0<p<a

For the angular component, we have
c
Ey(p,¢) = [—Eo + p—;} sing  b<p

:{czﬁ—c—g}singb a<p<hb
0
= ¢4 sin ¢ 0<p<a

(b) Sketch the Field: Here is the case e =10, a=1, b=2, Ey =1




(¢) Limiting case a — 0:

e—10b°
(p, ¢) = *p+€+1? Eqycos¢ b<p
2
=—7G+1PEOCOS¢ 0<p<b

For the case of a hollow cylinder imbedded in a dielectric the potential
is given by the above expression with € — 1/e.

4. Jackson Prob. 4.13: The energy of a dielectric material in an external
electric field is given by Eq. (4.93) in the text:

W = —% / P - Edr.
For the liguid in the capillary tube,

P =¢yx.E

Therefore

2 b
_ €Xe [po, _ €oXe 14 dp
W= -0 /E dr = - <1n(b/a)> 2m/apdpp2,

where we have used the easily established fact that the electric field in the
capillary is

\% 1
It follows that

megXe V2
W=——"——
In(b/a) "
and that the (upward) force on the liquid is
__aw meoxe V2
dr  In(b/a)

This force balances the downward weight of column of liquid pg h7(b*—a?).

Therefore,
~ pgh(b* —a®)In(b/a)
e 60V2

Here is an alternative solution mentioned in class: Let the capacitance/length

of the capillary tube be
2meg

" In(b/a)
and the capacitance/length of the tube filled with liquid be

Co

2me

¢= In(b/a)



If the tube is filled to height x with liquid, an excess charge

27T€()Xe£EV
In(b/a)

will be drawn from the battery and appear on the surface of the capillary.
The battery gives up energy

AQ = (C — Co)aV =

Wp=VAQ = (C — Cp)aV?

Part of this energy is the increased energy stored in the capacitor part is
avalible to do work. Assuming that the capillary is filled to height h, the
available energy is

1 2megxexV?

W (z) = %(C - CoJaV = W = —5 T

The force on the (liquid) dielectric is

B dW,  megxexV?

F = =
dx In(b/a) ’

which agrees with the previously obtained result.



