
Electromagnetism 70006 Answers to Problem Set 7 Spring 2006

1. Jackson Prob. 3.12. A circular hole of radius a in a conducting plane is
held at potential V.

(a) Find an integral expression for the potential above the plane.a For a
cylindrically symmetric case, the solution to the BV problem takes
the form

Φ(ρ, z) =
∫ ∞

0

A(k)J0(kρ)e−kzdk

With the aid of the orthogonality relation:
∫ ∞

0

J0(kρ)J0(k′ρ)ρdρ =
1
k

δ(k − k′)

we find

A(k) = k

∫ ∞

0

J0(kρ)Φ(ρ, 0)ρdρ = kV

∫ a

0

J0(kρ)ρdρ = aV J1(ka),

where we have used the fact
∫ a

0

J0(kρ)ρdρ =
a

k
J1(ka).

It follows that

Φ(ρ, z) = V a

∫ ∞

0

J1(ka)J0(kρ)e−kzdk.

(b) Find the potential at a distance z above the center of the hole. From
Mathematica 5.2

Φ(0, z) = V

∫ ∞

0

J1(ka)e−kzdk = V

[
1− z√

z2 + a2

]

(c) Find the potential at a distance z above the edge of the hole. From
Mathematica 5.2, we find

Φ(a, z) =
V

2

[
1− 2

π
EllipticK

(
−4a2

z2

)]

This result can be transformed into the result given in the text: Note,
Mathematica’s EllipticK(k2) ≡ K(k). The above result in standard
notation is

Φ(a, z) =
V

2

[
1− 2

π
K

(
i
2a

z

)]
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From mathworld.wolfram.com, we have the identity

K(ik) =
1√

1 + k2
K

(√
k2

1 + k2

)
.

Substituting, we find

Φ(a, z) =
V

2

[
1− k′z

πa
K(k′)

]

where k′ = 2a/
√

4a2 + z2, which is the result given in the text.

2. Jackson Prob. 3.13: Solve Prob. 3.1 using the Green Function method.
Find the potential in the region between two concentric spheres. The
upper half of the inner sphere (radius a) and the lower half of the outer
sphere (radius b) are at potential V . The lower half of the inner and upper
half of outer sphere are at potential 0. Owing to azimuthal symmetry, we
can write

Φ(r, µ) =
∞∑

l=0

Pl(µ)
[

V

4π

∫

Sa

Pl(µ′) a2 dΩ′
∂gl(r, r′)

∂r′

∣∣∣∣
r′=a

− V

4π

∫

Sb

Pl(µ′) b2 dΩ′
∂gl(r, r′)

∂r′

∣∣∣∣
r′=b

]

Where the integrations are over the Sa, the upper half of the inner sphere,
and Sb, the lower half of the outer sphere. The integral over φ′ gives a
factor of 2π in each term. As in Prob. 3.1, we write the integral over µ′

in terms of the parameters Al and Bl defined as

Al =
2l + 1

2
V

∫ 1

0

Pl(µ)dµ

Bl =
2l + 1

2
V

∫ 0

−1

Pl(µ)dµ,

and find

A0 = B0 =
1
2
V

Al = −Bl = V

{
3
4
, 0 − 7

16
, 0,

11
32

, · · ·
}

for l = 1, 2, 3, 4, 5, · · ·

Note that

∂gl(r, r′)
∂r′

∣∣∣∣
r′=a

=
2l + 1

Dl
al−1

(
1

rl+1
− rl

b2l+1

)

and
∂gl(r, r′)

∂r′

∣∣∣∣
r′=b

= − (2l + 1)
Dl

1
bl+2

(
rl − a2l+1

rl+1

)
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Here
Dl = 1− (a/b)2l+1.

Substituting into the formula for Φ, we find

Φ(r, µ) =
∑

l

Pl(µ)
1
Dl

[
Al a

l+1

(
1

rl+1
− rl

b2l+1

)
+ Bl

1
bl

(
rl − a2l+1

rl+1

)]

This can be rewritten

Φ(r, µ)

=
V

2
+

∑

l=1,3,···
Pl(µ)

Al

D′
l

[(
bl

rl+1
− rl

bl+1

)
−

(
rl

al+1
− al

rl+1

)]

=
V

2
+

∑

l=1,3,···
Pl(µ)

Al

D′
l

[(
al + bl

) 1
rl+1

−
(

1
al+1

+
1

bl+1

)
rl

]

where

D′
l =

(
bl

al+1
− al

bl+1

)

is the denominator factor defined in the previous solution. This result is
seen to agree with the previous solution to Prob. 3.1.

3. Jackson Prob. 3.14. Given that the linear charge density is proportional
to d2 − r2, we may write

ρ(r) = κ
1− r2/d2

r2
[δ(µ− 1) + δ(µ + 1)] r < d

Integrate to find

Q =
∫

d3r ρ(rr) =
8π

3
κ

(a) Find the potential:
With the aid of the above result and azimuthal symmetry, we may
write

Φ(r, µ) =
1

4πε0

3Q

8πd

∑

k

Pk(µ)
∫ 2π

0

dφ′

∫ 1

−1

dµ′ [δ(µ′ − 1) + δ(µ′ + 1)] Pk(µ′)
∫ b

0

dr′λ(r′, d)
(

rk
<

rk+1
>

− rkr′k

b2k+1

)

where

λ(r, d) =
{

(1− r2/d2) r ≤ d
0 r > d

Carrying out the angular integrations leads to

Φ(r, µ) =
3Q

8πε0 d

∑

k=0,2,···
Pk(µ)

∫ b

0

dr′λ(r′, d)
(

rk
<

rk+1
>

− rkr′k

b2k+1

)
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Set

ck[r] =
∫ b

0

dr′λ(r′, d)
(

rk
<

rk+1
>

− rkr′k

b2k+1

)

and we may write

Φ(r, µ) =
3Q

8πε0 d

∑

k=0,2,···
ck(r)Pk(µ)

Two cases must be distinguished:
i. In the region r < d (except when k = 0 or k = 2) we find

ck(r) =
2k + 1

k(k + 1)
+

2
k(k − 2)

rk

dk
− 2k + 1

(k − 2)(k + 3)
r2

d2
− 2

(k + 3)(k + 1)
dk+1rk

b2k+1

For the special cases k = 0 and k = 2, ck(r) has the following
values

c0(r) =
1
2

+
1
6

r2

d2
+ log

(
d

r

)
− 2

3
d

b

c2(r) =
5
6
− 7

10
r2

d2
− r2

d2
log

(
d

r

)
− 2

15
d3r2

b5

ii. In the region d < r ≤ b, we find

ck(r) =
2

(k + 1)(k + 3)

[
dk+1

rk+1
− dk+1rk

b2k+1

]

(b) Find the surface charge density:

σ(µ) = ε0
∂Φ
∂r

=
3Q

8π d

∑

k=0,2,···
dk Pk(µ),

where

dk =
dck(r)

dr

∣∣∣∣
r=b

= − 2(2k + 1)
(k + 1)(k + 3)

dk+1

bk+2

Note that
d0 = −2

3
d

b2
.

The total induced charge is

Qind =
3Q

8π d
2πb2

∑

k=0,2,···
dk

∫ 1

−1

dµPk(µ)

By the orthogonality theorem for Legendre polynomials, only the
k = 0 term contributes. Therefore,

Qind =
3Q

2
b2

d
d0 = −Q
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(c) Discuss the limiting case d ¿ b. The region near the origin shrinks
to negligible size. In the outer region, the expansion coefficients ck

are proportional to dk+1 and dominated by the term with k = 0.
Therefore the limiting potential is

Φ(r) → 3Q

8πε0d
c0(r) =

Q

4πε0

(
1
r
− 1

b

)

This is just the potential of a point charge at the center of a grounded
sphere. The surface charge density is isotropic and has the limiting
value

σ → 3Q

8πd
d0 = − Q

4πb2
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