
Electromagnetism 70006 Answers to Problem Set 6 Spring 2006

1. Jackson 3.1: Between two spheres: Upper half of inner (radius a) and
lower half of outer (radius b) are at potential V . Lower half of inner and
upper half of outer are at potential 0.

(a) Find potential in region between spheres.

Φ(r, µ) =
∞∑

l=0

[
al r

l +
bl

rl+1

]
Pl(µ)

at the spherical surfaces,

Φ(a, µ) =
∞∑

l=0

[
al a

l +
bl

al+1

]
Pl(µ) =

∞∑
l=0

AlPl(µ)

Φ(b, µ) =
∞∑

l=0

[
al b

l +
bl

bl+1

]
Pl(µ) =

∞∑
l=0

BlPl(µ)

Boundary conditions give

Al =
2l + 1

2
V

∫ 1

0

Pl(µ)dµ

Bl =
2l + 1

2
V

∫ 0

−1

Pl(µ)dµ

We find:

A0 = B0 =
1
2
V

Al = −Bl = V

{
3
4
, 0 − 7

16
, 0,

11
32

, · · ·
}

for l = 1, 2, 3, 4, 5, · · ·

Solve for al and bl in terms of Al and Bl. We find

a0 = A0 =
1
2
V, b0 = 0.

For even values of l, al = bl = 0. For odd values of l

al = −
[

1
al+1

+
1

bl+1

]
Al

Dl

bl =
[
al + bl

] Al

Dl
,

where

Dl =
bl

al+1
− al

bl+1
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Putting this together, we find:

Φ(r, µ) =
V

2
+

3V

4

[
−

(
1
a2

+
1
b2

)
r

D1
+

a + b

r2D1

]
P1(µ)

−7V

16

[
−

(
1
a4

+
1
b4

)
r3

D3
+

a3 + b3

r4D3

]
P3(µ)

+
11V

32

[
−

(
1
a6

+
1
b6

)
r5

D5
+

a5 + b5

r6D5

]
P5(µ) + · · ·

(b) Check the limits: As b →∞, Dl → bl/al+1

lim
b→∞

Φ(r, µ) = V

[
1
2

+
3
4

a2

r2
P1(µ)− 7

16
a4

r4
P3(µ) +

11
32

a6

r6
P5(µ) + · · ·

]
.

This is the potential outside an upper hemisphere of radius a. Simi-
larly, as a → 0, Dl → bl/al+1 and

lim
a→0

Φ(r, µ) = V

[
1
2
− 3

4
r

b
P1(µ) +

7
16

r3

b3
P3(µ)− 11

32
r5

a5
P5(µ) + · · ·

]
,

which is the potential inside a lower hemisphere of radius b.

2. Jackson 3.2: Potential for a uniformly charged sphere with an omitted cap
of angle α at the north pole.

(a) The potentials inside and outside the sphere are

Φin(r, µ) =
∞∑

l=0

al r
lPl(µ)

Φout(r, µ) =
∞∑

l=0

bl r
−l−1Pl(µ)

The potential is continuous at r = a; therefore, bl = a2l+1 al The
radial electric field inside and outside the sphere at the surface is

Er(in) = −
∞∑

l=0

l al a
l−1Pl(µ)

Er(out) =
∞∑

l=0

(l + 1) bl a
−l−2Pl(µ) =

∞∑
l=0

(l + 1) al a
l−1Pl(µ)

The surface charge density is, therefore,

σ = ε0∆Er =
∞∑

l=0

(2l + 1) al a
l−1Pl(µ) =

{
0 θ < α

Q
4πa2 otherwise
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It follows that
al =

Q

8πε0al+1

∫ cos α

−1

Pl(µ) dµ

For l = 0, we find ∫ cos α

−1

Pl(µ) dµ = cos α + 1

For l > 0, we make use of the identity

(2l + 1)Pl(µ) =
dPl+1(µ)

dµ
− dPl−1(µ)

dµ

to show ∫ cos α

−1

Pl(µ) dµ =
1

2l + 1
[Pl+1(cos α)− Pl−1(cos α)] .

In the above, we use Pl−1(−1) = Pl+1(−1). It follows that

Φin(r, µ) =
Q

8πε0a

∞∑
l=0

1
2l + 1

[Pl+1(cos α)− Pl−1(cos α)]
( r

a

)l

Pl(µ)

Φout(r, µ) =
Q

8πε0a

∞∑
l=0

1
2l + 1

[Pl+1(cos α)− Pl−1(cos α)]
(a

r

)l+1

Pl(µ)

where we define P−1(cos α) = −1.

(b) Only the l = 1 term contributes to the electric field at the origin. We
find

Er(0) = − Q

8πε0a2

1
3

[P2(cos α)− P0(cos α)] cos θ

Eθ(0) =
Q

8πε0a2

1
3

[P2(cos α)− P0(cos α)] sin θ

Note that Ez = Er cos θ − Eθ sin θ = Ez and Ex = Er sin θ +
Eθ cos θ = Ex. Therefore, E is along the z axis and has magnitude

E = − Q

8πε0a2

1
3

[P2(cos α)− P0(cos α)]

This cam be simplified using the fact

1
3

[P2(cos α)− P0(cos α)] =
1
3

[
3
2

cos2 α− 1
2
− 1

]
= −1

2
sin2 α

Therefore

E =
Q sin2 α

16πε0a2

3



(c) Limiting case α → 0: In this limit, only the l = 0 term contributes.
The potential reduces to that of a uniformly charged sphere and the
field at the origin vanishes. For small but finite α the total charge
excluded by the cap is Qcap ≈ Qα2/4. By superposition, the field
at the origin should be the field of a negative charge Qcap located at
the north pole. Indeed, we find

E =
Q sin2 α

16πε0a2
→ Qcap

4πε0a2

(d) Limiting case α → π: In this limit the potential vanishes. Set-
ting β = π − α, the total charge on the cap near the south pole is
Qcap = Qβ2/4. Again the field at the origin reduces to the field of
the positively cap at the south pole.

E =
Q sin2 (π − β)

16πε0a2
→ Qcap

4πε0a2
.

3. Jackson 3.3: A circular conducting disc of radius R in the x−y plane with
center at the origin is at potential V .

(a) Given that σ = κ/
√

R2 − ρ2, find the potential for r > R. First,
note that the total charge Q on the disc is

Q = κ

∫ R

0

2πρdρ√
R2 − ρ2

= 2πκR

Thus, we can rewrite

σ(ρ) =
Q

2πR

1√
R2 − ρ2

.

The potential on the z axis is

Φ(z) =
1

4πε0

Q

2πR

∫ R

0

2πρdρ√
ρ2 + z2

√
R2 − ρ2

Changing independent variable to ξ =
√

R2 − ρ2, we find

Φ(z) =
Q

4πε0R

∫ R

0

dξ√
z2 + R2 − ξ2

=
Q

4πε0R
arctan

(
R

z

)
Since Φ(0) = V , it follows

V =
Q

4πε0R

π

2
=

Q

8ε0R
,

and

Φ(z) =
2V

π
arctan

(
R

z

)
=

2V

π

∞∑
l=0

(−1)l

2l + 1

(
R

z

)2l+1

.
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Comparing this expansion with the general expansion for azimuthal
symmetry, we infer

Φ(r, θ) =
2V

π

∞∑
l=0

(−1)l

2l + 1

(
R

r

)2l+1

P2l(cos θ)

(b) for r < R, we have

Φ(z) =
2V

π
arctan

(
R

z

)
=

2V

π

[π

2
− arctan

( z

R

)]
= V − 2V

π

∞∑
l=0

(−1)l

2l + 1

( z

R

)2l+1

Thus we have for r < R,

Φ(r, θ) = V − 2V

π

∞∑
l=0

(−1)l

2l + 1

( r

R

)2l+1

P2l+1(cos θ).

(c) The capacitance of the disc is

C =
Q

V
= 8ε0R
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