Electromagnetism 70006 Answers to Problem Set 6 Spring 2006

1. Jackson 3.1: Between two spheres: Upper half of inner (radius a) and
lower half of outer (radius b) are at potential V. Lower half of inner and
upper half of outer are at potential 0.

(a) Find potential in region between spheres.
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Solve for a; and b; in terms of A; and B;. We find
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For even values of [, a; = b; = 0. For odd values of [
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Putting this together, we find:
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(b) Check the limits: As b — oo, D; — b!/alt?
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This is the potential outside an upper hemisphere of radius a. Simi-

larly, as a — 0, D; — b!/a!*! and
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which is the potential inside a lower hemisphere of radius b.

2. Jackson 3.2: Potential for a uniformly charged sphere with an omitted cap
of angle v at the north pole.

(a) The potentials inside and outside the sphere are
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The potential is continuous at r = a; therefore, b, = a**' a; The
radial electric field inside and outside the sphere at the surface is
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The surface charge density is, therefore,
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It follows that
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For [ = 0, we find
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For [ > 0, we make use of the identity
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to show
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In the above, we use P,_1(—1) = P11(—1). It follows that
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where we define P_j(cosa) = —1.
Only the [ = 1 term contributes to the electric field at the origin. We
find
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Note that E, = E,cosf — Epsinf = E, and £, = E,sinf +
FEycos® = E,. Therefore, E is along the z axis and has magnitude
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This cam be simplified using the fact
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(¢) Limiting case a — 0: In this limit, only the [ = 0 term contributes.
The potential reduces to that of a uniformly charged sphere and the
field at the origin vanishes. For small but finite o the total charge
excluded by the cap is Qeap ~ Qa?/4. By superposition, the field
at the origin should be the field of a negative charge Qcap located at
the north pole. Indeed, we find
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(d) Limiting case @« — m: In this limit the potential vanishes. Set-
ting 8 = m — «, the total charge on the cap near the south pole is
Qcap = QB?/4. Again the field at the origin reduces to the field of
the positively cap at the south pole.
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3. Jackson 3.3: A circular conducting disc of radius R in the x —y plane with
center at the origin is at potential V.

(a) Given that o = k/\/R? — p?, find the potential for r > R. First,
note that the total charge @ on the disc is
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Thus, we can rewrite
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The potential on the z axis is
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Changing independent variable to £ = \/R2 — p2, we find
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Since ®(0) =V, it follows
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Comparing this expansion with the general expansion for azimuthal
symmetry, we infer
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(b) for r < R, we have

d(z) = % arctan (f) % {5 — arctan (;)}

27w (—1)* (i>2l+1

Thus we have for r < R,
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(¢) The capacitance of the disc is
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