1. Jackson 3.1: Between two spheres: Upper half of inner (radius a) and lower half of outer (radius b) are at potential V. Lower half of inner and upper half of outer are at potential 0 .
(a) Find potential in region between spheres.

$$
\Phi(r, \mu)=\sum_{l=0}^{\infty}\left[a_{l} r^{l}+\frac{b_{l}}{r^{l+1}}\right] P_{l}(\mu)
$$

at the spherical surfaces,

$$
\begin{aligned}
& \Phi(a, \mu)=\sum_{l=0}^{\infty}\left[a_{l} a^{l}+\frac{b_{l}}{a^{l+1}}\right] P_{l}(\mu)=\sum_{l=0}^{\infty} A_{l} P_{l}(\mu) \\
& \Phi(b, \mu)=\sum_{l=0}^{\infty}\left[a_{l} b^{l}+\frac{b_{l}}{b^{l+1}}\right] P_{l}(\mu)=\sum_{l=0}^{\infty} B_{l} P_{l}(\mu)
\end{aligned}
$$

Boundary conditions give

$$
\begin{aligned}
& A_{l}=\frac{2 l+1}{2} V \int_{0}^{1} P_{l}(\mu) d \mu \\
& B_{l}=\frac{2 l+1}{2} V \int_{-1}^{0} P_{l}(\mu) d \mu
\end{aligned}
$$

We find:

$$
\begin{aligned}
& A_{0}=B_{0}=\frac{1}{2} V \\
& A_{l}=-B_{l}=V\left\{\frac{3}{4}, 0-\frac{7}{16}, 0, \frac{11}{32}, \cdots\right\} \quad \text { for } \quad l=1,2,3,4,5, \cdots
\end{aligned}
$$

Solve for a_{l} and b_{l} in terms of A_{l} and B_{l}. We find

$$
a_{0}=A_{0}=\frac{1}{2} V, \quad b_{0}=0
$$

For even values of $l, a_{l}=b_{l}=0$. For odd values of l

$$
\begin{aligned}
a_{l} & =-\left[\frac{1}{a^{l+1}}+\frac{1}{b^{l+1}}\right] \frac{A_{l}}{D_{l}} \\
b_{l} & =\left[a^{l}+b^{l}\right] \frac{A_{l}}{D_{l}}
\end{aligned}
$$

where

$$
D_{l}=\frac{b^{l}}{a^{l+1}}-\frac{a^{l}}{b^{l+1}}
$$

Putting this together, we find:

$$
\begin{aligned}
& \Phi(r, \mu)=\frac{V}{2}+\frac{3 V}{4}\left[-\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \frac{r}{D_{1}}+\frac{a+b}{r^{2} D_{1}}\right] P_{1}(\mu) \\
& \quad-\frac{7 V}{16}\left[-\left(\frac{1}{a^{4}}+\frac{1}{b^{4}}\right) \frac{r^{3}}{D_{3}}+\frac{a^{3}+b^{3}}{r^{4} D_{3}}\right] P_{3}(\mu) \\
& \quad+\frac{11 V}{32}\left[-\left(\frac{1}{a^{6}}+\frac{1}{b^{6}}\right) \frac{r^{5}}{D_{5}}+\frac{a^{5}+b^{5}}{r^{6} D_{5}}\right] P_{5}(\mu)+\cdots
\end{aligned}
$$

(b) Check the limits: As $b \rightarrow \infty, D_{l} \rightarrow b^{l} / a^{l+1}$

$$
\lim _{b \rightarrow \infty} \Phi(r, \mu)=V\left[\frac{1}{2}+\frac{3}{4} \frac{a^{2}}{r^{2}} P_{1}(\mu)-\frac{7}{16} \frac{a^{4}}{r^{4}} P_{3}(\mu)+\frac{11}{32} \frac{a^{6}}{r^{6}} P_{5}(\mu)+\cdots\right] .
$$

This is the potential outside an upper hemisphere of radius a. Similarly, as $a \rightarrow 0, D_{l} \rightarrow b^{l} / a^{l+1}$ and

$$
\lim _{a \rightarrow 0} \Phi(r, \mu)=V\left[\frac{1}{2}-\frac{3}{4} \frac{r}{b} P_{1}(\mu)+\frac{7}{16} \frac{r^{3}}{b^{3}} P_{3}(\mu)-\frac{11}{32} \frac{r^{5}}{a^{5}} P_{5}(\mu)+\cdots\right],
$$

which is the potential inside a lower hemisphere of radius b.
2. Jackson 3.2: Potential for a uniformly charged sphere with an omitted cap of angle α at the north pole.
(a) The potentials inside and outside the sphere are

$$
\begin{aligned}
\Phi_{\text {in }}(r, \mu) & =\sum_{l=0}^{\infty} a_{l} r^{l} P_{l}(\mu) \\
\Phi_{\text {out }}(r, \mu) & =\sum_{l=0}^{\infty} b_{l} r^{-l-1} P_{l}(\mu)
\end{aligned}
$$

The potential is continuous at $r=a$; therefore, $b_{l}=a^{2 l+1} a_{l}$ The radial electric field inside and outside the sphere at the surface is

$$
\begin{aligned}
E_{r}(\mathrm{in}) & =-\sum_{l=0}^{\infty} l a_{l} a^{l-1} P_{l}(\mu) \\
E_{r}(\text { out }) & =\sum_{l=0}^{\infty}(l+1) b_{l} a^{-l-2} P_{l}(\mu)=\sum_{l=0}^{\infty}(l+1) a_{l} a^{l-1} P_{l}(\mu)
\end{aligned}
$$

The surface charge density is, therefore,

$$
\sigma=\epsilon_{0} \Delta E_{r}=\sum_{l=0}^{\infty}(2 l+1) a_{l} a^{l-1} P_{l}(\mu)=\left\{\begin{array}{cl}
0 & \theta<\alpha \\
\frac{Q}{4 \pi a^{2}} & \text { otherwise }
\end{array}\right.
$$

It follows that

$$
a_{l}=\frac{Q}{8 \pi \epsilon_{0} a^{l+1}} \int_{-1}^{\cos \alpha} P_{l}(\mu) d \mu
$$

For $l=0$, we find

$$
\int_{-1}^{\cos \alpha} P_{l}(\mu) d \mu=\cos \alpha+1
$$

For $l>0$, we make use of the identity

$$
(2 l+1) P_{l}(\mu)=\frac{d P_{l+1}(\mu)}{d \mu}-\frac{d P_{l-1}(\mu)}{d \mu}
$$

to show

$$
\int_{-1}^{\cos \alpha} P_{l}(\mu) d \mu=\frac{1}{2 l+1}\left[P_{l+1}(\cos \alpha)-P_{l-1}(\cos \alpha)\right]
$$

In the above, we use $P_{l-1}(-1)=P_{l+1}(-1)$. It follows that

$$
\begin{aligned}
\Phi_{\text {in }}(r, \mu) & =\frac{Q}{8 \pi \epsilon_{0} a} \sum_{l=0}^{\infty} \frac{1}{2 l+1}\left[P_{l+1}(\cos \alpha)-P_{l-1}(\cos \alpha)\right]\left(\frac{r}{a}\right)^{l} P_{l}(\mu) \\
\Phi_{\text {out }}(r, \mu) & =\frac{Q}{8 \pi \epsilon_{0} a} \sum_{l=0}^{\infty} \frac{1}{2 l+1}\left[P_{l+1}(\cos \alpha)-P_{l-1}(\cos \alpha)\right]\left(\frac{a}{r}\right)^{l+1} P_{l}(\mu)
\end{aligned}
$$

where we define $P_{-1}(\cos \alpha)=-1$.
(b) Only the $l=1$ term contributes to the electric field at the origin. We find

$$
\begin{aligned}
& E_{r}(0)=-\frac{Q}{8 \pi \epsilon_{0} a^{2}} \frac{1}{3}\left[P_{2}(\cos \alpha)-P_{0}(\cos \alpha)\right] \cos \theta \\
& E_{\theta}(0)=\frac{Q}{8 \pi \epsilon_{0} a^{2}} \frac{1}{3}\left[P_{2}(\cos \alpha)-P_{0}(\cos \alpha)\right] \sin \theta
\end{aligned}
$$

Note that $E_{z}=E_{r} \cos \theta-E_{\theta} \sin \theta=E_{z}$ and $E_{x}=E_{r} \sin \theta+$ $E_{\theta} \cos \theta=E_{x}$. Therefore, \boldsymbol{E} is along the z axis and has magnitude

$$
E=-\frac{Q}{8 \pi \epsilon_{0} a^{2}} \frac{1}{3}\left[P_{2}(\cos \alpha)-P_{0}(\cos \alpha)\right]
$$

This cam be simplified using the fact

$$
\frac{1}{3}\left[P_{2}(\cos \alpha)-P_{0}(\cos \alpha)\right]=\frac{1}{3}\left[\frac{3}{2} \cos ^{2} \alpha-\frac{1}{2}-1\right]=-\frac{1}{2} \sin ^{2} \alpha
$$

Therefore

$$
E=\frac{Q \sin ^{2} \alpha}{16 \pi \epsilon_{0} a^{2}}
$$

(c) Limiting case $\alpha \rightarrow 0$: In this limit, only the $l=0$ term contributes. The potential reduces to that of a uniformly charged sphere and the field at the origin vanishes. For small but finite α the total charge excluded by the cap is $Q_{\text {cap }} \approx Q \alpha^{2} / 4$. By superposition, the field at the origin should be the field of a negative charge $Q_{\text {cap }}$ located at the north pole. Indeed, we find

$$
E=\frac{Q \sin ^{2} \alpha}{16 \pi \epsilon_{0} a^{2}} \rightarrow \frac{Q_{\text {cap }}}{4 \pi \epsilon_{0} a^{2}}
$$

(d) Limiting case $\alpha \rightarrow \pi$: In this limit the potential vanishes. Setting $\beta=\pi-\alpha$, the total charge on the cap near the south pole is $Q_{\text {cap }}=Q \beta^{2} / 4$. Again the field at the origin reduces to the field of the positively cap at the south pole.

$$
E=\frac{Q \sin ^{2}(\pi-\beta)}{16 \pi \epsilon_{0} a^{2}} \rightarrow \frac{Q_{\text {cap }}}{4 \pi \epsilon_{0} a^{2}}
$$

3. Jackson 3.3: A circular conducting disc of radius R in the $x-y$ plane with center at the origin is at potential V.
(a) Given that $\sigma=\kappa / \sqrt{R^{2}-\rho^{2}}$, find the potential for $r>R$. First, note that the total charge Q on the disc is

$$
Q=\kappa \int_{0}^{R} \frac{2 \pi \rho d \rho}{\sqrt{R^{2}-\rho^{2}}}=2 \pi \kappa R
$$

Thus, we can rewrite

$$
\sigma(\rho)=\frac{Q}{2 \pi R} \frac{1}{\sqrt{R^{2}-\rho^{2}}}
$$

The potential on the z axis is

$$
\Phi(z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi R} \int_{0}^{R} \frac{2 \pi \rho d \rho}{\sqrt{\rho^{2}+z^{2}} \sqrt{R^{2}-\rho^{2}}}
$$

Changing independent variable to $\xi=\sqrt{R^{2}-\rho^{2}}$, we find

$$
\Phi(z)=\frac{Q}{4 \pi \epsilon_{0} R} \int_{0}^{R} \frac{d \xi}{\sqrt{z^{2}+R^{2}-\xi^{2}}}=\frac{Q}{4 \pi \epsilon_{0} R} \arctan \left(\frac{R}{z}\right)
$$

Since $\Phi(0)=V$, it follows

$$
V=\frac{Q}{4 \pi \epsilon_{0} R} \frac{\pi}{2}=\frac{Q}{8 \epsilon_{0} R}
$$

and

$$
\Phi(z)=\frac{2 V}{\pi} \arctan \left(\frac{R}{z}\right)=\frac{2 V}{\pi} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{2 l+1}\left(\frac{R}{z}\right)^{2 l+1}
$$

Comparing this expansion with the general expansion for azimuthal symmetry, we infer

$$
\Phi(r, \theta)=\frac{2 V}{\pi} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{2 l+1}\left(\frac{R}{r}\right)^{2 l+1} P_{2 l}(\cos \theta)
$$

(b) for $r<R$, we have

$$
\begin{aligned}
\Phi(z) & =\frac{2 V}{\pi} \arctan \left(\frac{R}{z}\right)=\frac{2 V}{\pi}\left[\frac{\pi}{2}-\arctan \left(\frac{z}{R}\right)\right] \\
& =V-\frac{2 V}{\pi} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{2 l+1}\left(\frac{z}{R}\right)^{2 l+1}
\end{aligned}
$$

Thus we have for $r<R$,

$$
\Phi(r, \theta)=V-\frac{2 V}{\pi} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{2 l+1}\left(\frac{r}{R}\right)^{2 l+1} P_{2 l+1}(\cos \theta)
$$

(c) The capacitance of the disc is

$$
C=\frac{Q}{V}=8 \epsilon_{0} R
$$

