Electromagnetism 70006 Answers to Problem Set 5 Spring 2006

1. Jackson 2.22: Study the potential inside two hemispheres with ®(a,0) =V
for § < w/2 and ®(a,0) = -V for § > 7/2.

(a) The interior solution is obtained from Eq. (2.19) in the text by chang-
ing sign. (Why?)
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where cosy = cosfcosf’ + sinfsinfcos(¢p — ¢’'). Along the z axis,
this reduces to
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The counterpart of Eq. (2.27) for r < a is
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Since P;(1) = 1, we see that, for § = 0 and r = z, the first three
terms in the two expansions agree.

(b) Field along the axis. For z > a
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and for z < a
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The leading term in powers of z in an expansion of this expression is
—3V/2a.

Therefore, E,(0) = —3V/a. Similarly, E.(a) = —(v/2 — 1)V/a inside
and E,(a) = v/2V/a outside.



(c) Sketch of field lines

Plot of E.(z)
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2. Jackson 2.23:

(a) Potential inside cube of side a subject to boundary conditions ® = 0
on surfaces x =0, a and y =0, a, and ® =V on surfaces z = 0, a.
A solution that satisfies the x and y boundary conditions is
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At z = 0 this reduces to
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where
Cmn = Qmn + bmn

At z = a we have ®(z,y,a) = ®(z,y,0), from which it follows
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With a little algebra one obtains

b s k., coshky,(z—a/2)
mn b mn& —
Amn@ + Omne cosh kp,na/2 Cmn

where ¢,,,, is determined from
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This problem has been previously solved for x and y separately. We
find:
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where ky, = /(2m +1)2 + (2n + 1)27/a

(b) Average at center ® = 0.3329V including only 4 terms (m = 0, 1
and n =0, 1). The result compares well with average value of V/3.
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(c) Surface charge density at z = a. One can obtain a formal expres-
sion for the surface charge, but the sum does not converge! The
corresponding situation for the two-dimensional case was discussed
in class.



3. Jackson Prob. 2.26

(a) Solution in wedge shaped region.
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is a solution to Laplace’s equation satisfying all 3 boundary condi-
tions.

(b) The lowest term above is
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It follows that
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(¢) For the case 8 =,
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Thus E, = cos pE,—sin¢E; = 0 and By = sinpE,+cos pEy = —ay.
The field far away is uniform and in the y direction and has magnitude
E = —day.
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Plot of charge density on plane and on cylinder (a; = —1).
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The charge on the cylindrical boss is
Qo = —2a160/ asin ¢dp = —4ayae
)

This is just twice the charge on a uniformly charged strip of width
2a with charge density o = —aq¢€g.

Now, consider the total charge in the interval [0,L]. From the right
half of the boss, we have @), = —2ajaey. From the section of the
plane [a. L], we have
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In the limit as L — oo, one finds
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independent of the boss!



