Electromagnetism 70006 Answers to Problem Set 4 Spring 2006

1. Jackson 2.7: Green function for a plane.
(a) Green function: Let r = (x,y,2) and v’ = (2/,y/, 2’), then
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(b) Solution for ® = V inside a circle of radius @ on « — y plane. First

we evaluate
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From azimuthal symmetry & is independent of ¢. It follows that
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(¢) For p =0, we find
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(d) Asymptotic expansion for z2 + p? > a?. Let 2% = 22 + p?, then
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Substituting z2 = 22 + p?, we obtain
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On the axis, ®(p, z) reduces to
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This is identical to the expansion for z > a of the result from (c)

above:
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2. Jackson 2.11: Image potential for charged wire at x = R parallel to a
cylinder of radius b centered at the origin.

(a)

The potential in cylindrical coordinates is

1
®(p, P) =Fre {—T In\/p? + R2 — 2Rpcos ¢

+7 In+/p? + 12 — 2rpcos (;5}

where r is the distance of the image from the axis of the cylinder. To
achieve ® = V on surface of the cylinder and lim,_,. ®(p,¢) = 0,

we choose 7 = b?/R and 7/ = 7.
With the above conditions, we find
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Note that the potential at the cylindrical surface is
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This equation relates the potential on the cylinder to the other pa-

rameters of the problem. For large p, we find
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(¢) Induced charge density. The radial electric field at the surface is
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Therefore
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Below is a graph of the negative of the induced charge -0
o [solid R/b=2; dashed R/b=4]

¢(radians)

(d) The force on the charged wire: We first evaluate E, at the wire.
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Ep(p, ¢) =

From this, it follows that at the wire
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The force/length on the charged wire is, therefore,
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3. Jackson 2.13; “Cracking an interesting integral”

(a) Let ®(b,¢') = V; for 0 < ¢' < 7 and V5 for m < ¢’ < 2m. It follows
from the Green function given in Prob. 2.12 that
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where £ = p/b. Notice that the second integral can be obtained from
the first by the transformation £ — —¢. It follows that
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With a change of variables to = €™, we can then rewrite the

integral as
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where 2o = €'?. In this later form, the integral may be done using a
partial fraction decomposition. One finds
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The absolute values of the numerator and denominator in the above
fraction are equal. The phase of the numerator is

—arctan(¢sin ¢/ (1 — £2))
and the phase of the denominator is
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. Therefore
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(n.b. This integral is given in Eq. (47a) on p. 100 of Integraltafel, teil
2, Bestimmte Integrale, W. Grobner & N. Hofreiter, Springer (1958).)

Combining terms, we find
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(n.b. Jackson’s cylinder is rotated by 7/2 with respect to our’s)

Surface charge density:
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Equal and opposite charges accumulate on the two halves and the
charge density diverges at the gap!

Jackson 2.13; Alternative solution.
Expand ®(p, ¢) in a series:
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The expansion coefficients are easily found in terms of the potentials
on the surface.
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Now, let z = pe’®? /b and note that (twice) the sum becomes
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Make a second transformation z = i to obtain
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From the rule tan (44 B) = (tan A + tan B)/(1 — tan A tan B), it
follows
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The sum S is therefore
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4. Jackson 2.16: Green Function for rectangular region. The potential is
given by
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For the case of a uniform charge distribution p(z,y) = 1, we can carry out
the integrals easily:
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The combination arising from the 3’ integration can be simplified:
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Collecting terms and introducing m through n = 2m + 1, we obtain
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Here is a plot of 4meq®(z, y) obtained by summing terms up to m = 10




