1. Jackson Prob. 1.11:

Choose the coordinate system so that the conductor at the point of observation is tangent to the $x-y$ plane and the normal is in the z direction. Choose the x and y axes to lie along the principal axes of curvature. Near the origin, the equation of the conducting surface, which is a surface of constant potential, is

$$
z=-\frac{x^{2}}{2 R_{1}}-\frac{y^{2}}{2 R_{2}}
$$

Method 1: The potential just outside the surface may be written abstractly as

$$
\phi(x, y, z)=F\left(z+\frac{x^{2}}{2 R_{1}}+\frac{y^{2}}{2 R_{2}}\right) .
$$

As a specific example, the potential just outside a spherical conductor of radius R with center at $z=-R$ is

$$
\phi_{\mathrm{S}}(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{R} \frac{1}{\sqrt{1+\frac{1}{R}\left(z+\frac{x^{2}+y^{2}}{2 R}\right)}}
$$

Here, we neglect terms of order z^{2} compared with $2 z R$. Note that $R_{1}=R_{2}=R$ in this example. From Gauss's law $\boldsymbol{\nabla} \cdot \boldsymbol{E}=0$ one can write

$$
\frac{\partial E}{\partial n} \equiv \frac{\partial E_{z}}{\partial z}=-\frac{\partial E_{x}}{\partial x}-\frac{\partial E_{y}}{\partial y}=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}
$$

From the functional dependence of $\phi(x, y, z)$ it follows

$$
\frac{\partial \phi}{\partial x}=\frac{x}{R_{1}} \frac{\partial \phi}{\partial z}
$$

Furthermore

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{1}{R_{1}} \frac{\partial \phi}{\partial z}+\frac{x^{2}}{R_{1}^{2}} \frac{\partial^{2} \phi}{\partial z^{2}}
$$

The second term above vanishes on the axis. We find, therefore, on the z axis,

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \frac{\partial \phi}{\partial z}
$$

It follows that on the axis just above the surface

$$
\frac{1}{E} \frac{d E}{d n}=-\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

Method 2: A second approach to the problem uses the integral form of Gauss's law. Arrange a "pillbox" above the surface. This pillbox has its lower surface at the conductor surface and its upper surface displaced by $d z$ along the normal. The boundaries of the pillbox are defined by the arcs swept out by the two principal radii when they are displaced from the vertical by angles $d \theta_{1}$ and $d \theta_{2}$. The surface area of the lower face of the pillbox is $d a_{l}=R_{1} d \theta_{1} R_{2} d \theta_{1}$ the contribution to Gauss's law is $-E R_{1} d \theta_{1} R_{2} d \theta_{1}$. The contribution to Gauss's law from the upper face is $(E+d E)\left(R_{1}+d z\right) d \theta_{1}\left(R_{2}+d z\right) d \theta_{1}$. The net contribution is

$$
\begin{aligned}
\int \boldsymbol{E} \cdot \boldsymbol{n} d a & =(E+d E)\left(R_{1}+d z\right) d \theta_{1}\left(R_{2}+d z\right) d \theta_{1}-E R_{1} d \theta_{1} R_{2} d \theta_{1} \\
& =\left[\left(R_{1}+R_{2}\right) E d z+R_{1} R_{2} d E\right] d \theta_{1} d \theta_{2}=0
\end{aligned}
$$

Since no charge is enclosed by the pillbox, the terms in the square bracket above $\left(R_{1}+R_{2}\right) E d z+R_{1} R_{2} d E$ vanish. Therefore

$$
\frac{1}{E} \frac{d E}{d n}=-\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

2. Application of the "Reciprocity Theorem":

$$
\int_{V} \rho \Phi^{\prime} d \tau+\int_{S} \sigma \Phi^{\prime} d a=\int_{V} \rho^{\prime} \Phi d \tau+\int_{S} \sigma^{\prime} \Phi d a
$$

where Φ is the potential created by volume and surface charge distributions ρ and σ and Φ^{\prime} is the potential creates by distributions ρ^{\prime} and σ^{\prime}. Both problems have the same bounding surfaces. Apply the theorem to obtain the charge on the upper plate of a grounded parallel plate capacitor with a charge q located inside. In this case, σ and Φ are unknowns, and

$$
\rho=q \delta(x) \delta(y) \delta\left(z-z_{0}\right)
$$

Choose a comparison parallel plate capacitor with lower plate grounded and upper plate at potential V. With this choice $\Phi^{\prime}=V x / d$ and $\rho^{\prime}=0$, but $\sigma^{\prime} \neq 0$. The reciprocity theorem gives

$$
V q \frac{z_{0}}{d}+V \int \sigma d a=0+0
$$

It follows that the induced charge on the upper plate $q_{\mathrm{ind}}=\int \sigma d a$ is

$$
q_{\mathrm{ind}}=-q \frac{z_{0}}{d}
$$

3. Problems 1.23 and 1.24. These two problems are addressed in detail in the mathematica notebook Prob1.23-24.nb.
