Electromagnetism 70006 Answers to Problem Set 11 Spring 2006

1. Jackson Prob. 6.4: A uniformly magnetized spherical conductor of radius
R and magnetic moment m = (47 R3/3) M rotates about its magnetiza-
tion axis (z) with angular velocity w. In the steady state, no current flows
in the conductor. There is no excess charge on the sphere.

(a)

Show that the motion induces an electric field and a uniform charge
density o = —mw/mc?R3.
Inside the magnetized sphere there is uniform magnetic induction

B, = 2ﬂM .
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A unit charge moving in this field experiences an electromotive force
f = v x B leading to a charge separation in the conductor; positive
charges move in the direction of f negative charges move in the op-
posite direction. In equilibrium, this charge separation leads to an
electric field that precisely cancels f. Thus, we expect an electric
field

E =—[vx B]=—wrsindBp = —wrsindB [Sin 07 + cos 99}

to arise in the conductor. Here p is the unit vector directed radially
outward from the axis. From Gauss’s law, we find that the charge
density inside the conductor is
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This charge density is uniform and may be rewritten in the form
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Note: This gives a negative volume charge. There must be a compen-
sating positive charge on the surface since the sphere has no excess
charge.

Show that the electric field outside the sphere has quadrupole sym-
metry.

Let’s set up a boundary value problem to determine the outside field.
Outside the sphere, the field can be expanded in spherical harmonics.
Inside the sphere, we can no longer assume a spherical harmonic
expansion, since the potential no longer satisfies the Laplace equation
(0 # 0). However, we can still find the potential inside:
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Using the fact that sin® 6 = (2/3)[1 — Py(cos )], we may write
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The first two terms will match with a monopole potential outside

the sphere and third will match with a quadrupole potential outside.

Owing to the fact that the sphere is electrically neutral, there is no

monopole term outside. Therefore, outside the sphere
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Matching terms on the the boundary,
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It should be noted that there is only one component of the quadrupole
potential. That is only possible if all off-diagonal terms vanish and

if the diagonal terms are related by Q33 = —2Q11 = —2Q22. In that
case we find
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It follows that
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Show that the surface charge density is
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We know that the surface charge density is
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Note that the integrated surface charge is

dwm
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and the integrated volume charge is
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Therefore the total charge on the sphere vanishes, as it should.

2. Jackson Prob. 6.5: A localized charge distribution produces a field E =
—V®. A small localized time-independent current J is introduced into

the field.
(a) Show that
P= Cig/d?’r@(r) J(r).
Proof:
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The first integral vanishes for localized charge and current distribu-

tions. For such cases, ® falls off at least as fast as 1/R and H falls

of at least as fast as 1/R? for large R. Since the surface area grows

as R?, the first term approaches 0 as 1/R in the limit R — oo and

the identity is proved.

If the region containing J is small compared to the scale of variation
of ®, show that
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Proof: Expand the potential about the center of the current distri-

bution
o=o0)—7-E0)+---

The first term does not contribute so
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as was to be proved.



(¢) Show (two ways) that for a uniform E field,
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Proof: 1st method: In this case the surface integral in the first part
of this question does not vanish. Its value is
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Further, in the dipole approximation
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Since the product 7;7 is symmetric with respect to interchange of

j and k, while €;;;, is antisymmetric, the first term in the numerator
does not contribute. Thus,
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It is easy to show that
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Therefore,

and
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as was to be shown.
Proof: 2nd method: Start from the basic relation
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As in Chap. 5.6 use
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3. Jackson Prob 6.8: A dielectric sphere is in a uniform external field directed
along the x axis and rotates with angular velocity w about the z axis.
Show that there is an induced magnetic field that is characterized by the
magnetic scalar potential
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where . is the larger of r and a.

Proof: Start with the expression for the polarization vector from Chap. 4.5.

€—€o .
P=3 FEyz.
(6+260>60 0¥

From Eq. 6.100 in the text, one finds that the polarization vector in a
medium with bulk velocity v leads to an effective magnetization vector

1
M"= —B - H =[P x v]
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Now, v = [w X 7] = wrsinf¢. It follows that
M = Prsinfcosd?

Set up the boundary-value problem for ®,;. As a preliminary, note that
the “driving” term is M, is a linear combination of spherical harmonics
Y2 11(0, ¢). We therefore assume
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Continuity of potential at r = a leads to Bs,, = a®As,,. Matching radial
components of B at r = a leads to

Z 3Baim }/Zm = Mr|7‘:a - Z 2aA2m}/2m

Rearranging, we find
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It follows that inside the sphere
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From the relation Ba,, = a®Aa,,, it easily follows that
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Substituting the earlier value of P, we obtain
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which is the desired result.

4. Jackson Prob. 6.14: A capacitor in an AC circuit with circular plates
(radius a, separation d) is charged by an alternating current I = Ioe™*“*.

(a) Calculate the fields between the plates ignoring fringing:

Assume that the electric field E is in the z direction and that the
magnetic induction B is in the ¢ direction. Two of Maxwell’s equa-

tions give:
OE. _ .
[VxE|,= - o = iwBy
10pBy W
Bl =-—=—-i=F,
[V > Bl.= -5, i

Substituting from the first into the second, we find

d’E, L LdE.
dp*> ~ p dp

+k’E, =0,

where k? = w?/c?. This is Bessel’s equation and the solution regular
at p=01is

E.(p) = AJo(kp)
Where A is a constant to be determined. The corresponding B field
is

i dE,
By(p) = e dp

Now, we must determine the constant A. The surface charge density
is

= —EAJ1(]€P)

o(p) = €oE.(p) = coAJo(kp)
Integrating,we find that the total charge on the plate is
Q= 27r60A/ pJdo(kp)dp = ZWGO%AJl(ka)
0

Thus, the constant A is related to the charge Qo = ily/w by

__ kQo
27Ta6()J1 (ka)



To second order in k, we find
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where we have used Iy = —iwQy.

Now, we can evaluate the electric and magnetic energy stored be-
tween the plates in the capacitor. We obtain, through second order

a 2
(2):6—02d/ B2y~ L [Lo|* d
we 4 @ o p‘ Z| p 471'60 w2a2

1 a T2 d ak?
(2):—2d/ By?dp=Fo10l ¢ (4
Wi = o 2w 0P| ol dp= "¢ +5 )

as was to be shown.

Find the inductance and capacitance of the capacitor. We use
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where we ignore the order k? correction to w,,. It follows that
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The resonant frequency is
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The value of koa = /8 ~ 2.83 differs from the first zero of Jy(ka),
which has the value 2.40 by about 20%. This is illustrated in the fig-
ure, where we plot E. (p) for a capacitor of radius a = 1 at resonance:

E,(p) for a capacitor at resonance
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