
Electromagnetism 70006 Answers to Problem Set 11 Spring 2006

1. Jackson Prob. 6.4: A uniformly magnetized spherical conductor of radius
R and magnetic moment m = (4πR3/3)M rotates about its magnetiza-
tion axis (z) with angular velocity ω. In the steady state, no current flows
in the conductor. There is no excess charge on the sphere.

(a) Show that the motion induces an electric field and a uniform charge
density % = −mω/πc2R3.
Inside the magnetized sphere there is uniform magnetic induction

Bz =
2µ0

3
M.

A unit charge moving in this field experiences an electromotive force
f = v ×B leading to a charge separation in the conductor; positive
charges move in the direction of f negative charges move in the op-
posite direction. In equilibrium, this charge separation leads to an
electric field that precisely cancels f . Thus, we expect an electric
field

E = −[v ×B] = −ωr sin θBρ̂ = −ωr sin θB
[
sin θr̂ + cos θθ̂

]

to arise in the conductor. Here ρ̂ is the unit vector directed radially
outward from the axis. From Gauss’s law, we find that the charge
density inside the conductor is

% = ε0∇ ·E = ε0

[
1
r2

∂(r2Er)
∂r

+
1

r sin θ

∂(sin θEθ)
∂θ

]
= −2ε0ωB

This charge density is uniform and may be rewritten in the form

% = −2ε0ωB = −4ε0µ0ω

3
M = − 4ω

3c2

3m

4πR3
= − ωm

πc2R3
.

Note: This gives a negative volume charge. There must be a compen-
sating positive charge on the surface since the sphere has no excess
charge.

(b) Show that the electric field outside the sphere has quadrupole sym-
metry.
Let’s set up a boundary value problem to determine the outside field.
Outside the sphere, the field can be expanded in spherical harmonics.
Inside the sphere, we can no longer assume a spherical harmonic
expansion, since the potential no longer satisfies the Laplace equation
(% 6= 0). However, we can still find the potential inside:

Φin = Φ0−
∫ ρ

Eρdρ = Φ0+ωB

∫ ρ

ρdρ = Φ0+
ωB

2
ρ2 = Φ0+

ωB

2
r2 sin2 θ
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Using the fact that sin2 θ = (2/3)[1− P2(cos θ)], we may write

Φin = Φ0 +
ωB

3
r2 − ωB

3
r2P2(cos θ)

The first two terms will match with a monopole potential outside
the sphere and third will match with a quadrupole potential outside.
Owing to the fact that the sphere is electrically neutral, there is no
monopole term outside. Therefore, outside the sphere

Φout =
A

r3
P2(cos θ)

Matching terms on the the boundary,

Φ0 +
ωB

3
R2 = 0 and A = −ωB

3
R5

It should be noted that there is only one component of the quadrupole
potential. That is only possible if all off-diagonal terms vanish and
if the diagonal terms are related by Q33 = −2Q11 = −2Q22. In that
case we find

Φ =
1
4π

1
2

[
cos2 θ

r3
Q33 − sin2 θ cos2 φ

r3

Q33

2
− sin2 θ sin2 φ

r3

Q33

2

]

=
1
8π

Q33

r3
P2(cos θ)

It follows that

Q33 = 8πA = −8πωB

3
R5 = −4

3
µ0ωmR2

(c) Show that the surface charge density is

σ(θ) =
1

4πR2

4ωm

3c2

[
1− 5

2
P2(cos θ)

]

We know that the surface charge density is

σ = − ε0

[
∂Φout

∂r
− ∂Φin

∂r

]

r=a

=
2ε0ωBR

3
− 5ε0ωBR

3
P2(cos θ)

=
2ε0ωBR

3

[
1− 5

2
P2(cos θ)

]

=
1

4πR2

4ωm

3c2

[
1− 5

2
P2(cos θ)

]

2



Note that the integrated surface charge is

Qsurf =
4ωm

3c2

and the integrated volume charge is

Qvol =
4πR3

3
% = −4πR3

3
ωm

πc2R3
= −4ωm

3c2
.

Therefore the total charge on the sphere vanishes, as it should.

2. Jackson Prob. 6.5: A localized charge distribution produces a field E =
−∇Φ. A small localized time-independent current J is introduced into
the field.

(a) Show that

P =
1
c2

∫
d3r Φ(r)J(r).

Proof:

Pi =
1
c2

εijk

∫
d3rEjHk = − 1

c2
εijk

∫
d3r [∇jΦ]Hk

= − 1
c2

εijk

∫
d3r

[
∂(ΦHk)

∂rj
+ Φ

∂Hk

∂rk

]

= − 1
c2

∫

S

da Φ [n̂×H]i +
1
c2

∫
d3r ΦJi

The first integral vanishes for localized charge and current distribu-
tions. For such cases, Φ falls off at least as fast as 1/R and H falls
of at least as fast as 1/R2 for large R. Since the surface area grows
as R2, the first term approaches 0 as 1/R in the limit R → ∞ and
the identity is proved.

(b) If the region containing J is small compared to the scale of variation
of Φ, show that

P =
1
c2

[E(0)×m]

Proof: Expand the potential about the center of the current distri-
bution

Φ = Φ(0)− r ·E(0) + · · ·
The first term does not contribute so

Pk = − 1
c2

El(0)
∫

d2r rlJk = − 1
c2

εlkm El(0) mm =
1
c2

[E(0)×m]k ,

as was to be proved.
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(c) Show (two ways) that for a uniform E field,

P =
2

3c2
[E ×m]

Proof: 1st method: In this case the surface integral in the first part
of this question does not vanish. Its value is

P surf
i = − 1

c2
εijk

∫

S

daΦ r̂j Hk = +
1
c2

εijkEl

∫

S

da rl r̂j Hk

Further, in the dipole approximation

Hk =
1
4π

3(m · r̂)r̂k −mk

r3

Since the product r̂j r̂k is symmetric with respect to interchange of
j and k, while εijk is antisymmetric, the first term in the numerator
does not contribute. Thus,

P surf
i = − 1

4πc2
εijkEl mk

∫

S

da

r4
rl rj .

It is easy to show that
∫

S

da

r4
rl rj =

∫
dΩ
r2

rl rj =
4π

3
δlj

Therefore,

P surf
i = − 1

3c2
[E ×m]i

and
P = P surf + P vol =

2
3c2

[E(0)×m] .

as was to be shown.
Proof: 2nd method: Start from the basic relation

P =
1
c2

∫
d3r [E ×H] =

1
c2

[
E ×

∫
d3rH

]

As in Chap. 5.6 use
∫

d3rHi =
1
µ0

εijk

∫
d3r

∂Ak

∂rj
=

1
µ0

εijk

∫

S

da
rj

r
Ak

=
1
4π

εijk

∫

S

da
rj

r
εkst

msrt

r3
=

1
4π

[δisδjt − δitδjs]ms

∫

S

da

r4
rjrt

=
1
3

[δisδjt − δitδjs] δjt =
1
3

[3δis − δis] ms =
2
3
mi

Thus, once again,

P =
2

3c2
[E ×m]
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3. Jackson Prob 6.8: A dielectric sphere is in a uniform external field directed
along the x axis and rotates with angular velocity ω about the z axis.
Show that there is an induced magnetic field that is characterized by the
magnetic scalar potential

ΦM =
3
5

(
ε− ε0
ε + 2ε0

)
ε0E0 ω

(
a

r>

)5

xz

where r> is the larger of r and a.

Proof: Start with the expression for the polarization vector from Chap. 4.5.

P = 3
(

ε− ε0
ε + 2ε0

)
ε0E0 x̂.

From Eq. 6.100 in the text, one finds that the polarization vector in a
medium with bulk velocity v leads to an effective magnetization vector

M eff =
1
µ0

B −H = [P × v]

Now, v = [ω × r] = ωr sin θφ̂. It follows that

M eff = ω P r sin θ cosφ ẑ

Set up the boundary-value problem for ΦM . As a preliminary, note that
the “driving” term is Mr is a linear combination of spherical harmonics
Y2,±1(θ, φ). We therefore assume

Φout
M =

∑
m

B2m

r3
Y2m(θ, φ)

Φin
M =

∑
m

A2m r2 Y2m(θ, φ)

Continuity of potential at r = a leads to B2m = a5A2m. Matching radial
components of B at r = a leads to

∑
m

3
B2m

a4
Y2m = Mr|r=a −

∑
m

2aA2mY2m

Rearranging, we find

5
∑
m

A2mY2m =
1
a
Mr|r=a = ω P cos θ sin θ cos φ

It follows that inside the sphere

Φin
M =

∑
m

r2A2mY2m =
1
5
ω P r2 cos θ sin θ cosφ =

1
5
ω P xz
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From the relation B2m = a5A2m, it easily follows that

Φout
M =

∑
m

B2m

r3
Y2m =

1
5
ω P

(a

r

)5

xz

Substituting the earlier value of P , we obtain

ΦM =
3
5

(
ε− ε0
ε + 2ε0

)
ε0E0 ω

(
a

r>

)5

xz,

which is the desired result.

4. Jackson Prob. 6.14: A capacitor in an AC circuit with circular plates
(radius a, separation d) is charged by an alternating current I = I0e

−iωt.

(a) Calculate the fields between the plates ignoring fringing:
Assume that the electric field E is in the z direction and that the
magnetic induction B is in the φ direction. Two of Maxwell’s equa-
tions give:

[∇×E]φ = − ∂Ez

∂ρ
= iωBφ

[∇×B]z =
1
ρ

∂ρBφ

∂ρ
= −i

ω

c2
Ez

Substituting from the first into the second, we find

d2Ez

dρ2
+

1
ρ

dEz

dρ
+ k2Ez = 0,

where k2 = ω2/c2. This is Bessel’s equation and the solution regular
at ρ = 0 is

Ez(ρ) = AJ0(kρ)

Where A is a constant to be determined. The corresponding B field
is

Bφ(ρ) =
i

kc

dEz

dρ
= − i

c
AJ1(kρ)

Now, we must determine the constant A. The surface charge density
is

σ(ρ) = ε0Ez(ρ) = ε0AJ0(kρ)

Integrating,we find that the total charge on the plate is

Q = 2πε0A

∫ a

0

ρJ0(kρ) dρ = 2πε0
a

k
AJ1(ka)

Thus, the constant A is related to the charge Q0 = iI0/ω by

A =
kQ0

2πaε0J1(ka)
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To second order in k, we find

E(2)
z (ρ) =

Q0

πa2ε0

[
1 +

(
a2

8
− ρ2

4

)
k2 + · · ·

]

B
(2)
φ (ρ) =

µ0I0ρ

2πa2

[
1 +

(
a2

8
− ρ2

8

)
k2 + · · ·

]
,

where we have used I0 = −iωQ0.
(b) Now, we can evaluate the electric and magnetic energy stored be-

tween the plates in the capacitor. We obtain, through second order

w(2)
e =

ε0
4

2πd

∫ a

0

ρ |Ez|2 dρ =
1

4πε0

|I0|2 d

ω2a2

w(2)
m =

1
4µ0

2πd

∫ a

0

ρ |Bφ|2 dρ =
µ0

4π

|I0|2 d

8

(
1 +

a2k2

12

)
,

as was to be shown.
(c) Find the inductance and capacitance of the capacitor. We use

XL = ωL =
4ω

|I0|2 wm =
ωµ0d

8π

XC =
1

ωC
=

4ω

|I0|2 we =
d

ωε0πa2
,

where we ignore the order k2 correction to wm. It follows that

C =
ε0πa2

d

L =
µ0d

8π
.

The resonant frequency is

ω0 =
1√
LC

=
√

8
ε0µ0a2

=
√

8
c

a

The value of k0a =
√

8 ≈ 2.83 differs from the first zero of J0(ka),
which has the value 2.40 by about 20%. This is illustrated in the fig-
ure, where we plot Ez(ρ) for a capacitor of radius a = 1 at resonance:
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EzHΡL for a capacitor at resonance
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