Electromagnetism 70006 Answers to Problem Set 10 Spring 2006

1. Jackson Prob. 5.15: Shielded Bifilar Circuit: Two wires carrying oppo-
sitely directed currents are surrounded by a cylindrical shell of inner radius
a, outer radius b, and relative permeability p,..

(a) Determine the magnetic potential for two wires; the first is located
at © = d/2 and carries current I in the -z direction and the second
is located at * = —d/2 and carries current I in the z direction.
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where ¢ is measured counter-clockwise from the z axis.
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(b) Find the potential in the three regions. We may assume that only
terms in the expansion of the potential in cylindrical coordinates
proportional to cos ¢ contribute:
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where k = —I/(27) and where (A, B, C, D) are unknown expansion
coefficients to be determined by boundary coefficients on the two
surfaces p = a and p = b. These conditions; ®,,, continuous and
normal component of B continuous, lead to the equations:
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Solving, we find
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Substituting into the earlier expression gives explicit results for ®,,
in each region. In particular, outside the shield we find a dipole
potential with coefficient proportional to that of the two wires (k);
the coefficient of proportionality is
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In problem 5.14, a uniform external field maintained its form but
was reduced in strength inside a cylindrical shield. Here an internal
dipole field maintains it’s form but is reduced in strength outside a
cylindrical shield.

(¢) For py > 1 and b= a+1t with t < b, we find (, = 200, b = 1.25 cm,

t =0.3 mm)
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2. Jackson: Prob. 5.24: For a conducting plane with a circular hole and a
tangential field Hy on one side:

Fx~ = 0.417

(a) Determine H) on the side with Hy for p > a. We have for z = 0
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For p > a, we find
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(b) Sketch the surface currents above and below the plane. Above the
plane both Hg and H®) contribute to the current:

(Ka, Ky) = (—Ho — H", H{V)
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while below, only H®) contributes:

(K., K,) = (—H{, HV)

3. Jackson Prob. 5.25: A rectangular loop carrying current [; interacts with
a wire carrying current I. The center of the loop is a distance d from
the wire and two sides of the loop of length a are parallel to the wire;
the sides of length b make angle o with the plane of the wire and the line
from the wire to the center of the loop The direction of the current in the
side nearest the wire is in the same direction as Is. Set up a coordinate
system with the loop in the zy plane and center of the loop at the origin;



the sides a run parallel to y and are located at x = £b/2; the sides b are
parallel to the x axis. The wire located at z = dsina, x = dcosa and
I> flows along +y. In this coordinate system, the vector potential of the
wire has only a y component and

Ay = —i—Q In[(x — d cos a)2 + (# — dsin 04)2} (0
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(a) The interaction energy is
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where only the two sides parallel to y contribute.

(b) Calculate the force on the loop We have in the xy plane
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The force on the two sides of the rectangle of length b precisely cancel.
The x and z components of the force on the two sides of length a are
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(¢) Repeat for the case where the rectangle of sides a, b is replaced by a
circle of radius a. In this case, we write
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where we have used the fact that + = acos¢ and dl, = acos¢d¢
along the circle. We expand the A, in a series in powers of 1/d and
carry out the integral term by term to find
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The same series results if we evaluate W15 = I; ®5, where ®, is the
magnetic flux through the circle. Note that the term in parentheses
above can be written
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Where

Moreover,
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Thus, we may write
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This correct answer is close (but not identical) to the answer given
in the text. Indeed, if we assumed
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then we would recover the result in the text.
Find the force.
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Again, expanding the potential and carrying out the integrations
leads to We find
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Again, we can identify the two series: Consider the function
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Comparing, we find
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(d) Express the energies for large d in terms of moments of loops. For
the rectangular loop:
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For the circular loop:
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In both cases, the + sign is a result of the fact that the moment and
the normal component of the field are in opposite directions.
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4. Jackson Prob. 5.34: Two identical circular loops are located a distance R
apart on a common axis,

(a) Find M, using A, from Prob. 5.10b:

I (o)
Ag(p, z) = %/0 J1(ka)Jy (kp)e 1=l dk

27 [e%s}
Wia = 1Io / adpAy(a, R) = ol Iyma? / Ji(ka)Jy (ka)e "B dk
0 0

Leading to the result
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(b) Assuming a << R, we obtain an asymptotic series in R by expanding
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Integrating, we find
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(¢) Find the mutual inductance for co-planer loops with centers sepa-
rated by R. The axial B, field from the loop centered at the origin
is
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This field can be derived from a scalar potential
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Analytically continuing the potential leads to
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We need B, at large values of r and 6 = 7/2. We find
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Introduce the vector p centered on the second loop. Then we may
write bmr = R+ p, where R is the vecror from the center of the first
loop to the center of the second. We may replace

r— /R2 + p2 + 2Rpcos ¢

where ¢ is the polar angle with respect to the center of the second
loop and carry out a second expansion of B, with respect to R. With
this in hand, we calculate the flux ®5 the through the second loop.
First, integrating B, over the polar angle ¢, we obtain
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To evaluate the flux through the second loop, we integrate the pre-
vious result over p
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Given that ®5 = Myo1;, we may write
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calculate the force in each case. For the co-planar loops, the only
non-vanishing component of the force on the second loop is
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The force is repulsive and along the line joining the centers of the
loops.

In the case of the co-axial loops, only the component F, of the force
on the second loop contributes:

F, = cosOF, —sin0Fy.
Now, at the location of the second loop, components of the force are

F. = —2mals By(r,0)
Fg = 271'@]2 Br(’l“,H),

where 7 = va? + 22 and 6 = arccos(z/va? + z2). Therefore,
F, = —2mals (cosOBy(r,0) — sin6B,(r,0))

Substituting and expanding the fields in z, one obtains
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The force is attractive and along z.



