Math 40510, Algebraic Geometry

Problem Set 3, due April 25, 2018

1. For which varieties V in \mathbb{C}^{n} is $\mathbb{C}[V]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \mathbb{I}(V)$ a field? [This should only take a few lines, but give a full explanation. In particular, be sure to mention which results and/or assumptions you are using.]
2. The following problems are in analogy with things we did in class about the rational normal curve.
a) Let k be an infinite field. Let V be the variety in k^{5} defined by

$$
\begin{aligned}
& x_{1}=a \\
& x_{2}=a^{2} \\
& x_{3}=a b \\
& x_{4}=b \\
& x_{5}=b^{2} .
\end{aligned}
$$

for any $a, b \in k$. That is, V is the image of the map $\phi: k^{2} \rightarrow k^{5}$ defined by

$$
\phi((a, b))=\left(a, a^{2}, a b, b, b^{2}\right) .
$$

(For example, if $P=(2,3) \in k^{2}$ then $\phi(P)=(2,4,6,3,9)$.) Prove that V is irreducible. [I would like a complete and careful proof, not a one-line proof quoting a result in the book. However, feel free to use without proof the fact that V is irreducible if and only if $\mathbb{I}(V)$ is a prime ideal in $k\left[x_{1}, \ldots, x_{5}\right]$.]
b) Is ϕ injective? If so, prove it. If not, explain why not.
c) Is ϕ surjective? If so, prove it. If not, explain why not.
d) There are six linearly independent minimal generators for $\mathbb{I}(V)$, all of degree 2. Find them. You don't have to prove that they are linearly independent (i.e. that no non-trivial scalar linear combination is equal to zero), but if you give one that either has degree different from 2 or is linearly dependent on the others, you won't get credit for it.
3. Consider the ideal $\left\langle x^{2}+1\right\rangle$. For this problem, remember what you know about $\mathbb{F}[x]$, where \mathbb{F} is a field.
a) Prove that $\left\langle x^{2}+1\right\rangle$ is a maximal ideal in $\mathbb{R}[x]$.
b) Prove that $\left\langle x^{2}+1\right\rangle$ is not a maximal ideal in $\mathbb{C}[x]$.
c) Find three other fields \mathbb{F} where $\left\langle x^{2}+1\right\rangle$ is not a maximal ideal in $\mathbb{F}[x]$ and explain your answer.
4. If $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is a maximal ideal, show that either $\mathbb{V}(I) \subset \mathbb{R}^{n}$ is empty or $\mathbb{V}(I)$ is a single point in \mathbb{R}^{n}.
5. In class we said that if f is homogeneous in $k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ then $\mathbb{V}(f)$ is well-defined in \mathbb{P}_{k}^{n}. (You can use this fact in this problem.) We didn't talk much about the converse.

In all parts of this problem we let $f_{1}, f_{2} \in k\left[x_{0}, \ldots, x_{n}\right]$ be homogeneous, not necessarily of the same degree. Let $V=\mathbb{V}\left(f_{1}, f_{2}\right)$. Let $f=f_{1}+f_{2}$. Assume that k is an infinite field.
a) (Still no assumption on the degrees of f_{1} and f_{2}.) Prove that the vanishing of f at any point $P=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ of V is well-defined. Remember that $P=\left[t a_{0}, t a_{1}, \ldots, t a_{n}\right]$ for any $t \in k$, $t \neq 0$, so this is asking you to show that if $P \in V$ then $f\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)=0$ for all $t \in k$, and no matter whether f_{1} and f_{2} have the same degree or not.
b) Assume that $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)$. Give an example to show that there may be points of \mathbb{P}_{k}^{n} not in V where $f(P)=0$ is well-defined. [Editor's note: let's rephrase that. Show that there may exist points $P \in \mathbb{P}_{k}^{n}$ such that $P \notin V$ but nevertheless it is well-defined to say that $f(P)=0$, where $f=f_{1}+f_{2}$. Your example should tell me what f_{1} and f_{2} are, what V is, and give at least one P that does the trick.]
c) Now assume that $\operatorname{deg}\left(f_{1}\right) \neq \operatorname{deg}\left(f_{2}\right)$. Prove that if $P \notin V$ then f does not vanish at P. In other words, what I'm asking you to show is that there is some value of t for which $f\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \neq$ 0 . [Hint: we know that the vanishing of f at P is well-defined if f_{1} and f_{2} have the same degree, so somewhere you should use the fact that they have different degrees.]
6. One of the really cool things about projective space is the notion of duality. Let's limit ourselves to $\mathbb{P}_{\mathbb{R}}^{2}$, the real projective plane. (We will understand that we are working over \mathbb{R} and not bother writing the subscript \mathbb{R} each time.)

Recall that a line ℓ in \mathbb{P}^{2} is the vanishing locus of a homogeneous linear polynomial, i.e. $\ell=$ $\mathbb{V}(a x+b y+c z)$ for some choice of $a, b, c \in \mathbb{R}$ not all zero.
a) Show that $a x+b y+c z=0$ defines the same line as $3 x+4 y+5 z=0$ if and only if there exists some $t \in \mathbb{R}$ such that $a=3 t, b=4 t$ and $c=5 t$. (Of course $3,4,5$ is just an example.) [Hint: \Leftarrow is almost immediate. For \Rightarrow, you can use the fact that in \mathbb{P}^{2}, either two lines meet at a single point or they are the same line. It may help to take the linear algebra point of view.]
b) Based on a), show that the set of lines in \mathbb{P}^{2} itself can be viewed as a projective plane, which we will denote by $\left(\mathbb{P}^{2}\right)^{\vee}$.
$\left(\mathbb{P}^{2}\right)^{\vee}$ is called the dual projective plane. So what we have so far is that a point $P=[a, b, c]$ in $\left(\mathbb{P}^{2}\right)^{\vee}$ corresponds to the line $\ell_{P}=\mathbb{V}(a x+b y+c z)$ in \mathbb{P}^{2}. You can use this for the next two parts even if you didn't get a) and/or b). Furthermore, even if you don't get c) you can use the statement of c) to do d) and e).
c) Let P_{1}, P_{2}, P_{3} be points of $\left(\mathbb{P}^{2}\right)^{\vee}$ and let $\ell_{P_{1}}, \ell_{P_{2}}, \ell_{P_{3}}$ be the lines in \mathbb{P}^{2} that they correspond to. Show that P_{1}, P_{2}, P_{3} all lie on a line in $\left(\mathbb{P}^{2}\right)^{\vee}$ if and only if $\ell_{P_{1}}, \ell_{P_{2}}, \ell_{P_{3}}$ all pass through a common point. [Hint: if you look at the equation $a x+b y+c z=0$, you can think of a, b, c as given and x, y, z as the variables, OR you can think of x, y, z as given and a, b, c as the variables!]
d) Using c), if you take a line in $\left(\mathbb{P}^{2}\right)^{\vee}$, what does the collection of all the points on this line correspond to back in \mathbb{P}^{2} ? Explain your answer carefully.
e) The following is a set of lines in $\mathbb{P}_{\mathbb{R}}^{2}$, labelled a to g.

Sketch the set of points in $\left(\mathbb{P}^{2}\right)^{\vee}$ dual to these lines, and label them A to G corresponding to the similarly named lines. Make sure that your sketch reflects when three or more of the points are on a line. [Hint: in addition to the obvious places where three or more lines meet, the three vertical lines meet at infinity!! Part c) is crucial in this problem.]

