Math 40510, Algebraic Geometry

Problem Set 2, due March 21, 2018

1. Let k be a field. You can use facts from CLO Chapter $4, \S 3$ for this problem.
a) Let $f, g, h \in k\left[x_{1}, \ldots, x_{n}\right]$. Prove that $\mathbb{V}(f, g h)=\mathbb{V}(f, g) \cup \mathbb{V}(f, h)$.
b) Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$ and $W=\mathbb{V}\left(g_{1}, \ldots, g_{t}\right)$ be algebraic varieties in k^{n} and let $h \in k\left[x_{1}, \ldots, x_{n}\right]$. Prove that

$$
(V \cup W) \cap \mathbb{V}(h)=\mathbb{V}\left(f_{1}, \ldots, f_{s}, h\right) \cup \mathbb{V}\left(g_{1}, \ldots, g_{t}, h\right)
$$

c) Now let $k=\mathbb{R}$. Find $\mathbb{V}(x y, x z, y z)$ in \mathbb{R}^{3}. (I.e. give a precise description of what this variety is from a geometric perspective.) [Hint: this was an example in class, but we didn't prove it. So this question is really asking for you to come up with the proof.]
d) Let h be a polynomial in x, y, z of degree 1 (so $\mathbb{V}(h)$ is a plane in \mathbb{R}^{3} - you can use this fact without further comment). Using geometric reasoning, what are all the possibilities for $\mathbb{V}(x y, x z, y z, h)$? For each of these possibilities, give a specific h that achieves that outcome.
[For example, one possibility is that the plane contains two lines of $\mathbb{V}(x y, x z, y z)$, e.g. the y-axis and the z-axis. All I want from you is that one possibility for $\mathbb{V}(x y, x z, y z, h)$ is the union of two axes, coming for example when $h=x$. I don't want you to also give me $h=y$ and $h=z$ and I don't want you to do any algebraic manipulations with the ideal. This is mostly a geometric question.]
2. In this problem we will work over the field of real numbers, \mathbb{R}.
a) Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ be any ideal in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Let $V=\mathbb{V}(I) \subset \mathbb{R}^{n}$ be the corresponding variety. Find a single polynomial f such that $V=\mathbb{V}(f)$. Prove your answer.
b) Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ be any ideal in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Suppose that $\mathbb{V}(I)=\emptyset$. Show that there is at least one element of I that has no zero in \mathbb{R}^{n}. Justify your answer. (Notice that \mathbb{R} is not algebraically closed, so you can't use the Nullstellensatz.)
3. Let V and W be varieties in \mathbb{C}^{n} such that $V \cap W=\emptyset$. Prove that there exist $f \in \mathbb{I}(V)$ and $g \in \mathbb{I}(W)$ such that $f+g=1$.
4. Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Let \sqrt{I} be its radical. Show that there is a positive integer p such that for every $f \in \sqrt{I}, f^{p} \in I$. (The thing to stress is that the choice of p does not depend on what f you choose. p depends only on what \sqrt{I} is.) [Hint: \sqrt{I} is an ideal in a Noetherian ring. You can also review our proof in class that \sqrt{I} is an ideal.]
5. Let I and J be ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
I+J=\langle 1\rangle=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

a) Prove that the varieties $\mathbb{V}(I)$ and $\mathbb{V}(J)$ are disjoint.
b) Prove that $I J=I \cap J$. [Don't forget the assumption at the beginning of this problem!!!]
6. Let X be a topological space (not necessarily with the Zariski topology). Let A be a subset of X with the following property:

For each $P \notin A$ there exists a closed set V_{P} that contains A but does not contain P.

Prove that A must be closed, making sure to justify each step.
7. Find the Zariski closure for each of the following sets in \mathbb{R}^{2}, and explain your answer. Some of them may already be closed. Your explanations do not have to be rigorous proofs, but they should be convincing!
a) The unit circle.
b) $A \cup B$, where A is the unit circle and B is the set of points in \mathbb{R}^{2} of the form $(x, 0)$ where $-1 \leq x \leq 1$ is a rational number.

c) The sine curve in \mathbb{R}^{2}, i.e. $\{(x, y) \mid y=\sin x\}$.
8. Let k be a field and let $R=k\left[x_{1}, \ldots, x_{n}\right]$. Let I, J and K be ideals in R.
a) If I is radical, prove that $I: J$ must also be radical.
b) Give an example to show that if $I: J$ is radical, it is not necessarily true that I is radical.
c) If V and W are varieties in k^{n}, prove that $\mathbb{I}(V): \mathbb{I}(W)$ is a radical ideal. [Hint:"c" comes after "a" in the alphabet.]
d) Prove that $J \subseteq I$ if and only if $I: J=R$.
e) If $J \subseteq K$, prove that $I: K \subseteq I: J$.
f) Assume that I is radical. Prove that $I: \sqrt{J}=I: J$.

