Math 40510, Algebraic Geometry

Problem Set 1, due February 14, 2017

- 1. In this problem we explore polynomial rings.
 - a) In class we defined the ring $k[x_1, \ldots, x_n]$ of polynomials in n variables with coefficients in a field, k. We can similarly define $\mathbb{Z}_6[x_1, \ldots, x_n]$ to be the ring of polynomials in n variables with coefficients in \mathbb{Z}_6 . Prove by example that $\mathbb{Z}_6[x_1, \ldots, x_n]$ is not an integral domain.
 - b) Now let k be a field. Prove that if $f, g \in k[x_1, \dots, x_n]$ then $\deg(fg) = \deg(f) + \deg(g)$.
 - c) Prove that there are $\binom{d+2}{2}$ monomials of degree d in the variables x, y, z. [Your proof should be from scratch, not by using a special case of some formula you find somewhere.]
- 2. In this problem we look at varieties in \mathbb{R}^n . (Part c) is only for \mathbb{R}^2 .)
 - a) Prove that a single point in \mathbb{R}^n is an affine variety.
 - b) Prove that the union of any finite number of points in \mathbb{R}^n is an affine variety. [Hint: Use Lemma 2 of §2 of the book, and extend it to a finite union of varieties using induction.]
 - c) In the next problem you'll show that a certain infinite union of points is not an affine variety. On the other hand, give an example of an infinite set of points in \mathbb{R}^2 whose union is an affine variety. Justify your answer.
- 3. Let

$$X = \{(m, m^3 + 1) \in \mathbb{R}^2 \mid m \in \mathbb{Z}\}.$$

In this problem you'll show that X is *not* an affine variety.

a) Consider the following statement:

If
$$f(x,y)$$
 is a polynomial that vanishes at each point of X then f vanishes on the whole curve $x^3 - y + 1 = 0$. (*)

Explain why proving (*) will guarantee that X is not an affine variety.

- b) Prove (*).
- 4. In class we showed how to obtain the parametrization for the circle $x^2 + y^2 = 1$. Use the exact same idea (but slightly different algebra) to obtain the parametrization

$$x = \frac{(t-1)^2}{1+t^2}$$

$$y = \frac{2t^2}{1+t^2}.$$

for the circle $(x-1)^2 + (y-1)^2 = 1$. Specifically:

- a) Verify that for any value of t in this parametrization, we have $(x-1)^2 + (y-1)^2 = 1$.
- b) Derive the above parametrization. Show all your work. The following picture should help.

- c) In particular, which point of the circle is missed by this parametrization?
- 5. Let V be the parabola in \mathbb{R}^2 given by the equation $y = x^2$. Let $P = (a, a^2)$ be a point of V. (I don't mean that you should choose a specific value of a.)
 - a) Find a polynomial f so that $V = \mathbb{V}(f)$. [Hint: this is as easy as it looks. Don't look for anything tricky here.]
 - b) Find a polynomial ℓ so that $\mathbb{V}(\ell)$ is the tangent line to V at P.
 - c) Prove directly that $\langle \ell, f \rangle$ is not a *radical* ideal. That is, find a polynomial g such that some power of g is in $\langle \ell, f \rangle$ but g itself is not. Be sure to show all your work: prove that some power of g is in this ideal (what power?), and prove that g itself is not in the ideal. [Hint: look at vertical lines for one possible answer.]
 - d) If $I = \langle \ell, f \rangle$, find $\mathbb{V}(I)$ and find $\mathbb{I}(\mathbb{V}(I))$. [Note that you can do this part even if you did not get part c). However, I would like you to justify your answer. No full credit if you find the right ideal but don't give a proof.]
- 6. In class we mentioned that if k is a field then $k[x_1, \ldots, x_{n-1}][x_n] \cong k[x_1, \ldots, x_n]$. Give a proof of this fact. In particular, you should
 - a) find a function $\phi: k[x_1, \dots, x_{n-1}][x_n] \to k[x_1, \dots, x_n]$ [Hint: don't try to do anything too fancy. For example, $(3x + y)z + (4xy + 5y^3)z^2$ is both an element of k[x, y][z] and of k[x, y, z]];
 - b) show that ϕ is a ring homomorphism,
 - c) show that ϕ is injective,
 - d) and show that ϕ is surjective.

(Your proof of this whole problem should take very few lines. Just convince me that you understand what's going on.)

7. Consider the infinite family of polynomials f_1, f_2, f_3, \ldots with

$$f_i = 3x^i + 5y^{i+7} - (i^2 + 3)x^{i-2}y \in \mathbb{R}[x, y]$$
 (where $i = 1, 2, 3, ...$).

Prove that there is some integer N so that every f_j with j > N can be written as a linear combination of f_1, f_2, \ldots, f_N . [Hint: the form of the f_i is a red herring. Also, I do *not* want to know specifically what N is.]