Math 40510, Algebraic Geometry

Problem Set 1, due February 14, 2017

1. In this problem we explore polynomial rings.
a) In class we defined the ring $k\left[x_{1}, \ldots, x_{n}\right]$ of polynomials in n variables with coefficients in a field, k. We can similarly define $\mathbb{Z}_{6}\left[x_{1}, \ldots, x_{n}\right]$ to be the ring of polynomials in n variables with coefficients in \mathbb{Z}_{6}. Prove by example that $\mathbb{Z}_{6}\left[x_{1}, \ldots, x_{n}\right]$ is not an integral domain.
b) Now let k be a field. Prove that if $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.
c) Prove that there are $\binom{d+2}{2}$ monomials of degree d in the variables x, y, z. [Your proof should be from scratch, not by using a special case of some formula you find somewhere.]
2. In this problem we look at varieties in \mathbb{R}^{n}. (Part c) is only for \mathbb{R}^{2}.)
a) Prove that a single point in \mathbb{R}^{n} is an affine variety.
b) Prove that the union of any finite number of points in \mathbb{R}^{n} is an affine variety. [Hint: Use Lemma 2 of $\S 2$ of the book, and extend it to a finite union of varieties using induction.]
c) In the next problem you'll show that a certain infinite union of points is not an affine variety. On the other hand, give an example of an infinite set of points in \mathbb{R}^{2} whose union is an affine variety. Justify your answer.
3. Let

$$
X=\left\{\left(m, m^{3}+1\right) \in \mathbb{R}^{2} \mid m \in \mathbb{Z}\right\}
$$

In this problem you'll show that X is not an affine variety.
a) Consider the following statement:

> If $f(x, y)$ is a polynomial that vanishes at each point of X then f vanishes on the whole curve $x^{3}-y+1=0$.

Explain why proving $(*)$ will guarantee that X is not an affine variety.
b) Prove (*).
4. In class we showed how to obtain the parametrization for the circle $x^{2}+y^{2}=1$. Use the exact same idea (but slightly different algebra) to obtain the parametrization

$$
\begin{aligned}
& x=\frac{(t-1)^{2}}{1+t^{2}} \\
& y=\frac{2 t^{2}}{1+t^{2}}
\end{aligned}
$$

for the circle $(x-1)^{2}+(y-1)^{2}=1$. Specifically:
a) Verify that for any value of t in this parametrization, we have $(x-1)^{2}+(y-1)^{2}=1$.
b) Derive the above parametrization. Show all your work. The following picture should help.

c) In particular, which point of the circle is missed by this parametrization?
5. Let V be the parabola in \mathbb{R}^{2} given by the equation $y=x^{2}$. Let $P=\left(a, a^{2}\right)$ be a point of V. (I don't mean that you should choose a specific value of a.)
a) Find a polynomial f so that $V=\mathbb{V}(f)$. [Hint: this is as easy as it looks. Don't look for anything tricky here.]
b) Find a polynomial ℓ so that $\mathbb{V}(\ell)$ is the tangent line to V at P.
c) Prove directly that $\langle\ell, f\rangle$ is not a radical ideal. That is, find a polynomial g such that some power of g is in $\langle\ell, f\rangle$ but g itself is not. Be sure to show all your work: prove that some power of g is in this ideal (what power?), and prove that g itself is not in the ideal. [Hint: look at vertical lines for one possible answer.]
d) If $I=\langle\ell, f\rangle$, find $\mathbb{V}(I)$ and find $\mathbb{I}(\mathbb{V}(I))$. [Note that you can do this part even if you did not get part c). However, I would like you to justify your answer. No full credit if you find the right ideal but don't give a proof.]
6. In class we mentioned that if k is a field then $k\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right] \cong k\left[x_{1}, \ldots, x_{n}\right]$. Give a proof of this fact. In particular, you should
a) find a function $\phi: k\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}\right]$ [Hint: don't try to do anything too fancy. For example, $(3 x+y) z+\left(4 x y+5 y^{3}\right) z^{2}$ is both an element of $k[x, y][z]$ and of $\left.k[x, y, z]\right]$;
b) show that ϕ is a ring homomorphism,
c) show that ϕ is injective,
d) and show that ϕ is surjective.
(Your proof of this whole problem should take very few lines. Just convince me that you understand what's going on.)
7. Consider the infinite family of polynomials $f_{1}, f_{2}, f_{3}, \ldots$ with

$$
f_{i}=3 x^{i}+5 y^{i+7}-\left(i^{2}+3\right) x^{i-2} y \in \mathbb{R}[x, y] \quad(\text { where } i=1,2,3, \ldots) .
$$

Prove that there is some integer N so that every f_{j} with $j>N$ can be written as a linear combination of $f_{1}, f_{2}, \ldots, f_{N}$. [Hint: the form of the f_{i} is a red herring. Also, I do not want to know specifically what N is.]

