Math 40510, Algebraic Geometry

Problem Set 3 Solutions, due April 25, 2018

1. For which varieties V in \mathbb{C}^{n} is $\mathbb{C}[V]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \mathbb{I}(V)$ a field? [This should only take a few lines, but give a full explanation. In particular, be sure to mention which results and/or assumptions you are using.]

Solution:

$\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \mathbb{I}(V)$ is a field if and only $\mathbb{I f} \mathbb{I}(V)$ is a maximal ideal. We have seen that when k is algebraically closed, the maximal ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are exactly the ideals of single points,

$$
\mathfrak{m}_{P}=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle,
$$

where $P=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$. So $\mathbb{C}[V]$ is a field if and only if V is a single point.
2. The following problems are in analogy with things we did in class about the rational normal curve.
a) Let k be an infinite field. Let V be the variety in k^{5} defined by

$$
\begin{aligned}
& x_{1}=a \\
& x_{2}=a^{2} \\
& x_{3}=a b \\
& x_{4}=b \\
& x_{5}=b^{2} .
\end{aligned}
$$

for any $a, b \in k$. That is, V is the image of the map $\phi: k^{2} \rightarrow k^{5}$ defined by

$$
\phi((a, b))=\left(a, a^{2}, a b, b, b^{2}\right) .
$$

(For example, if $P=(2,3) \in k^{2}$ then $\phi(P)=(2,4,6,3,9)$.) Prove that V is irreducible. [I would like a complete and careful proof, not a one-line proof quoting a result in the book. However, feel free to use without proof the fact that V is irreducible if and only if $\mathbb{I}(V)$ is a prime ideal in $k\left[x_{1}, \ldots, x_{5}\right]$.]

Solution:

We know that V is irreducible if and only if $\mathbb{I}(V)$ is a prime ideal, so we will prove that $\mathbb{I}(V)$ is prime. Suppose $f, g \in k\left[x_{1}, \ldots, x_{5}\right]$ such that $f g \in \mathbb{I}(V)$. We want to show that either $f \in \mathbb{I}(V)$ or $g \in \mathbb{I}(V)$.
The fact that $f g \in \mathbb{I}(V)$ means that

$$
f\left(a, a^{2}, a b, b, b^{2}\right) \cdot g\left(a, a^{2}, a b, b, b^{2}\right)=0 \quad \text { for all } a, b \in k .
$$

Thus the polynomial

$$
f\left(s, s^{2}, s t, t, t^{2}\right) \cdot g\left(s, s^{2}, s t, t, t^{2}\right) \in k[s, t]
$$

vanishes at every point of k^{2}. But this means that the polynomial $f\left(s, s^{2}, s t, t, t^{2}\right) \cdot g\left(s, s^{2}, s t, t, t^{2}\right)$ is the zero polynomial, since k is infinite. Since $k[s, t]$ is an integral domain, either $f\left(s, s^{2}, s t, t, t^{2}\right)=$ 0 (as polynomials) or $g\left(s, s^{2}, s t, t, t^{2}\right)=0$. Hence either

$$
f\left(a, a^{2}, a b, b, b^{2}\right)=0 \text { for all }(a, b) \in k^{2} \quad \text { or } \quad g\left(a, a^{2}, a b, b, b^{2}\right)=0 \text { for all }(a, b) \in k^{2} .
$$

Since V consists of the set of all points $\left(a, a^{2}, a b, b, b^{2}\right)$ for $(a, b) \in k^{2}$, this means that either $f(P)=0$ for all $P \in V$ or else $g(P)=0$ for all $P \in V$, i.e. either $f \in \mathbb{I}(V)$ or $g \in \mathbb{I}(V)$ as desired.
b) Is ϕ injective? If so, prove it. If not, explain why not.

Solution:

Yes. Suppose $\left(a, a^{2}, a b, b, b^{2}\right)=\left(c, c^{2}, c d, d, d^{2}\right)$ for some (a, b) and (c, d) in k^{2}. By comparing the first and fourth coordinates of each point we get $a=c$ and $b=d$) so $(a, b)=(c, d)$ and ϕ is injective.
c) Is ϕ surjective? If so, prove it. If not, explain why not.

Solution:

No. For example, ($1,2,3,4,5$) can't be in the image since $2 \neq 1^{2}$ (among other reasons).
d) There are six linearly independent minimal generators for $\mathbb{I}(V)$, all of degree 2. Find them. You don't have to prove that they are linearly independent (i.e. that no non-trivial scalar linear combination is equal to zero), but if you give one that either has degree different from 2 or is linearly dependent on the others, you won't get credit for it.

Solution:

$$
\begin{array}{ll}
x_{1} x_{4}-x_{3} & \text { since }(a)(b)-a b=0 \text { for all } a, b \in k ; \\
x_{1}^{2}-x_{2} & \text { since }(a)^{2}-a^{2}=0 \text { for all } a, b \in k ; \\
x_{4}^{2}-x_{5} & \text { since }(b)^{2}-b^{2}=0 \text { for all } a, b \in k ; \\
x_{1} x_{3}-x_{2} x_{4} & \text { since }(a)(a b)-\left(a^{2}\right)(b)=0 \text { for all } a, b \in k ; \\
x_{3}^{2}-x_{2} x_{5} & \text { since }(a b)^{2}-\left(a^{2}\right)\left(b^{2}\right)=0 \text { for all } a, b \in k ; \\
x_{3} x_{4}-x_{1} x_{5} & \text { since }(a b)(b)-(a)\left(b^{2}\right)=0 \text { for all } a, b \in k .
\end{array}
$$

3. Consider the ideal $\left\langle x^{2}+1\right\rangle$. For this problem, remember what you know about $\mathbb{F}[x]$, where \mathbb{F} is a field.

We will use the following facts in this problem. Since \mathbb{F} is a field, $\mathbb{F}[x]$ is a principal ideal domain. Furthermore, again since \mathbb{F} is a field, a polynomial f of degree two factors (into a product of linear polynomials) if and only if it has a root. Finally, if $f, g \in \mathbb{F}[x]$ both have degree ≥ 1 and $\operatorname{deg}(g)<\operatorname{deg}(f)$ then $f=g h$ for some $h \in \mathbb{F}[x]$ if and only if $\langle f\rangle \subsetneq\langle g\rangle$.
a) Prove that $\left\langle x^{2}+1\right\rangle$ is a maximal ideal in $\mathbb{R}[x]$.

Solution:

Since $x^{2}+1$ has no root in \mathbb{R}, it does not factor into a product of linear polynomials. Suppose that $\left\langle x^{2}+1\right\rangle$ were not maximal, so there is some ideal I with $\left\langle x^{2}+1\right\rangle \subsetneq I \subsetneq \mathbb{R}[x]$. Since $\mathbb{R}[x]$ is a principal ideal domain, $I=\langle g\rangle$ for some $g \in \mathbb{R}[x]$. Since $I \subsetneq \mathbb{R}[x], g$ must have degree >0. Since $\left\langle x^{2}+1\right\rangle \subset\langle g\rangle, g$ divides f. But f has degree two and does not have any linear factors, so it does not have any factors at all (of positive degree). This contradicts the fact that g divides f. Thus I does not exist and $\left\langle x^{2}+1\right\rangle$ is a maximal ideal.
b) Prove that $\left\langle x^{2}+1\right\rangle$ is not a maximal ideal in $\mathbb{C}[x]$.

Solution:
$x^{2}+1=(x+i)(x-i)$ in $\mathbb{C}[x]$ so $\left\langle x^{2}+1\right\rangle \subsetneq\langle x+i\rangle$ and $\left\langle x^{2}+1\right\rangle$ is not maximal.
c) Find three other fields \mathbb{F} where $\left\langle x^{2}+1\right\rangle$ is not a maximal ideal in $\mathbb{F}[x]$ and explain your answer.

Solution:

From what we said above, we just want three fields where $x^{2}+1$ factors.

- In $\mathbb{Z}_{2}, x^{2}+1=(x+1)(x+1)$ so $\left\langle x^{2}+1\right\rangle \subsetneq\langle x+1\rangle$.
- In $\mathbb{Z}_{5}, x^{2}+1=(x+2)(x+3)$ so $\left\langle x^{2}+1\right\rangle \subsetneq\langle x+2\rangle$.
- In $\mathbb{Z}_{17}, x^{2}+1=(x+4)(x+13)$ so $\left\langle x^{2}+1\right\rangle \subsetneq\langle x+4\rangle$.

4. If $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is a maximal ideal, show that either $\mathbb{V}(I) \subset \mathbb{R}^{n}$ is empty or $\mathbb{V}(I)$ is a single point in \mathbb{R}^{n}.

Solution:

We've seen that $\mathbb{V}(I)$ can be empty in \mathbb{R}^{n} (e.g. when $n=1$, take $I=\left\langle x^{2}+1\right\rangle$) and $\mathbb{V}(I)$ can be a single point (e.g. when $n=2$, take $I=\langle x, y\rangle$, which we showed in class is maximal).

All that's left is to show that $\mathbb{V}(I)$ can't contain more than one point. Indeed, suppose $P, Q \in \mathbb{V}(I)$ with $P \neq Q$. Then

$$
\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \supsetneq \mathbb{I}(P) \supsetneq \mathbb{I}(P \cup Q) \supseteq \mathbb{I}(\mathbb{V}(I)) \supseteq I
$$

so I is not a maximal ideal (since $\mathbb{I}(P)$ is properly between I and $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$).
5. In class we said that if f is homogeneous in $k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ then $\mathbb{V}(f)$ is well-defined in \mathbb{P}_{k}^{n}. (You can use this fact in this problem.) We didn't talk much about the converse.

In all parts of this problem we let $f_{1}, f_{2} \in k\left[x_{0}, \ldots, x_{n}\right]$ be homogeneous, not necessarily of the same degree. Let $V=\mathbb{V}\left(f_{1}, f_{2}\right)$. Let $f=f_{1}+f_{2}$. Assume that k is an infinite field.
a) (Still no assumption on the degrees of f_{1} and f_{2}.) Prove that the vanishing of f at any point $P=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ of V is well-defined. Remember that $P=\left[t a_{0}, t a_{1}, \ldots, t a_{n}\right]$ for any $t \in k$, $t \neq 0$, so this is asking you to show that if $P \in V$ then $f\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)=0$ for all $t \in k$, and no matter whether f_{1} and f_{2} have the same degree or not.

Solution:

We are assuming that $P \in V$, so $f_{1}(P)=0$ and $f_{2}(P)=0$ are well-defined. That is, $f_{1}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)=0$ for all $t \in k$, and $f_{2}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)=0$ for all $t \in k$. Then

$$
\begin{aligned}
f(P) & =f\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \\
& =f_{1}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)+f_{2}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \\
& =0+0 \\
& =0
\end{aligned}
$$

for all $t \in k$.
b) Assume that $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)$. Give an example to show that there may be points of \mathbb{P}_{k}^{n} not in V where $f(P)=0$ is well-defined.

Solution:

Let's take $n=2$. Let $f_{1}=x$ and $f_{2}=y$. Let $P=[1,-1,1] \in \mathbb{P}_{k}^{2}$. Then neither f_{1} nor f_{2} vanish at P, so $P \notin V$, but clearly $f_{1}+f_{2}$ does vanish at P.
c) Now assume that $\operatorname{deg}\left(f_{1}\right) \neq \operatorname{deg}\left(f_{2}\right)$. Prove that if $P \notin V$ then f does not vanish at P. In other words, what I'm asking you to show is that there is some value of t for which $f\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \neq$ 0 . [Hint: we know that the vanishing of f at P is well-defined if f_{1} and f_{2} have the same degree, so somewhere you should use the fact that they have different degrees.]

Solution:

Assume $\operatorname{deg}\left(f_{1}\right)=d_{1}<d_{2}=\operatorname{deg}\left(f_{2}\right)$. We have assumed that $P \notin V$, which means that it is not true that both $f_{1}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)=0$ for all $t \in k$ and also $f_{2}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)=0$ for all $t \in k$. Since both f_{1} and f_{2} are homogeneous, this means that we can assume that either $f_{1}\left(a_{0}, \ldots, a_{n}\right)$ or $f_{2}\left(a_{0}, \ldots, a_{n}\right)$ is a non-zero scalar. (Notice that we are not allowing the $(n+1)$-tuple to be multiplied by scalars here - we are fixing a_{0}, \ldots, a_{n}.)
Then

$$
\begin{aligned}
f\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) & =f_{1}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)+f_{2}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \\
& =t^{d_{1}} f_{1}\left(a_{0}, a_{1}, \ldots, a_{n}\right)+t^{d_{2}} f_{2}\left(a_{0}, a_{1}, \ldots, a_{n}\right) \\
& =t^{d_{1}}\left[f_{1}\left(a_{0}, \ldots, a_{n}\right)+t^{d_{2}-d_{1}} f_{2}\left(a_{0}, a_{1}, \ldots, a_{n}\right)\right]
\end{aligned}
$$

Since $d_{1}<d_{2}$, the exponent of t in front of f_{2} is non-zero. We have seen that $f_{1}\left(a_{0}, \ldots, a_{n}\right)$ and $f_{2}\left(a_{0}, \ldots, a_{n}\right)$ are just scalars, possibly zero but not both zero.

If $f_{2}\left(a_{0}, \ldots, a_{n}\right)=0$ then we are assuming that $f_{1}\left(a_{0}, \ldots, a_{n}\right) \neq 0$ so just take $t=1$.
If $f_{1}\left(a_{0}, \ldots, a_{n}\right)=0$ then $f_{2}\left(a_{0}, \ldots, a_{n}\right) \neq 0$ so again we can take $t=1$.
If neither $f_{1}\left(a_{0}, \ldots, a_{n}\right)=0$ nor $f_{2}\left(a_{0}, \ldots, a_{n}\right)=0$ then because k is infinite, the polynomial

$$
\left[f_{1}\left(a_{0}, \ldots, a_{n}\right)+t^{d_{2}-d_{1}} f_{2}\left(a_{0}, a_{1}, \ldots, a_{n}\right)\right]
$$

cannot be zero for all $t \in k$, so choose any t for which this is non-zero.
6. One of the really cool things about projective space is the notion of duality. Let's limit ourselves to $\mathbb{P}_{\mathbb{R}}^{2}$, the real projective plane. (We will understand that we are working over \mathbb{R} and not bother writing the subscript \mathbb{R} each time.)

Recall that a line ℓ in \mathbb{P}^{2} is the vanishing locus of a homogeneous linear polynomial, i.e. $\ell=$ $\mathbb{V}(a x+b y+c z)$ for some choice of $a, b, c \in \mathbb{R}$ not all zero.
a) Show that $a x+b y+c z=0$ defines the same line as $3 x+4 y+5 z=0$ if and only if there exists some $t \in \mathbb{R}$ such that $a=3 t, b=4 t$ and $c=5 t$. (Of course $3,4,5$ is just an example.) [Hint: \Leftarrow is almost immediate. For \Rightarrow, you can use the fact that in \mathbb{P}^{2}, either two lines meet at a single point or they are the same line. It may help to take the linear algebra point of view.]

Solution:

\Leftarrow :
If we know in advance that $a=3 t, b=4 t$ and $c=5 t$ then

$$
a x+b y+c z=0 \quad \Leftrightarrow \quad(3 t) x+(4 t) y+(5 t) z=0 \quad \Leftrightarrow \quad 3 x+4 y+5 z=0
$$

so they define the same line.
\Rightarrow :
Consider the lines $\mathbb{V}(a x+b y+c z)$ and $\mathbb{V}(3 x+4 y+5 z)$ in \mathbb{P}^{2}. Either they meet in a single point or they are the same line. To find out which, we solve a system of homogeneous linear equations

$$
\begin{aligned}
& 3 x+4 y+5 z=0 \\
& a x+b y+c z=0
\end{aligned}
$$

Each equation represents a plane through the origin in \mathbb{R}^{3}. The lines in \mathbb{P}^{2} meet in a single point if and only if the solution space of these two equations is a 1 -dimensional subspace of \mathbb{R}^{3} (i.e. a line through the origin in \mathbb{R}^{3}, i.e. a point of \mathbb{P}^{2}). Looking at the coefficient matrix

$$
\left[\begin{array}{lll}
3 & 4 & 5 \\
a & b & c
\end{array}\right]
$$

we know that the solution space is 1 -dimensional if and only if the rank of this matrix is 2 , if and only if neither row is a multiple of the other. So the lines are the same in \mathbb{P}^{2} if and only if the solution space is 2 -dimensional, if and only if $a=3 t, b=4 t$ and $c=5 t$ for some non-zero t as claimed.
b) Based on a), show that the set of lines in \mathbb{P}^{2} itself can be viewed as a projective plane, which we will denote by $\left(\mathbb{P}^{2}\right)^{\vee}$.

Solution:

$$
\left\{\text { Lines in } \mathbb{P}^{2}\right\}=\{\mathbb{V}(a x+b y+c z)\}=\{[a, b, c]\}
$$

where the latter is the set of triples of real numbers, not all zero, up to scalar multiples, i.e. the latter is a projective plane.
$\left(\mathbb{P}^{2}\right)^{\vee}$ is called the dual projective plane. So what we have so far is that a point $P=[a, b, c]$ in $\left(\mathbb{P}^{2}\right)^{\vee}$ corresponds to the line $\ell_{P}=\mathbb{V}(a x+b y+c z)$ in \mathbb{P}^{2}. You can use this for the next two parts even if you didn't get a) and/or b). Furthermore, even if you don't get c) you can use the statement of c) to do d) and e).
c) Let P_{1}, P_{2}, P_{3} be points of $\left(\mathbb{P}^{2}\right)^{\vee}$ and let $\ell_{P_{1}}, \ell_{P_{2}}, \ell_{P_{3}}$ be the lines in \mathbb{P}^{2} that they correspond to. Show that P_{1}, P_{2}, P_{3} all lie on a line in $\left(\mathbb{P}^{2}\right)^{\vee}$ if and only if $\ell_{P_{1}}, \ell_{P_{2}}, \ell_{P_{3}}$ all pass through a common point. [Hint: if you look at the equation $a x+b y+c z=0$, you can think of a, b, c as given and x, y, z as the variables, OR you can think of x, y, z as given and a, b, c as the variables!]

Solution:

Say $P_{i}=\left[a_{i}, b_{i}, c_{i}\right]$ for $i=1,2,3$. Then the P_{i} all lie on a line in $\left(\mathbb{P}^{2}\right)^{\vee}$ if and only if there are some constants $p, q, r \in \mathbb{R}$ such that $\left[a_{1}, b_{1}, c_{1}\right],\left[a_{2}, b_{2}, c_{2}\right]$ and $\left[a_{3}, b_{3}, c_{3}\right]$ are all solutions to the equation

$$
p a+q b+r c=0
$$

in the variables a, b, c. That is, we have

$$
\begin{aligned}
& a_{1} p+b_{1} q+c_{1} r=0 \\
& a_{2} p+b_{2} q+c_{2} r=0 \\
& a_{3} p+b_{3} q+c_{3} r=0
\end{aligned}
$$

But this means that $[p, q, r]$ is a common solution of the equations

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=0 \\
& a_{2} x+b_{2} y+c_{2} z=0 \\
& a_{3} x+b_{3} y+c_{3} z=0
\end{aligned}
$$

i.e. $[p, q, r]$ is common to the lines $\mathbb{V}\left(a_{1} x+b_{1} y+c_{1} z\right), \mathbb{V}\left(a_{2} x+b_{2} y+c_{2} z\right), \mathbb{V}\left(a_{3} x+b_{3} y+c_{3} z\right)$, i.e. to the lines $\ell_{P_{1}}, \ell_{P_{2}}, \ell_{P_{3}}$ as desired.
d) Using c), if you take a line in $\left(\mathbb{P}^{2}\right)^{\vee}$, what does the collection of all the points on this line correspond to back in \mathbb{P}^{2} ? Explain your answer carefully.

Solution:

The points on this line are all on the same line (obviously), so the corresponding lines in \mathbb{P}^{2} all pass through the same common point, by c). This collection of lines through a common point is called a pencil of lines.
e) The following is a set of lines in $\mathbb{P}_{\mathbb{R}}^{2}$, labelled a to g.

Sketch the set of points in $\left(\mathbb{P}^{2}\right)^{\vee}$ dual to these lines, and label them A to G corresponding to the similarly named lines. Make sure that your sketch reflects when three or more of the points are on a line. [Hint: in addition to the obvious places where three or more lines meet, the three vertical lines meet at infinity!! Part c) is crucial in this problem.]

Solution:

We have to make sure that A, C, E, G are collinear, B, C, D are collinear, B, F, G are collinear and D, E, F are collinear. Here is one possible sketch. The blue lines are just to emphasize which points are collinear.

