
Math 40510, Algebraic Geometry

Problem Set 3 Solutions, due April 25, 2018

1. For which varieties V in Cn is C[V ] = C[x1, . . . , xn]/I(V ) a field? [This should only take a few lines,
but give a full explanation. In particular, be sure to mention which results and/or assumptions you
are using.]

Solution:
C[x1, . . . , xn]/I(V ) is a field if and only if I(V ) is a maximal ideal. We have seen that when k is

algebraically closed, the maximal ideals in C[x1, . . . , xn] are exactly the ideals of single points,

mP = 〈x1 − a1, . . . , xn − an〉,
where P = (a1, . . . , an) ∈ Cn. So C[V ] is a field if and only if V is a single point.

2. The following problems are in analogy with things we did in class about the rational normal curve.

a) Let k be an infinite field. Let V be the variety in k5 defined by

x1 = a
x2 = a2

x3 = ab
x4 = b
x5 = b2.

for any a, b ∈ k. That is, V is the image of the map φ : k2 → k5 defined by

φ((a, b)) = (a, a2, ab, b, b2).

(For example, if P = (2, 3) ∈ k2 then φ(P ) = (2, 4, 6, 3, 9).) Prove that V is irreducible. [I would
like a complete and careful proof, not a one-line proof quoting a result in the book. However,
feel free to use without proof the fact that V is irreducible if and only if I(V ) is a prime ideal in
k[x1, . . . , x5].]

Solution:
We know that V is irreducible if and only if I(V ) is a prime ideal, so we will prove that I(V ) is
prime. Suppose f, g ∈ k[x1, . . . , x5] such that fg ∈ I(V ). We want to show that either f ∈ I(V )
or g ∈ I(V ).

The fact that fg ∈ I(V ) means that

f(a, a2, ab, b, b2) · g(a, a2, ab, b, b2) = 0 for all a, b ∈ k.
Thus the polynomial

f(s, s2, st, t, t2) · g(s, s2, st, t, t2) ∈ k[s, t]

vanishes at every point of k2. But this means that the polynomial f(s, s2, st, t, t2)·g(s, s2, st, t, t2)
is the zero polynomial, since k is infinite. Since k[s, t] is an integral domain, either f(s, s2, st, t, t2) =
0 (as polynomials) or g(s, s2, st, t, t2) = 0. Hence either

f(a, a2, ab, b, b2) = 0 for all (a, b) ∈ k2 or g(a, a2, ab, b, b2) = 0 for all (a, b) ∈ k2.
Since V consists of the set of all points (a, a2, ab, b, b2) for (a, b) ∈ k2, this means that either
f(P ) = 0 for all P ∈ V or else g(P ) = 0 for all P ∈ V , i.e. either f ∈ I(V ) or g ∈ I(V ) as
desired.
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b) Is φ injective? If so, prove it. If not, explain why not.

Solution:
Yes. Suppose (a, a2, ab, b, b2) = (c, c2, cd, d, d2) for some (a, b) and (c, d) in k2. By comparing
the first and fourth coordinates of each point we get a = c and b = d) so (a, b) = (c, d) and φ is
injective.

c) Is φ surjective? If so, prove it. If not, explain why not.

Solution:
No. For example, (1, 2, 3, 4, 5) can’t be in the image since 2 6= 12 (among other reasons).

d) There are six linearly independent minimal generators for I(V ), all of degree 2. Find them. You
don’t have to prove that they are linearly independent (i.e. that no non-trivial scalar linear
combination is equal to zero), but if you give one that either has degree different from 2 or is
linearly dependent on the others, you won’t get credit for it.

Solution:
x1x4 − x3 since (a)(b)− ab = 0 for all a, b ∈ k;
x21 − x2 since (a)2 − a2 = 0 for all a, b ∈ k;
x24 − x5 since (b)2 − b2 = 0 for all a, b ∈ k;
x1x3 − x2x4 since (a)(ab)− (a2)(b) = 0 for all a, b ∈ k;
x23 − x2x5 since (ab)2 − (a2)(b2) = 0 for all a, b ∈ k;
x3x4 − x1x5 since (ab)(b)− (a)(b2) = 0 for all a, b ∈ k.

3. Consider the ideal 〈x2 + 1〉. For this problem, remember what you know about F[x], where F is a
field.

We will use the following facts in this problem. Since F is a field, F[x] is a principal ideal
domain. Furthermore, again since F is a field, a polynomial f of degree two factors (into a product
of linear polynomials) if and only if it has a root. Finally, if f, g ∈ F[x] both have degree ≥ 1 and
deg(g) < deg(f) then f = gh for some h ∈ F[x] if and only if 〈f〉 ( 〈g〉.

a) Prove that 〈x2 + 1〉 is a maximal ideal in R[x].

Solution:
Since x2 + 1 has no root in R, it does not factor into a product of linear polynomials. Suppose
that 〈x2 + 1〉 were not maximal, so there is some ideal I with 〈x2 + 1〉 ( I ( R[x]. Since R[x]
is a principal ideal domain, I = 〈g〉 for some g ∈ R[x]. Since I ( R[x], g must have degree > 0.
Since 〈x2 + 1〉 ⊂ 〈g〉, g divides f . But f has degree two and does not have any linear factors, so
it does not have any factors at all (of positive degree). This contradicts the fact that g divides f .
Thus I does not exist and 〈x2 + 1〉 is a maximal ideal.

b) Prove that 〈x2 + 1〉 is not a maximal ideal in C[x].

Solution:
x2 + 1 = (x+ i)(x− i) in C[x] so 〈x2 + 1〉 ( 〈x+ i〉 and 〈x2 + 1〉 is not maximal.

c) Find three other fields F where 〈x2 + 1〉 is not a maximal ideal in F[x] and explain your answer.

Solution:
From what we said above, we just want three fields where x2 + 1 factors.

• In Z2, x
2 + 1 = (x+ 1)(x+ 1) so 〈x2 + 1〉 ( 〈x+ 1〉.



3

• In Z5, x
2 + 1 = (x+ 2)(x+ 3) so 〈x2 + 1〉 ( 〈x+ 2〉.

• In Z17, x
2 + 1 = (x+ 4)(x+ 13) so 〈x2 + 1〉 ( 〈x+ 4〉.

4. If I ⊂ R[x1, . . . , xn] is a maximal ideal, show that either V(I) ⊂ Rn is empty or V(I) is a single
point in Rn.

Solution:
We’ve seen that V(I) can be empty in Rn (e.g. when n = 1, take I = 〈x2 + 1〉) and V(I) can be

a single point (e.g. when n = 2, take I = 〈x, y〉, which we showed in class is maximal).

All that’s left is to show that V(I) can’t contain more than one point. Indeed, suppose P,Q ∈ V(I)
with P 6= Q. Then

R[x1, . . . , xn] ) I(P ) ) I(P ∪Q) ⊇ I(V(I)) ⊇ I
so I is not a maximal ideal (since I(P ) is properly between I and R[x1, . . . , xn]).

5. In class we said that if f is homogeneous in k[x0, x1, . . . , xn] then V(f) is well-defined in Pn
k . (You

can use this fact in this problem.) We didn’t talk much about the converse.

In all parts of this problem we let f1, f2 ∈ k[x0, . . . , xn] be homogeneous, not necessarily of the same
degree. Let V = V(f1, f2). Let f = f1 + f2. Assume that k is an infinite field.

a) (Still no assumption on the degrees of f1 and f2.) Prove that the vanishing of f at any point
P = [a0, a1, . . . , an] of V is well-defined. Remember that P = [ta0, ta1, . . . , tan] for any t ∈ k,
t 6= 0, so this is asking you to show that if P ∈ V then f(ta0, ta1, . . . , tan) = 0 for all t ∈ k, and
no matter whether f1 and f2 have the same degree or not.

Solution:
We are assuming that P ∈ V , so f1(P ) = 0 and f2(P ) = 0 are well-defined. That is,
f1(ta0, ta1, . . . , tan) = 0 for all t ∈ k, and f2(ta0, ta1, . . . , tan) = 0 for all t ∈ k. Then

f(P ) = f(ta0, ta1, . . . , tan)

= f1(ta0, ta1, . . . , tan) + f2(ta0, ta1, . . . , tan)

= 0 + 0

= 0

for all t ∈ k.

b) Assume that deg(f1) = deg(f2). Give an example to show that there may be points of Pn
k not

in V where f(P ) = 0 is well-defined.

Solution:
Let’s take n = 2. Let f1 = x and f2 = y. Let P = [1,−1, 1] ∈ P2

k. Then neither f1 nor f2 vanish
at P , so P /∈ V , but clearly f1 + f2 does vanish at P .

c) Now assume that deg(f1) 6= deg(f2). Prove that if P /∈ V then f does not vanish at P . In other
words, what I’m asking you to show is that there is some value of t for which f(ta0, ta1, . . . , tan) 6=
0. [Hint: we know that the vanishing of f at P is well-defined if f1 and f2 have the same degree,
so somewhere you should use the fact that they have different degrees.]



4

Solution:
Assume deg(f1) = d1 < d2 = deg(f2). We have assumed that P /∈ V , which means that it
is not true that both f1(ta0, ta1, . . . , tan) = 0 for all t ∈ k and also f2(ta0, ta1, . . . , tan) = 0
for all t ∈ k . Since both f1 and f2 are homogeneous, this means that we can assume that
either f1(a0, . . . , an) or f2(a0, . . . , an) is a non-zero scalar. (Notice that we are not allowing the
(n+ 1)-tuple to be multiplied by scalars here – we are fixing a0, . . . , an.)
Then

f(ta0, ta1, . . . , tan) = f1(ta0, ta1, . . . , tan) + f2(ta0, ta1, . . . , tan)

= td1f1(a0, a1, . . . , an) + td2f2(a0, a1, . . . , an)

= td1 [f1(a0, . . . , an) + td2−d1f2(a0, a1, . . . , an)]

Since d1 < d2, the exponent of t in front of f2 is non-zero. We have seen that f1(a0, . . . , an) and
f2(a0, . . . , an) are just scalars, possibly zero but not both zero.

If f2(a0, . . . , an) = 0 then we are assuming that f1(a0, . . . , an) 6= 0 so just take t = 1.

If f1(a0, . . . , an) = 0 then f2(a0, . . . , an) 6= 0 so again we can take t = 1.

If neither f1(a0, . . . , an) = 0 nor f2(a0, . . . , an) = 0 then because k is infinite, the polynomial

[f1(a0, . . . , an) + td2−d1f2(a0, a1, . . . , an)]

cannot be zero for all t ∈ k, so choose any t for which this is non-zero.

6. One of the really cool things about projective space is the notion of duality. Let’s limit ourselves
to P2

R, the real projective plane. (We will understand that we are working over R and not bother
writing the subscript R each time.)

Recall that a line ` in P2 is the vanishing locus of a homogeneous linear polynomial, i.e. ` =
V(ax+ by + cz) for some choice of a, b, c ∈ R not all zero.

a) Show that ax+ by + cz = 0 defines the same line as 3x+ 4y + 5z = 0 if and only if there exists
some t ∈ R such that a = 3t, b = 4t and c = 5t. (Of course 3, 4, 5 is just an example.) [Hint: ⇐
is almost immediate. For ⇒, you can use the fact that in P2, either two lines meet at a single
point or they are the same line. It may help to take the linear algebra point of view.]

Solution:
⇐:
If we know in advance that a = 3t, b = 4t and c = 5t then

ax+ by + cz = 0 ⇔ (3t)x+ (4t)y + (5t)z = 0 ⇔ 3x+ 4y + 5z = 0

so they define the same line.

⇒:
Consider the lines V(ax+ by+ cz) and V(3x+ 4y+ 5z) in P2. Either they meet in a single point
or they are the same line. To find out which, we solve a system of homogeneous linear equations

3x + 4y + 5z = 0
ax + by + cz = 0.
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Each equation represents a plane through the origin in R3. The lines in P2 meet in a single point
if and only if the solution space of these two equations is a 1-dimensional subspace of R3 (i.e. a
line through the origin in R3, i.e. a point of P2). Looking at the coefficient matrix[

3 4 5
a b c

]
we know that the solution space is 1-dimensional if and only if the rank of this matrix is 2, if
and only if neither row is a multiple of the other. So the lines are the same in P2 if and only if
the solution space is 2-dimensional, if and only if a = 3t, b = 4t and c = 5t for some non-zero t
as claimed.

b) Based on a), show that the set of lines in P2 itself can be viewed as a projective plane, which
we will denote by (P2)∨.

Solution:

{ Lines in P2 } = { V(ax+ by + cz) } = { [a, b, c] }
where the latter is the set of triples of real numbers, not all zero, up to scalar multiples, i.e. the
latter is a projective plane.

(P2)∨ is called the dual projective plane. So what we have so far is that a point P = [a, b, c] in
(P2)∨ corresponds to the line `P = V(ax + by + cz) in P2. You can use this for the next two parts
even if you didn’t get a) and/or b). Furthermore, even if you don’t get c) you can use the statement
of c) to do d) and e).

c) Let P1, P2, P3 be points of (P2)∨ and let `P1 , `P2 , `P3 be the lines in P2 that they correspond
to. Show that P1, P2, P3 all lie on a line in (P2)∨ if and only if `P1 , `P2 , `P3 all pass through a
common point. [Hint: if you look at the equation ax + by + cz = 0, you can think of a, b, c as
given and x, y, z as the variables, OR you can think of x, y, z as given and a, b, c as the variables!]

Solution:
Say Pi = [ai, bi, ci] for i = 1, 2, 3. Then the Pi all lie on a line in (P2)∨ if and only if there are
some constants p, q, r ∈ R such that [a1, b1, c1], [a2, b2, c2] and [a3, b3, c3] are all solutions to the
equation

pa+ qb+ rc = 0

in the variables a, b, c. That is, we have

a1p + b1q + c1r = 0
a2p + b2q + c2r = 0
a3p + b3q + c3r = 0

But this means that [p, q, r] is a common solution of the equations

a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0

i.e. [p, q, r] is common to the lines V(a1x + b1y + c1z),V(a2x + b2y + c2z),V(a3x + b3y + c3z),
i.e. to the lines `P1 , `P2 , `P3 as desired.
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d) Using c), if you take a line in (P2)∨, what does the collection of all the points on this line
correspond to back in P2? Explain your answer carefully.

Solution:
The points on this line are all on the same line (obviously), so the corresponding lines in P2 all
pass through the same common point, by c). This collection of lines through a common point is
called a pencil of lines.

e) The following is a set of lines in P2
R, labelled a to g.

a

c

e

g d

b

f

Sketch the set of points in (P2)∨ dual to these lines, and label them A to G corresponding to
the similarly named lines. Make sure that your sketch reflects when three or more of the
points are on a line. [Hint: in addition to the obvious places where three or more lines meet,
the three vertical lines meet at infinity!! Part c) is crucial in this problem.]

Solution:
We have to make sure that A,C,E,G are collinear, B,C,D are collinear, B,F,G are collinear
and D,E, F are collinear. Here is one possible sketch. The blue lines are just to emphasize
which points are collinear.

• • • •

•

•

•

A C E G

B

D

F


