
Math 40510, Algebraic Geometry

Problem Set 2 Solutions, due March 21, 2018

1. Let k be a field. You can use facts from CLO Chapter 4, §3 for this problem.

a) Let f, g, h ∈ k[x1, . . . , xn]. Prove that V(f, gh) = V(f, g) ∪ V(f, h).

Solution:
Let’s prove the two inclusions.

Let P ∈ V(f, gh). So f(P ) = 0 and (gh)(P ) = 0. But the latter means

0 = (gh)(P ) = g(P )h(P ).

Since k is a field, this means f(P ) = 0 and either g(P ) = 0 or h(P ) = 0. So P ∈ V(f, g)∪V(f, h).

Now let P ∈ V(f, g) ∪ V(f, h). So either P ∈ V(f, g) or P ∈ V(f, h) (or both). So in both cases
we have f(P ) = 0, and either g(P ) = 0 or h(P ) = 0. This latter means in any case (gh)(P ) = 0.
Thus P ∈ V(f, gh).

b) Let V = V(f1, . . . , fs) and W = V(g1, . . . , gt) be algebraic varieties in kn and let h ∈ k[x1, . . . , xn].
Prove that

(V ∪W ) ∩ V(h) = V(f1, . . . , fs, h) ∪ V(g1, . . . , gt, h).

Solution:
The expression on the left is equal to (V ∩ V(h)) ∪ (W ∩ V(h)). But we know

V ∩ V(h) = V(f1, . . . , fs, h) and W ∩ V(h) = V(g1, . . . , gt, h)

so we are done.

c) Now let k = R. Find V(xy, xz, yz) in R3. (I.e. give a precise description of what this variety is
from a geometric perspective.) [Hint: this was an example in class, but we didn’t prove it. So
this question is really asking for you to come up with the proof.]

Solution:
We’ll show that V(xy, xz, yz) is the union of the three coordinate axes in R3. Note that these
axes are

x-axis = V(y, z)
y-axis = V(x, z)
z-axis = V(x, y)

We’ll prove the two inclusions. First let P = (a, b, c) ∈ V(xy, xz, yz). Since xy vanishes at P ,
either a = 0 or b = 0.

• If a = 0 then xz automatically vanishes at P too, but the fact that yz vanishes at P means
that in addition either b = 0 or c = 0. So P is of the form (0, 0, t) or (0, t, 0), i.e. P either
lies on the z-axis or the y-axis.

• If b = 0 then yz automatically vanishes at P too, but the fact that xz vanishes at P means
that in addition either a = 0 or c = 0. So P is of the form (0, 0, t) or (t, 0, 0), i.e. P either
lies on the z-axis or the x-axis.
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So P has to be on one of the three axes. We conclude that V(xy, xz, yz) is contained in the
union of the three axes.

Now let P be a point on one of the three axes.

• If P lies on the x-axis then P is of the form (t, 0, 0) so all three of xy, xz, yz vanish at P .

• If P lies on the y-axis then P is of the form (0, t, 0) so all three of xy, xz, yz vanish at P .

• If P lies on the z-axis then P is of the form (0, 0, t) so all three of xy, xz, yz vanish at P .

Thus P ∈ V(xy, xz, yz).

d) Let h be a polynomial in x, y, z of degree 1 (so V(h) is a plane in R3 – you can use this fact without
further comment). Using geometric reasoning, what are all the possibilities for V(xy, xz, yz, h)?
For each of these possibilities, give a specific h that achieves that outcome.

[For example, one possibility is that the plane contains two lines of V(xy, xz, yz), e.g. the y-axis
and the z-axis. All I want from you is that one possibility for V(xy, xz, yz, h) is the union of two
axes, coming for example when h = x. I don’t want you to also give me h = y and h = z and
I don’t want you to do any algebraic manipulations with the ideal. This is mostly a geometric
question.]

Solution:
How can a plane intersect the three axes?

• A plane can meet the axes in three points (in fact “most” planes intersect the axes in
three points), so for any such we have V(xy, xz, yz, h) consists of 3 points. An example is
h = x + y + z − 1.

• A plane can meet the axes in two points if it is parallel to one of the axes but not two. An
example is h = x + y + 1.

• A plane can meet the axes in one point. This could happen if it is parallel to one of the
coordinate planes (e.g. h = x+ 1) or if it passes through the origin, not containing any of
the axes. For example, h = x + y + z.

• If a plane contains only one axis, it also has to contain the origin. If it contained any
other point on one of the other axes, it would thus contain two points (origin and one
other) from that axis so it would contain the whole axis. So if it contains only one axis,
V(xy, xz, yz, h) is the axis and nothing else. An example is h = 2y + 3z, which contains
the x-axis.

• If a plane contains two axes, by reasoning as before we have V(xy, xz, yz, h) is the union
of those two axes. An example is h = x, which contains the y and z axes.

2. In this problem we will work over the field of real numbers, R.

a) Let I = 〈f1, . . . , fs〉 be any ideal in R[x1, . . . , xn]. Let V = V(I) ⊂ Rn be the corresponding
variety. Find a single polynomial f such that V = V(f). Prove your answer.

Solution:
We claim that f = f2

1 + · · ·+ f2
s does the trick. First show V ⊆ V(f). If P ∈ V then fi(P ) = 0

for all 1 ≤ i ≤ s, so f2
i (P ) = 0 for all 1 ≤ i ≤ s and hence the sum f(P ) = 0 as well.

Conversely, we’ll show that V ⊇ V(f). Let P ∈ V(f), so

f(P ) = (f2
1 + · · ·+ f2

s )(P ) = f2
1 (P ) + · · ·+ fs(P ) = 0.
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But we are working over the real numbers, so each term of f2
1 (P ) + · · ·+ fs(P ) is non-negative.

Thus it can only equal zero if f1(P ) = · · · = fs(P ) = 0, i.e. if P ∈ V .

b) Let I = 〈f1, . . . , fs〉 be any ideal in R[x1, . . . , xn]. Suppose that V(I) = ∅. Show that there is
at least one element of I that has no zero in Rn. Justify your answer. (Notice that R is not
algebraically closed, so you can’t use the Nullstellensatz.)

Solution: Let f = f2
1 + · · · + f2

s , which is certainly in I = 〈f1, . . . , fs〉. From part a) we know
that

∅ = V(I) = V(〈f1, . . . , fs〉) = V(f),

so f has no zeros.

3. Let V and W be varieties in Cn such that V ∩W = ∅. Prove that there exist f ∈ I(V ) and g ∈ I(W )
such that f + g = 1.

Solution:
Let J = I(V ) + I(W ). We first claim that V(J) = ∅. If P ∈ V(J) then in particular every element

of I(V ) vanishes at P and every element of I(W ) vanishes at P . Thus P ∈ V and P ∈ W , i.e.
P ∈ V ∩W . This is impossible since V ∩W = ∅.

But now C is algebraically closed, so the Weak Nullstellensatz holds. This means

J = I(V ) + I(W ) = 〈1〉,
so the desired result holds.

4. Let I ⊂ k[x1, . . . , xn] be an ideal. Let
√
I be its radical. Show that there is a positive integer p such

that for every f ∈
√
I, fp ∈ I. (The thing to stress is that the choice of p does not depend on what

f you choose; rather, p depends only on what
√
I is.) [Hint:

√
I is an ideal in a Noetherian ring.

You can also review our proof in class that
√
I is an ideal.]

Solution:
Since k[x1, . . . , xn] is Noetherian,

√
I is finitely generated. Say
√
I = 〈f1, . . . , fs〉.

In particular, each fi is in
√
I. Define m1, . . . ,ms so that fmi

i ∈ I for each i. Let p = m1 + · · ·+ms.

Let f ∈
√
I, so we can write f = g1f1 + · · ·+ gsfs, where gi ∈ k[x1, . . . , xn]. Then

fp = (g1f1 + · · ·+ gsfs)
p.

Each term in the expansion of fp is of the form

Bf i1
1 f i2

2 · · · f
is
s

where B is some (ugly) polynomial and i1 + i2 + · · ·+ is = p = m1 + · · ·+ms. As in class, we claim
that for at least one subscript k we have ik ≥ mk. This is a sort of pigeon-hole principle – if ik is
always less than mk, it is impossible for i1 + i2 + · · ·+ is = p = m1 + · · ·+ ms. But if ik ≥ mk then
f ik
k ∈ I. So every such term in the expansion of fp is in I, hence fp ∈ I.

5. Let I and J be ideals in C[x1, . . . , xn] such that

I + J = 〈1〉 = C[x1, . . . , xn].
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a) Prove that the varieties V(I) and V(J) are disjoint.

Solution:
We have seen that

V(I) ∩ V(J) = V(I + J).

Hence under our conditions, V(I) ∩ V(J) = ∅, i.e. V(I) and V(J) are disjoint.

b) Prove that IJ = I ∩ J . [Don’t forget the assumption at the beginning of this problem!!!]

Solution:
It is always true that IJ ⊆ I ∩ J so we only have to prove the reverse inclusion.

Let
I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉.

From our assumption we have that for some f ∈ I and g ∈ J , 1 = f +g. Say f = a1f1+ · · ·+asfs
and g = b1g1 + · · ·+ btgt. So

1 = (a1f1 + · · ·+ asfs) + (b1g1 + · · ·+ btgt).

Now let h ∈ I ∩ J . We want to show that h ∈ IJ . Multiplying both sides in the above quality
by h we get

h = (a1f1h + · · ·+ asfsh) + (b1hg1 + · · ·+ bthgt).

The fact that each fi ∈ I and h ∈ J means that every term in the first set of parentheses is in
IJ . The fact that h ∈ I and every gi ∈ J means that every term in the second set of parentheses
is in IJ . Thus h ∈ IJ .

6. Let X be a topological space (not necessarily with the Zariski topology). Let A be a subset of X
with the following property:

For each P /∈ A there exists a closed set VP that contains A but does not contain P .

Prove that A must be closed, making sure to justify each step.

Solution:
We claim that

A =
⋂
P /∈A

VP

where VP is the closed set containing A but not containing P , as stated in the assumption, and P
ranges over all points in X that are not in A. This will prove the result, since arbitrary intersections
of closed sets are closed.

So we just have to prove the claim. The inclusion ⊆ is clear since each VP contains A. For the
reverse inclusion, let

Q ∈
⋂
P /∈A

VP .

We want to show that Q ∈ A. But suppose that Q /∈ A (looking for a contradiction). Then associated
to Q is a closed set VQ containing A but not containing Q. This participates in the intersection.
But since Q /∈ VQ, we get that

Q /∈
⋂
P /∈A

VP

(since we are exhibiting at least one VP that doesn’t contain Q, namely VQ), giving a contradiction.
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7. Find the Zariski closure for each of the following sets in R2, and explain your answer. Some of them
may already be closed. Your explanations do not have to be rigorous proofs, but they should be
convincing!

a) The unit circle.

Solution:
This is a variety, namely V(x2 + y2 − 1), so it is already closed. Hence it is equal to its Zariski
closure.

b) A∪B, where A is the unit circle and B is the set of points in R2 of the form (x, 0) where x is a
rational number.

Solution:
We claim that any polynomial vanishing at the rational points between −1 and 1 has to vanish
along the whole x-axis. Indeed, this is because such a polynomial has to be either zero along the
whole line or else have only finitely many zeros. So the Zariski closure, i.e. the smallest closed
set containing A∪B, is the union of A (which is closed thanks to the previous problem) and the
x-axis, remembering that the union of two closed sets is closed.

c) The sine curve in R2, i.e. {(x, y) | y = sinx}.

Solution:
We claim that the Zariski closure of the sine curve is the whole plane. Let C be this curve.

First consider any horizontal line, y = c, where −1 ≤ c ≤ 1. Such a line meets C in infinitely
many points, so the Zariski closure of C has to contain the whole line. But there are infinitely
many such lines, so the Zariski closure has to contain the whole horizontal strip −1 ≤ y ≤ 1
(and arbitrary x). But now any vertical line meets this strip in infinitely many points, so the
Zariski closure has to contain all vertical lines as well. The union of all the vertical lines is the
whole plane, so we are done.

8. Let k be a field and let R = k[x1, . . . , xn]. Let I, J and K be ideals in R.

a) If I is radical, prove that I : J must also be radical.

Solution:
Let f ∈ R be a polynomial such that f r ∈ I : J for some r ≥ 1. We want to show that f ∈ I : J .
That is, we want to show that fg ∈ I for all g ∈ J .

By hypothesis we know that

f r · g ∈ I for all g ∈ J.

This implies that f rgr = (fg)r ∈ I for all g ∈ J . But I is radical, so fg ∈ I for all g ∈ J , as
desired.
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b) Give an example to show that if I : J is radical, it is not necessarily true that I is radical.

Solution:
I = 〈x2〉, J = 〈x〉, I : J = 〈x〉.

c) If V and W are varieties in kn, prove that I(V ) : I(W ) is a radical ideal. [Hint: “c” comes after
“a” in the alphabet.]

Solution:
We know that if V is a variety then I(V ) is a radical ideal. So this follows from a).

d) Prove that J ⊆ I if and only if I : J = R.

Solution:
First we prove =⇒. Assume that J ⊆ I. Let f ∈ R be any polynomial. We want to show that
fg ∈ I for all g ∈ J . But if g ∈ J ⊂ I then g ∈ I, so automatically fg ∈ I.

Now we prove ⇐=. Assume I : J = R. We want to show that J ⊆ I. Let g ∈ J . We want to
show that g ∈ I. Since I : J = R, we have 1 ∈ I : J . Hence g = 1 · g ∈ I.

e) If J ⊆ K, prove that I : K ⊆ I : J .

Solution:
Let f ∈ I : K. Then fg ∈ I for all g ∈ K. Since J ⊆ K, in particular fg ∈ I for all g ∈ J , so
f ∈ I : J .

f) Assume that I is radical. Prove that I :
√
J = I : J .

Solution:
Since J ⊆

√
J , the previous problem gives for free that I :

√
J ⊆ I : J . So we have to prove that

I : J ⊆ I :
√
J .

Let f ∈ I : J , so fg ∈ I for all g ∈ J . We want to show that f ∈ I :
√
J . Let h ∈

√
J . We want

to show that fh ∈ I.

Since h ∈
√
J , hr ∈ J for some r ≥ 1. Then fhr ∈ I since f ∈ I : J . This implies (fh)r =

f rhr ∈ I. But I is radical, so fh ∈ I as desired.


