
Math 40510, Algebraic Geometry

Problem Set 1 Solutions, due February 14, 2018

1. In this problem we explore polynomial rings.

a) In class we defined the ring k[x1, . . . , xn] of polynomials in n variables with coefficients in a
field, k. We can similarly define Z6[x1, . . . , xn] to be the ring of polynomials in n variables with
coefficients in Z6. Prove by example that Z6[x1, . . . , xn] is not an integral domain.

Solution: 2x1 and 3x1 are two non-zero elements of Z6[x1, . . . , xn] whose product is zero.

b) Now let k be a field. Prove that if f, g ∈ k[x1, . . . , xn] then deg(fg) = deg(f) + deg(g).

Solution: Both f and g are linear combinations of monomials in x1, . . . , xn. Say deg(f) = d and
deg(g) = e.

Decompose f and g into sums of polynomials

f = f0 + f1 + · · ·+ fd−1 + fd and g = g0 + g1 + · · ·+ ge−1 + ge,

where each fi and each gi collects the monomials of degree i together with their coefficients. For
example, if n = 3 and f = 5 + 3x− 2z + 4x2 − 6xy + 7yz − 3x3 + 2x2z then d = 3 and

f0 = 5
f1 = 3x− 2z
f2 = 4x2 − 6xy + 7yz
f3 = −3x3 + 2x2z.

It’s clear that deg(fg) ≤ d + e since the highest degree of a monomial that could appear in fg
is d+ e. We want to show that fd · ge is not zero, so we have deg(fg) = d+ e.

The thing we have to show is that terms don’t all cancel out. For example, if fd = x2 + y2 and
ge = x2 − y2 then fd · ge = x4 + x2y2 − x2y2 − y4 = x4 − y4; some terms cancel out, but not all.
So let’s rewrite what we have to show:

Want to show if f and g are polynomials such that f is a linear combination of monomials all
of degree d (i.e. f is homogeneous of degree d) and g is a linear combination of monomials all of
degree e (i.e. g is homogeneous of degree e) then fg 6= 0.

We’ll proceed by induction on n. For n = 1, say

f = a0 + a1x+ · · ·+ adx
d and g = b0 + b1x+ · · ·+ bex

e

where ad, be ∈ k and ad 6= 0 and be 6= 0. Then fg = a0b0+· · ·+(ad−1be+adbe−1)x
d+e−1+adbex

d+e.
We don’t know about other terms, but we do know that adbe 6= 0 since ad 6= 0 and be 6= 0. Thus
deg(fg) = d+ e and in particular fg 6= 0.

Now the inductive step. Assume that the statement is true for n − 1 variables. As we did in
class, write f and g as polynomials in xn with coefficients in k[x1, . . . , xn−1]:

f = a0(x1, . . . , xn−1) + a1(x1, . . . , xn−1)xn + a2(x1, . . . , xn−1)x
2
n + · · ·+ ap(x1, . . . , xn−1)x

p
n

g = b0(x1, . . . , xn−1) + b1(x1, . . . , xn−1)xn + b2(x1, . . . , xn−1)x
2
n + · · ·+ bq(x1, . . . , xn−1)x

q
n.
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Now we have to be a bit careful, because even though deg(f) = d and deg(g) = e, it’s not
necessarily true that d = p or e = q. For example, we might have n = 3 and

f = x2y2z2 + y4z2 + x4yz
= (x4y)z + (x2y2 + y4)z2

g = x3y2z2 + xy4z2 + y4z3

= (x3y2 + xy4)z2 + (y4)z3.

Then d = 6 and e = 7 but p = 2 and e = 3.

Assume first that ap(x1, . . . , xn−1) and bq(x1, . . . , xn−1) are both non-zero, and by induction we
know ap(x1, . . . , xn−1) · bq(x1, . . . , xn−1) 6= 0. Then just as in the case n = 1, the coefficient of

xd+e
n is not zero, so fg 6= 0. Thus deg(fg) = d + e. If no term of f has a positive power of xn,

we simply have f = a0(x1, . . . , xn−1), and similarly for g, and the proof still works.

c) Prove that there are
(
d+2
2

)
monomials of degree d in the variables x, y, z. [Your proof should be

from scratch, not by using a special case of some formula you find somewhere.]

Solution: Later in the semester we’ll give a more general version of this fact, but for now we’ll
give a more limited proof.

• First, count the monomials that involve only x and y but no power of z:

xd, xd−1y, xd−2y2, . . . , xyd−1, yd.

There are d+ 1 of them.
• Now count the monomials that have z1:

xd−1z, xd−2yz, xd−3y2z, . . . , xyd−2z, yd−1z.

There are d of those.
• Continue in this way, increasing the power of z. At each step there are one fewer monomials,

until we get to

xzd−1, yzd−1

(of which there are two) and

zd

(of which there is one).

So in all we have (d+ 1) + d+ (d− 1) + · · ·+ 2 + 1, which is equal to
(
d+2
2

)
.

2. In this problem we look at varieties in Rn. (Part c) is only for R2.)

a) Prove that a single point in Rn is an affine variety.

Solution: If P = (a1, a2, . . . , an) then

P = V(x1 − a1, x2 − a2, . . . , xn − an).

b) Prove that the union of any finite number of points in Rn is an affine variety. [Hint: Use Lemma
2 of §2 of the book, and extend it to a finite union of varieties using induction.]

Solution: Let V = {P1, P2, . . . , Pm}. By part a), each Pi is, by itself, an affine variety. This
begins the induction. Now assume that the statement is true for m − 1 points, i.e. any subset
of all but one point of V . So for example, let

X = {P1, . . . , Pm−1}
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and note that V = X ∪ Pm. By induction, X is an affine variety. By part a), Pm is an affine
variety. So by Lemma 2, V = X ∪ Pm is also an affine variety.

c) In the next problem you’ll show that a certain infinite union of points is not an affine variety.
On the other hand, give an example of an infinite set of points in R2 whose union is an affine
variety. Justify your answer.

Solution: Let V = V(x) ⊂ R2, i.e. V is the y-axis. V is an affine variety, and it contains infinitely
many points.

3. Let

X = {(m,m3 + 1) ∈ R2 | m ∈ Z}.
In this problem you’ll show that X is not an affine variety.

a) Consider the following statement:

If f(x, y) is a polynomial that vanishes at each point of X
then f vanishes on the whole curve x3 − y + 1 = 0.

(∗)

Explain why proving (∗) will guarantee that X is not an affine variety.

Solution: Let C be the curve V(x3 − y + 1) ⊂ R2. Notice that C contains points that are not
on X, for example the point (π, π3 + 1). Suppose it were true that X were an affine variety, so
X = V(f1, . . . , fs) for some polynomials f1, . . . , fs ∈ R[x, y]. That means that

the common vanishing locus of f1, . . . , fs is precisely X. (∗∗)

If every polynomial f that vanishes at all points of X also vanishes on all of C, then this is true
of f1, . . . , fs, so (∗∗) can’t be true – the common vanishing locus contains a lot of other points,
such as (π, π3 + 1). So this contradiction shows that X is not an affine variety.

b) Prove (∗).

Solution: Again by contradiction. Suppose f ∈ R[x, y] vanishes at every point of X (i.e. X ⊂
V(f)).

Consider the intersection of V(f) and V(x3 − y + 1). By Lemma 2, this intersection is an affine
variety:

V(f) ∩ V(x3 − y + 1) = V(f, x3 − y + 1).

Notice that X ⊂ V (f)∩V(x3−y+ 1). This intersection is the set of points (a, b) ∈ R2 such that

f(a, b) = 0 and a3 − b+ 1 = 0.

The second of these equations says that for a point in this intersection, b = a3 + 1. The first of
the equations then says that any of these intersection points satisfies

f(a, a3 + 1) = 0.

The fact that X ⊂ V (f) ∩ V(x3 − y + 1) means that the above equation is satisfied whenever
a ∈ Z.

But f(t, t3 + 1) is a polynomial in one variable, t. The fact that it vanishes whenever t is an
integer says that it has infinitely many roots or else is the zero polynomial. But a non-zero
polynomial in one variable has finitely many roots. Thus f(t, t3 + 1) is the zero polynomial.
This means that f vanishes at any point (x, y) such that y = x3 +1, i.e. it vanishes on the whole
curve V(x3 − y + 1).
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4. In class we showed how to obtain the parametrization for the circle x2 + y2 = 1. Use the exact same
idea (but slightly different algebra) to obtain the parametrization

x =
(t− 1)2

1 + t2

y =
2t2

1 + t2
.

for the circle (x− 1)2 + (y − 1)2 = 1. Specifically:

a) Verify that for any value of t in this parametrization, we have (x− 1)2 + (y − 1)2 = 1.

Solution:

(x− 1)2 + (y − 1)2 =

(
(t− 1)2

1 + t2
− 1

)2

+

(
2t2

1 + t2
− 1

)2

=

(
(t2 − 2t+ 1)− (1 + t2)

1 + t2

)2

+

(
2t2 − (1 + t2)

1 + t2

)2

=

(
−2t

1 + t2

)2

+

(
t2 − 1

1 + t2

)2

=
4t2 + t4 − 2t2 + 1

(1 + t2)2

=
t4 + 2t2 + 1

(1 + t2)2

= 1.

b) Derive the above parametrization. Show all your work. The following picture should help.

(x− 1)2 + (y − 1)2 = 1

•
(1, 0)

(0, t)

Solution: For any given t, the equation of the line through (0, t) and (1, 0) is y − t = −t(x− 0),
i.e.

t(x− 1) + y = 0, or y = −t(x− 1).

This line meets the circle in two points, one of which is always (1, 0). We have to find the other
point. So we have to solve the system of equations

(x− 1)2 + (y − 1)2 = 1
y = −t(x− 1).
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So we substitute this latter value of y into the first equation. We get

(x− 1)2 + (−t(x− 1)− 1)2 = 1

(x− 1)2 + t2(x− 1)2 + 2t(x− 1) + 1 = 1

(x− 1)[x− 1 + t2(x− 1) + 2t] = 0

If x − 1 = 0 we already know about this intersection point. So it’s the other factor that we’re
interested in:

x− 1 + t2(x− 1) + 2t = 0

(x− 1)(1 + t2) + 2t = 0

x− 1 =
−2t

1 + t2

x =
−2t

1 + t2
+ 1

x =
−2t+ 1 + t2

1 + t2

x =
(t− 1)2

1 + t2
.

This gives x. For y we have

y = −t(x− 1)

= −t
(

(t− 1)2

1 + t2
− 1

)

= −t
(
t2 − 2t+ 1− (1 + t2)

1 + t2

)

=
2t2

1 + t2

as desired.

c) In particular, which point of the circle is missed by this parametrization?

Solution: It’s missing the point (1, 2). In part b) you can see that this point corresponds to a
vertical line, i.e. to t =∞, which has no slope.

5. Let V be the parabola in R2 given by the equation y = x2. Let P = (a, a2) be a point of V . (I don’t
mean that you should choose a specific value of a.)

a) Find a polynomial f so that V = V(f). [Hint: this is as easy as it looks. Don’t look for anything
tricky here.]

Solution: f = y − x2.
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b) Find a polynomial ` so that V(`) is the tangent line to V at P .

Solution: We use methods from calculus. Since d
dxx

2 = 2x, the slope of the tangent line at P is
2a. So the tangent line is

y − a2 = 2a(x− a), i.e. y = 2ax− a2.
So ` = 2ax− y − a2.

c) Prove directly that 〈`, f〉 is not a radical ideal. That is, find a polynomial g such that some
power of g is in 〈`, f〉 but g itself is not. Be sure to show all your work: prove that some power
of g is in this ideal (what power?), and prove that g itself is not in the ideal. [Hint: look at
vertical lines for one possible answer.]

Solution:

〈2ax− y − a2, y − x2〉 = 〈y − x2, (2ax− y − a2) + (y − x2)〉

= 〈y − x2, 2ax− x2 − a2〉

= 〈y − x2, x2 − 2ax+ a2〉

= 〈y − x2, (x− a)2〉

Take g = x− a. Then we have just shown that g2 ∈ 〈`, f〉. We have to show that g itself is not
in 〈`, f〉. But 〈`, f〉 = 〈y − x2, (x− a)2〉, and the equation

h1(y − x2) + h2(x− a)2 = x− a
can be rewritten as

(1) (h2 − h1)x2 − 2ah2x+ h1y + h2a
2 = x− a,

Looking at the constant term we get h2a
2 = −a. (No matter what h1 and h2 are, there can’t be

any other constant terms in this equation.) This gives either a = 0 or h2 = − 1
a . Take the first

case, a = 0. Then
(h2 − h1)x2 + h1y = x,

No matter what h1 and h2 are, there is no term on the left that has only x in it (i.e. neither has
x2 nor y). So this is impossible. So we can assume a 6= 0 and h2 = − 1

a . Substituting for h2 in
(1) gives, after a little computation,(

−1

a
− h1

)
x2 + 2x+ h1y = x.

No matter what h1 is, the only term on the left that has x and nothing else is 2x, which is not
equal to x. So this is impossible too.

d) If I = 〈`, f〉, find V(I) and find I(V(I)). [Note that you can do this part even if you did not get
part c). However, I would like you to justify your answer. No full credit if you find the right
ideal but don’t give a proof.]

Solution: V(I) is the common vanishing locus of ` and f , i.e. the total intersection of the
parabola and the tangent line at P . Since (from calculus) we know that the parabola is always
concave up, the tangent line meets the parabola only at the point P , so V(I) = {P}.
So we just have to find I(P ). Remember that P = (a, a2). We’ll show that

I(P ) = 〈x− a, y − a2〉.
(Remember that a is a constant, so x−a and y−a2 are both linear polynomials.) The inclusion
⊇ is clear, so we just have to show ⊆.
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If a = 0 we actually showed this in class. If a 6= 0 the idea is the same: by writing x as (x−a)+a
and y as (y− a2) + a2, we can convert any polynomial in x and y into a polynomial in x− a and
y− a2. Then a polynomial p that vanishes at P has to have zero constant term when written in
terms of x− a and y − a2, so it is in 〈x− a, y − a2〉.

6. In class we mentioned that if k is a field then k[x1, . . . , xn−1][xn] ∼= k[x1, . . . , xn]. Give a proof of
this fact. In particular, you should

a) find a function φ : k[x1, . . . , xn−1][xn]→ k[x1, . . . , xn] [Hint: don’t try to do anything too fancy.
For example, (3x+ y)z + (4xy + 5y3)z2 is both an element of k[x, y][z] and of k[x, y, z]];

Solution: Let f ∈ k[x1, . . . , xn−1][xn]. So

f = g0(x1, . . . , xn−1) + g1(x1, . . . , xn−1)xn + · · ·+ gd(x1, . . . , xn−1)x
d
n

for some non-negative integer d. So f can be viewed naturally as an element of k[x1, . . . , xn] just
by multiplying out all the terms. Define φ(f) = f in this way.

b) show that φ is a ring homomorphism,

Solution: φ(f + g) = φ(f) + φ(g) = f + g and φ(fg) = φ(f)φ(g) = fg are both immediate from
the definition.

c) show that φ is injective,

Solution: Again from the definition, f ∈ kerφ if and only if φ(f) = 0 if and only if f = 0.

d) and show that φ is surjective.

Solution: By separating out the xn’s, any polynomial in k[x1, . . . , xn] can be expressed as a
polynomial in k[x1, . . . , xn−1][xn].

(Your proof of this whole problem should take very few lines. Just convince me that you understand
what’s going on.)

7. Consider the infinite family of polynomials f1, f2, f3, . . . with

fi = 3xi + 5yi+7 − (i2 + 3)xi−2y ∈ R[x, y] (where i = 1, 2, 3, . . . ).

Prove that there is some integer N so that every fj with j > N can be written as a linear combination
of f1, f2, . . . , fN . [Hint: the form of the fi is a red herring. Also, I do not want to know specifically
what N is.]

Solution: Consider the chain of ideals

〈f1〉 ⊆ 〈f1, f2〉 ⊆ 〈f1, f2, f3〉 ⊆ · · ·
Since k[x, y] is Noetherian, this chain stabilizes. That is, there is some N so that

〈f1, . . . , fN 〉 = 〈f1, . . . , fN , fN+1, . . . , fj〉
for any j ≥ N + 1. So in particular fj can be written as a linear combination of f1, . . . , fN .


