
Using �npSeq� (Version 1.1) to discover di�erential

expression based on sequencing data

Jun Li

Department of Statistics, Stanford University

junli07@stanford.edu

September 7, 2011

The main purpose of this package is for people to reproduce the results in Li et al. ([2]),

and develop new methods based on it. We do not expect people to use it on new data. For

people who want to use methods in Li et al. ([2]) on new data, we recommend them to use

SAM (samr, SAMseq) instead of this package.

1 Introduction

npSeq is an R package that implements all methods described in Li et al. ([2]). Like edgeR

([4]), DESeq ([1]) and PoissonSeq ([3]), npSeq is used to discover di�erentially expressed

elements (genes, tags, et al.) based on sequencing (RNA-Seq, Tag-Seq, ...) data. It gives a

list of signi�cant genes, as well as the estimated false discovery rate.

This package is NOT available on CRAN, to install it (under Linux), follow these two

steps.

1. Install CRAN R package combinat by typing on the R command

install.packages("combinat")

2. Download npSeq_1.1.tar.gz to your current R directory, and then type on the R

command

install.packages("npSeq_1.1.tar.gz", type="source")

Every time before you use this package, load it by typing on the R command:

library("npSeq")

The main/unique features of npSeq are:

1

1. It uses nonparametric statistic to judge the signi�cance of di�erential expression, and

thus it is very robust to violation of distributional assumptions of other methods, and

very robust to outliers and other types of noise/errors.

2. It can be used not only for data with two-class outcome (eg. normal vs. diseased),

but also for data with multiple-class outcome (eg. cancer type 1 vs. cancer type 2

vs. cancer type 3), data with quantitative outcome (eg. patients with di�erent blood

pressures), and data with survival outcome (eg. patients with di�erent survival time).

3. It uses permutation to generate the null distribution of the test statistic, rather than

full trusts the asymptotic distribution. Therefore, it may be more robust to gene-gene

correlation.

Please refer to the paper ([2]) for more details. This instruction document can be downloaded

from http://www.stanford.edu/~junli07/research.html.

2 Relationship to SAM (samr, SAMseq)

This package implements exactly the method described in Li et al. ([2]). The SAMseq

function in the newest version of SAM (samr) is slightly di�erent. npSeq and SAMseq use the

same nonparametric statistic, and both uses permutation to generate the null distribution.

However, npSeq uses symmetric cuto�s for the nonparametric statistic ([2]), while SAMseq

uses asymmetric cuto�s ([6]). Therefore, for some datasets, SAMseq will only give signi�cant

genes that are up-regulated or only give signi�cant genes that are down-regulated, but npSeq

will almost always give both genes that are up-regulated and genes that are down-regulated.

3 Usage

npSeq is very easy to use. Only two functions in the package are available to the users.

Note: npSeq uses the same method as PoissonSeq to estimate the sequencing depth. npSeq

does not output the estimated sequencing depth. For users who want to get the sequencing

depth, please use the PS.Est.Depth function in PoissonSeq.

3.1 npSeq.Main

This is the main function of this package. Given a sequencing dataset and optionally the

running parameters, this function will do all the following things for the user:

2

1. Filter out genes with too small number of reads across experiments. The default is to

�lter out genes with no more than 5 reads totally across all experiments, AND to �lter

out genes with no more than 0.5 reads averagely across all experiments. For example,

if you have 6 samples totally, then all genes with 0, 1, 2, 3, 4, or 5 reads totally across

the 6 samples will be discarded. As another example, if you have 20 samples totally,

then all genes with 0∼10 reads totally across the 20 samples will be discarded.

2. Estimate the sequencing depth.

3. Calculate the statistic, permute and estimate the FDR for all possible cuto�s.

The input of PS.Main are two lists: dat and para. dat contains all information about

the sequencing dataset, and para contains all parameters that control the running of the

program. dat must be given by the users, while para can be left as blank, in which case its

default values will be used. In most cases, the default values should be good enough.

3.1.1 dat

dat contains the following elements:

1. n (required): the data matrix. Rows for genes, columns for experiments (samples).

Note that these are the original counts without any normalization. The normalization

will be done by npSeq. RPKM cannot be used as the input data matrix. However,

non-integer counts, which can be generated by some mapping algorithms for reads

mapped with uncertainty, can be used as the input.

2. y (required): the outcome vector. For two class data, the �rst class must be denoted

by 1, and the second class must be denoted by 2. For K class data, Class k must be

denoted by k, k = 1, . . . , K. For quantitative data, y are real numbers.

3. type (required): twoclass, multiclass, quant, or survi. No other values are ac-

cepted.

4. gname (optional): gene names. Default value: 1 : nrow(n). That is, the i'th gene

is named i.

5. gamma (optional): censoring statuses. 1 for observed (died), 0 for censored.

6. delta (optional): true signi�cance of the genes. TRUE for signi�cance. FALSE for

insigni�cance. This can only be known in simulated data. When delta is not null,

true false discovery rates will be calculated and returned.

3

Note: now npSeq cannot be used for paired twoclass data, but extending to paired data is

straightforward and has been implemented in SAM (samr, SAMseq). We'll add it to npSeq

in the next version.

For example, if you have a sequencing dataset from 3 normal samples and 5 cancer

samples. Each experiment is mapped to 10,000 genes. Then your data n should be a

10000× 10 matrix. y=c(1,1,1,2,2,2,2,2) if you put the normal samples in the �rst three

columns of n. type should be twoclass, and gname is set to be the names of the 10,000

genes. If you do not know the gene names, you do not need to specify it, or set it as NULL�the

program will re-set it as 1, 2, ..., 10000.

After setting n, y, type, pair and gname, you just type

dat <- list(n=n, y=y, type=type, gname=gname).

3.1.2 para

para contains the following elements:

1. npermu: number of permutations. default value: 100. You may want to set them to

larger values like 200, 500, or even 1000, as larger npermu gives more stable results

(under di�erent seeds). However, the computational time also increases (proportion-

ally).

2. seed: random seed to generate the permutation indexes. default value: 10. Note that

di�erent seeds typically give slightly di�erent estimated FDRs. The larger npermu is,

the smaller the di�erence is.

3. ct.sum: if the total number of reads of a gene across all experiments <= ct.sum, this

gene will not be considered for di�erential expression detection. Default value: 5.

4. ct.mean: if the mean number of reads of a gene across all experiments <= ct.mean,

this gene will not be considered for di�erential expression detection. Default value:

0.5.

5. nsam: number of resamplings used to calculate the statistic. Default value: 20. You

may set it to a larger value, but do not set it to a smaller value if there is no speci�c

reason.

6. sam.meth: resampling method: 1 for subsampling, 2 for Poisson sampling. Default

value: 2.

Note that all the above elements are optional. Feel free to set none, one, two, ..., or all of

them. The ones that are not set will be given the default values by the program.

4

3.2 npSeq.Simu.Data

This function simulates sequencing data with twoclass, multiclass, quantitative, or survival

outcomes. The simulation parameters are chosen so that the output data best mimic real

datasets. The input parameters should be a list containing all simulation parameters. The

output is also a list. It contains all simulation parameters as well as simulated data. More

details are below. The input list includes the following parameters:

1. type (required): the types of outcome. It should be one of the following: twoclass,

multiclass, quant, or survi.

2. option (required): the distribution of the simulated data. 1 for Poisson, 2 for negative

binomial with dispersion 0.25, 3 for Poisson with outliers, 4 for negative binomial with

outliers.

3. NSAM (required): number of samples. an integer for quant and survi, and a vector of

integers for twoclass and multiclass.

4. NGENE (optional): number of genes. default value 20000.

5. psig (optional): percentage of signi�cant genes. default value 0.3.

6. up.perc (optional): in the signi�cant genes, how many percent are up-regulated. De-

fault value: 0.8.

The output list contains all elements required by npSeq.Main function, so it can be directly

used by npSeq.Main.

4 Examples

Here I use 't Hoen data ([5]) as an example. The dataset is available from Gene Expression

Omnibus under accession number GSE10782. An arranged version called tHoen.txt (zipped

to tHoen.zip) can be downloaded from http://www.stanford.edu/~junli07/research.

html. One can analyze the data using the following steps:

1. Read in the data from the �le:

hdat <- read.table("tHoen.txt", header=T, stringsAsFactors=F)

gname <- hdat[, 1]

n <- as.matrix(hdat[, -1])

y <- c(1, 2, 1, 2, 1, 2, 1, 2)

5

type <- "twoclass"

dat <- list(n=n, y=y, type=type, gname=gname)

2. Set the parameter list. In this case (and in most other cases), we do not need to set it.

Of course, you can set it if you want to. For example, if you want to increase the

number of permutations to 200, simply type (does not make di�erence to the results

in this dataset since the number of all distinct permutations is choose(8, 4) = 70.)

para <- list(npermu=200)

If you also want to change the random seed so that you get a slightly di�erent result,

type

para <- list(npermu=200, seed=100)

3. Run npSeq:

If you use the default para, type

res <- npSeq.Main(dat=dat)

If you have re-set para, type

res <- npSeq.Main(dat=dat, para=para)

4. All the results has been stored in a data frame (i.e. a table) res. You can type

print(res[1:100,])

to check the top 100 signi�cant genes. Or you can type

write.table(res, file="res.txt", quote=F, row.names=F, col.names=T, sep="\t")

to write the results into a �le.

Or you can plot the FDR curve by typing

plot(resnc, resfdr, xlab="Number called", ylab="estimated FDR", type="l")

References

[1] S. Anders and W. Huber. Di�erential expression analysis for sequence count data.

Genome Biology, 11:R106, 2010.

[2] J. Li and R. Tibshirani. Finding consistent patterns: a nonparametric approach for

identifying di?erential expression in rna-seq data. in press, 2011.

[3] J. Li, D. M. Witten, I. Johnstone, and R. Tibshirani. Normalization, testing, and false

discovery rate estimation for rna-sequencing data. Biostatistics, 2011. in press.

6

[4] M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edger: a bioconductor package for

di�erential expression analysis of digital gene expression data. Bioinformatics, 26(1):139�

40, 2010.

[5] P. A. C. 't Hoen, Y. Ariyurek, H. H. Thygesen, E. Vreugdenhil, R. H. Vossen, R. X.

de Menezes, J. M. Boer, G. J. van Ommen, and J. T. den Dunnen. Deep sequencing-

based expression analysis shows major advances in robustness, resolution and inter-lab

portability over �ve microarray platforms. Nucleic Acids Res, 36(21):e141, 2008.

[6] V. Tusher, R. Tibshirani, and G. Chu. Signi�cance analysis of microarrays applied to

transcriptional responses to ionizing radiation. Proc. Natl. Acad. Sci. USA., 98:5116�

5121, 2001.

7

