
Description of files

Data files:

 PCPG.txt: the log(⋅ +1) transformed count matrix of PCPG dataset. Rows are samples,

and columns are genes.

 PCPG_label.txt: the one-hot encoded labels of samples, which is an N×K matrix,

where N is the sample size, K is the number of classes.

Python files:

 SDC_OP2.py: includes the main function of SINC, sdc(), which builds and trains the

neural network and evaluates the model with the test data provided.

 scale_noise.py: includes the function to augment train data for both scaling factors

and technical noises.

 OP_PCPG_2.py: Run this file to conduct K-fold CV on PCPG dataset. It will show the CV

accuracy on the original and augmented data and concordance rate.

Description of key functions

1. sdc

Build and train the neural network on the given training data and evaluate the model with

the given test data.

Argurments:

 expr_train: the expression data of training sets on the log scale, which is a n×p matrix,

where n is the sample size of training data and p is the number of genes (or the

dimension of input layer).

 labels_train: the class labels (one-hot encoded) of training data, which is

a n×K matrix, where n is the sample size of training data and KK is the number of

classes.

 expr_test: which is a m×p matrix, where m is the sample size of test data and p is the

number of genes (or the dimension of the input layer).

 labels_test: the class labels of test data, which is an m×K matrix, where m is the

sample size of test data and K is the number of classes.

 epoch: the maximal number of training epochs, or the folds of augmentation.

 min_epoch: the minimal number of training epochs

 lr: the starting value of learning rate to train the network.

 batch_size: the batch size to train the network.

 min_stop: when the training epoch is larger than min_stop, and the change of loss is

smaller than min_stop, stop the training.

 display_step: for every display_step of epochs, print the current number of epochs,

loss value, and classification accuracy on the test data.

 aug: the folds of augmentation for test data to evaluate the accuracy on the

augmented test data and concordance rate.

Values:

 res0: classification accuracy on the test data.

 res1: classification accuracy on the augmented test data.

 OP: the concordance rate of the predicted labels on the augmented test data.

 clist: a list that records the value of loss after each training epoch.

 ct_list: a list that records the test accuracy after each training epoch.

 pred_test: the output of the trained network on the test data.

 pred_test: an m×K matrix, where m is the sample size of test data, and K is the number

of classes. The predicted labels of test data can be obtained by np.argmax(pred_test).

Example:

from SDC_OP2 import sdc

acc_test,acc_aug,concordance,clist,ct_list,y_hat =
sdc(expr_train,labels_train,expr_test,labels_test)

2. mean_std_est
Estimate the mean expression level (on the log scale) and the within-class standard deviation

of each gene. Fit the linear relationship between means and standard deviations.

Arguments:

 expr: an n×p expression matrix, where n is the number of samples, and p is the number

of genes.

 labels: an n×K matrix, which contains the one-hot encoded class labels of samples. n is

the number of samples, and K is the number of classes.

Values:

 U: a length-p vector, which is the mean expression level of genes (across classes).

 std_h: a length-p vector, which records the fitted within-group standard deviations.

2. augment_noise_scale
Augment expression data for both technical noises and scaling factors.

Arguments:

 expr: an n×p expression matrix, where n is the number of samples, and p is the number

of genes.

 labels: an n×K matrix, which contains the one-hot encoded class labels of samples. n is

the number of samples, and K is the number of classes.

 Fold: the times of augmentation, whose default value is 100.

 alpha: the proposed proportion of technical noises in standard deviations, whose

default value is 0.2.

Values:

 expr1: the expression matrix after randomly generated technical noises are added to

each sample.

 SF: the randomly generated scaling factors for samples.

3. gene_filter

Order the genes according to how variable they are.

Arguments:

 expr: an n×p expression matrix, where n is the number of samples, and pp is the

number of genes.

 cl: an n×K matrix, which contains the one-hot encoded class labels of samples. n is the

number of samples, and K is the number of classes.

Values:

 orders: Order the genes according to their p-values of variability. The top ordered

genes have the smallest p-values, meaning they are highly variable.

Tutorial

Here we show an example of using PCPG data to conduct five-fold cross-validation.

1. Import all modules and functions that will be used.

import numpy as np
import random
from SDC_OP2 import sdc
from scipy import stats
from scale_noise import augment_noise_scale

2. Read the expression matrix and labels (one-hot encoded) of PCPG. Filter out Then we

divide the data into five folds.

DATASET = "PCPG"
expr = np.loadtxt(DATASET+".txt")
cl = np.loadtxt(DATASET+"_label.txt")
To do cross-validation, K is the number of folds that we set.
K = 5
expr = np.asarray(expr).T # Transpose the matrix, so that rows are samples and columns are
genes
cl = cl.astype(int)
N = cl.shape[0] # N is the total number of cells/ sample size
np.random.seed(200)
indx = np.random.randint(0,K,N)
filter out lowly expressed genes.
zerop = np.mean(expr==0,axis=0)
expr=expr[:,zerop<0.8]

3. Take the i-th fold as test data and the rest as training data. Select high variable genes

only based on training data.

expr_train.append(expr[indx!=i,])
cl_train.append(cl[indx!=i,])
expr_test.append(expr[indx==i,])
cl_test.append(cl[indx==i,])
orders of negative p values for genes
orders_t = gene_filter(expr=expr_train[i],cl=cl_train[i])
expr_train[i] =(expr_train[i][:,orders_t<=n_genes])
expr_test[i] = (expr_test[i][:,orders_t<=n_genes])

4. Train the network with user's choice of hyper-parameters. Obtain test accuracy and

concordance rate.

res_op is a vector recording the concordance rate of each sample.
res_aug_0[i],res_aug_1[i],res_op[indx==i],clist,ct_list,label_hat[indx==i,] =
sdc(expr_train=expr_train[i],labels_train=cl_train[i],expr_test=expr_test[i],labels_test=cl_te
st[i],lr=0.02,min_stop=0.05,epoch=nepoch,min_epoch=nepoch,aug=200,display_step=100,batch_size=
24)

acc_aug_0 is used to the accuracy on the original test data
acc_aug_1 is used to the accuracy on the augmented test data
acc_aug_0=acc_aug_0+res_aug_0[i]*expr_test[i].shape[0]
acc_aug_1=acc_aug_1+res_aug_1[i]*expr_test[i].shape[0]

4. After K (K=5) iterations, obtain the results of cross-validation, including accuracy on

the original test data and the augmented test data, and the average concordance

rate.

acc_aug_0 = acc_aug_0/expr.shape[0]
acc_aug_1 = acc_aug_1/expr.shape[0]
print("On the original test set the accuracy is",acc_aug_0,";The concordance rate
is:",np.mean(res_op),"; Accuracy on the augmented is ",acc_aug_1)

	Description of files
	Data files:
	Python files:

	Description of key functions
	1. sdc
	Argurments:
	Values:
	Example:

	2. mean_std_est
	Arguments:
	Values:

	2. augment_noise_scale
	Arguments:
	Values:

	3. gene_filter
	Arguments:
	Values:

	Tutorial

