
Using �PoissonSeq� (Version 1.1) to discover di�erential

expression based on sequencing data

Jun Li

Department of Statistics, Stanford University

junli07@stanford.edu

September 6, 2011

1 Introduction

PoissonSeq is an R package that implements all methods described in Li et al. ([2]). Like

edgeR ([3]) and DESeq ([1]), PoissonSeq is used to discover di�erentially expressed elements

(genes, tags, et al.) based on sequencing (RNA-Seq, Tag-Seq, ...) data. It gives a list of

signi�cant genes, as well as the estimated false discovery rate.

This package is available on CRAN, to install it, just type on the R command:

install.packages("PoissonSeq")

Every time before you use this package, load it by typing on the R command:

library("PoissonSeq")

The main/unique features of PoissonSeq are:

1. It can be used not only for data with two-class outcome (eg. normal vs. diseased),

but also for data with multiple-class outcome (eg. cancer type 1 vs. cancer type 2 vs.

cancer type 3), and data with quantitative outcome (eg. patients with di�erent blood

pressures).

2. It uses permutation to generate the null distribution of the test statistic, rather than full

trusts the asymptotic distribution. Therefore, it may be more robust to the violation

of distributional assumptions, and more robust to gene-gene correlation.

3. It implements a new method for estimating the sequencing depth. This method has

been shown to be more accurate than existing methods ([2]). Sequencing depth serves

1

as a scaling factor between experiments, and has been shown to be of critical impor-

tance to many inference problems based on sequencing data.

4. It can handle both Poisson-type data and overdispersed (such as negative binomial)

data. In both cases, it is able to estimate the false discovery rate accurately.

Please refer to the paper ([2]) for more details. This instruction document can be downloaded

from http://www.stanford.edu/~junli07/research.html.

Di�erences from Version 1.0

On Sep 6, 2011, PoissonSeq has been updated to Version 1.1. The following changes have

been made:

1. In the new vesion, only two functions (PS.Main and PS.Est.Depth) are available to

users to make this package easy to use. It is very unlikely that users will use other

functions.

2. The output of PS.Main is now a data frame (table) instead of a list. This change is

also to make this package easy to use.

3. The estimated FDRs are always monotone non-decreasing now.

4. We now �lter out genes with too small number of reads across experiments. In Version

1.0, this needs to be done beforehand by the user.

5. The estimated sequencing depths have a di�erent scale than before. In Version 1.0,

sum(depth)=1; now we have product(depth)=1. However, their relative values do not

change. For example, if the depths estimated by Version 1.0 are 0.1, 0.2, 0.3, and 0.4,

then they will be 0.452, 0.904, 1.355, 1.807 by Version 1.1.

2 Usage

Compared to Version 1.0, Version 1.1 simpli�es the output. Now, only two functions in the

package are available to the users:

2.1 PS.Main

This is the main function of this package. Given a sequencing dataset and optionally the

running parameters, this function will do all the following things for the user:

2

1. Filter out genes with too small number of reads across experiments. The default is to

�lter out genes with no more than 5 reads totally across all experiments, AND to �lter

out genes with no more than 0.5 reads averagely across all experiments. For example,

if you have 6 samples totally, then all genes with 0, 1, 2, 3, 4, or 5 reads totally across

the 6 samples will be discarded. As another example, if you have 20 samples totally,

then all genes with 0∼10 reads totally across the 20 samples will be discarded.

2. Transform the data so that it looks more like Poisson.

3. Estimate the sequencing depth, which is used to normalize the data implicitly.

4. Calculate the score statistics, permute and estimate the FDR for all possible cuto�s.

The input of PS.Main are two lists: dat and para. dat contains all information about

the sequencing dataset, and para contains all parameters that control the running of the

program. dat must be given by the users, while para can be left as blank, in which case its

default values will be used. In most cases, the default values should be good enough.

2.1.1 dat

dat contains the following elements:

1. n: the data matrix. Rows for genes, columns for experiments (samples). Note that

these are the original counts without any normalization. The normalization will be

done by PoissonSeq. RPKM cannot be used as the input data matrix. However, non-

integer counts, which can be generated by some mapping algorithms for reads mapped

with uncertainty, can be used as the input.

2. y: the outcome vector. For two class data, the �rst class must be denoted by 1, and

the second class must be denoted by 2. For K class data, Class k must be denoted by

k, k = 1, . . . , K. For quantitative data, y are real numbers.

3. type: twoclass, multiclass, or quant. No other values are accepted.

4. pair: paired data or not. Default value: FALSE. Only takes e�ect for twoclass data.

Note that for paired data, the two classes are still denoted by 1 and 2, and y must be

like 1, 2, 1, 2, 1, 2, ..., 1, 2. The �rst 1 is paired with the �rst 2, the second

1 is paired with the second 2, et al.

5. gname: gene names. Default value: 1 : nrow(n). That is, the i'th gene is named

i.

3

For example, if you have a sequencing dataset from 3 normal samples and 5 cancer samples.

Each experiment is mapped to 10,000 genes. Then your data n should be a 10000 × 10

matrix. y=c(1,1,1,2,2,2,2,2) if you put the normal samples in the �rst three columns of

n. type should be twoclass, pair should be FALSE, and gname is set to be the names of the

10,000 genes. If you do not know the gene names, you do not need to specify it, or set it as

NULL�the program will re-set it as 1, 2, ..., 10000.

After setting n, y, type, pair and gname, you just type

dat <- list(n=n, y=y, type=type, pair=pair, gname=gname).

2.1.2 para

para contains the following elements:

1. trans: to tranform the data using the order transformation or not to transform it.

default value: TRUE. As most sequencing datasets are overdispersed, trans should be

set as TRUE. In case you are very sure that your dataset is Poisson, you can set it as

FALSE. However, even in this case, leaving it as TRUE does not hurt much.

2. npermu: number of permutations. default value: 100. You may want to set them to

larger values like 200, 500, or even 1000, as larger npermu gives more stable results

(under di�erent seeds). However, the computational time also increases (proportion-

ally).

3. seed: random seed to generate the permutation indexes. default value: 10. Note that

di�erent seeds typically give slightly di�erent estimated FDRs. The larger npermu is,

the smaller the di�erence is.

4. ct.sum: if the total number of reads of a gene across all experiments <= ct.sum, this

gene will not be considered for di�erential expression detection. Default value: 5.

5. ct.mean: if the mean number of reads of a gene across all experiments <= ct.mean,

this gene will not be considered for di�erential expression detection. Default value:

0.5.

6. div: the number of divisions of genes for estimating theta. default value: 10.

7. pow.file: the �le to store the power transform curve (mean(log(mu)) ~ 1/theta).

default value: pow.txt.

Note that all the above elements are optional. Feel free to set none, one, two, ..., or all of

them. The ones that are not set will be given the default values by the program.

4

2.2 PS.Est.Depth

This function estimates the sequencing depths of the experiments. We understand that some

users may not want to use PoissonSeq to �nd di�erentially expressed genes, but just want

to estimate the sequencing depth so that they can normalize the data for classi�cation or

clustering, so we provide this function. This function has four parameters:

1. n: The data matrix.

2. iter: Number of iterations used. Default value: 5. The default value is usually a good

choice.

3. ct.sum: a cuto�. If the total number of reads of a gene across all experiments <=

ct.sum, this gene will not be considered for estimating sequencing depth. Default value:

5.

4. ct.mean: a cuto�. If the mean number of reads of a gene across all experiments <=

ct.mean, this gene will not be considered for estimating sequencing depth. Default

value: 0.5.

Usually, default values for iter, ct.sum and ct.mean are appropriate, and only n needs to

be speci�ed.

3 Examples

Here I use 't Hoen data ([4]) as an example. The dataset is available from Gene Expression

Omnibus under accession number GSE10782. An arranged version called tHoen.txt (zipped

to tHoen.zip) can be downloaded from http://www.stanford.edu/~junli07/research.

html. One can analyze the data using the following steps:

1. Read in the data from the �le:

hdat <- read.table("tHoen.txt", header=T, stringsAsFactors=F)

gname <- hdat[, 1]

n <- as.matrix(hdat[, -1])

y <- c(1, 2, 1, 2, 1, 2, 1, 2)

type <- "twoclass"

pair <- FALSE

dat <- list(n=n, y=y, type=type, pair=pair, gname=gname)

5

2. Set the parameter list. In this case (and in most other cases), we do not need to set it.

Of course, you can set it if you want to. For example, if you want to increase the

number of permutations to 200, simply type

para <- list(npermu=200)

If you also want to change the random seed so that you get a slightly di�erent result,

type

para <- list(npermu=200, seed=100)

3. Run PoissonSeq:

If you use the default para, type

res <- PS.Main(dat=dat)

If you have re-set para, type

res <- PS.Main(dat=dat, para=para)

4. All the results has been stored in a data frame (i.e. a table) res. You can type

print(res[1:100,])

to check the top 100 signi�cant genes. Or you can type

write.table(res, file="res.txt", quote=F, row.names=F, col.names=T, sep="\t")

to write the results into a �le.

Or you can plot the FDR curve by typing

plot(resnc, resfdr, xlab="Number called", ylab="estimated FDR", type="l")

5. If you want to estimate the sequencing depths, you can type

depth <- PS.Est.Depth(n)

References

[1] S. Anders and W. Huber. Di�erential expression analysis for sequence count data.

Genome Biology, 11:R106, 2010.

[2] J. Li, D. M. Witten, I. Johnstone, and R. Tibshirani. Normalization, testing, and false

discovery rate estimation for rna-sequencing data. Biostatistics, 2011. in press.

[3] M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edger: a bioconductor package for

di�erential expression analysis of digital gene expression data. Bioinformatics, 26(1):139�

40, 2010.

[4] P. A. C. 't Hoen, Y. Ariyurek, H. H. Thygesen, E. Vreugdenhil, R. H. Vossen, R. X.

de Menezes, J. M. Boer, G. J. van Ommen, and J. T. den Dunnen. Deep sequencing-

6

based expression analysis shows major advances in robustness, resolution and inter-lab

portability over �ve microarray platforms. Nucleic Acids Res, 36(21):e141, 2008.

7

