The Monotone Secant Conjecture in the Real Schubert Calculus

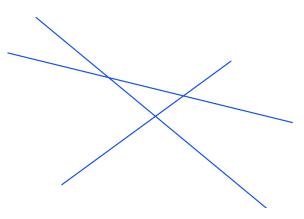
Abraham Martín del Campo

Texas A&M University

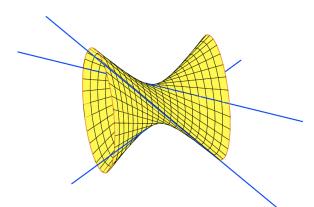
Métodos Efectivos en Geometría Algebraica May 30, 2011

Joint work with: Jon Hauestein, Nick Hein, Chris Hillar, Frank Sottile, Zach Teitler

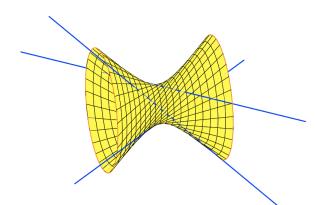
Three of the lines



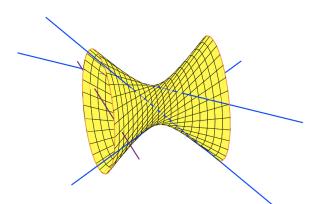
Quadric surface

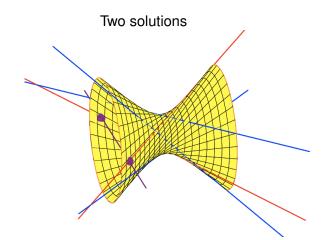


Second ruling

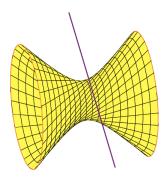


Fourth line





The solutions might not be real-they might be complex conjugates.



Flags

Given $\alpha = (a_1 < a_2 < \cdots < a_k)$ and n,

 $E_{\bullet}: \{0\} \subset E_{a_1} \subset E_{a_2} \subset \cdots \subset E_{a_k} \subset \mathbb{C}^n$, where dim $E_{a_i} = a_i$.

Flags

Given
$$\alpha = (a_1 < a_2 < \cdots < a_k)$$
 and *n*,

$$E_ullet: \{0\} \subset E_{a_1} \subset E_{a_2} \subset \cdots \subset E_{a_k} \subset \mathbb{C}^n, \ \ ext{where dim } E_{a_i} = a_i.$$

Example

If
$$\alpha = (1, 2)$$
, then $E_{\bullet} = E_1 \subset E_2$ in \mathbb{C}^n

Flags

Given
$$\alpha = (a_1 < a_2 < \cdots < a_k)$$
 and *n*,

$$E_ullet: \{0\} \subset E_{a_1} \subset E_{a_2} \subset \cdots \subset E_{a_k} \subset \mathbb{C}^n, \hspace{1em} ext{where dim } E_{a_i} = a_i.$$

Definition

The set of all flags of type α is the flag manifold $\mathbb{F}\ell(\alpha; n)$.

Flags

Given
$$\alpha = (a_1 < a_2 < \cdots < a_k)$$
 and *n*,

$$E_ullet: \{0\} \subset E_{a_1} \subset E_{a_2} \subset \cdots \subset E_{a_k} \subset \mathbb{C}^n, \hspace{1em} ext{where dim } E_{a_i} = a_i.$$

Definition

The set of all flags of type α is the flag manifold $\mathbb{F}\ell(\alpha; n)$.

When $\alpha = (a)$, then $\mathbb{F}\ell(a; n)$ is the Grassmannian $\operatorname{Gr}(a; n)$ of *a*-planes in \mathbb{C}^n .

Flags

Given
$$\alpha = (a_1 < a_2 < \cdots < a_k)$$
 and n ,

$$E_ullet: \{0\} \subset E_{a_1} \subset E_{a_2} \subset \cdots \subset E_{a_k} \subset \mathbb{C}^n, \hspace{1em} ext{where dim } E_{a_i} = a_i.$$

Definition

The set of all flags of type α is the flag manifold $\mathbb{F}\ell(\alpha; n)$.

When $\alpha = (a)$, then $\mathbb{F}\ell(a; n)$ is the Grassmannian Gr(a; n) of *a*-planes in \mathbb{C}^n .

Example:

The set of lines in \mathbb{P}^3 is Gr(2, 4)

Definition

A *Schubert Variety* $X_{\sigma}F_{\bullet}$ is a subset of $\mathbb{F}\ell(\alpha; n)$ satisfying a condition σ imposed by a complete flag F_{\bullet} .

Definition

A *Schubert Variety* $X_{\sigma}F_{\bullet}$ is a subset of $\mathbb{F}\ell(\alpha; n)$ satisfying a condition σ imposed by a complete flag F_{\bullet} .

Example:

The set of lines in space meeting a point.

Example:

The set of lines in space meeting another fixed line.

Definition

A *Schubert Variety* $X_{\sigma}F_{\bullet}$ is a subset of $\mathbb{F}\ell(\alpha; n)$ satisfying a condition σ imposed by a complete flag F_{\bullet} .

Example:

The set of lines in space meeting a point.

Example:

The set of lines in space meeting another fixed line.

Definition

A *Schubert problem* in $\mathbb{F}\ell(\alpha; n)$ is a list of conditions $(\sigma_1, \ldots, \sigma_m)$ such that

$$X_{\sigma_1}F^1_{\bullet} \cap X_{\sigma_2}F^2_{\bullet} \cap \cdots \cap X_{\sigma_m}F^m_{\bullet}$$

is finite (when the flags F_{\bullet}^{i} are in general position.)

In the last ${\sim}15$ years, a series of conjectures, experiments, and theorems has explored the reality of Schubert calculus:

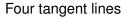
What conditions on real reference flags ensure that a Schubert problem has all its solutions real?

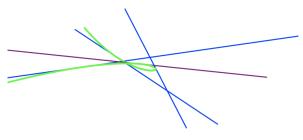
Shapiro Conjecture

Let γ be a real rational normal curve.

Shapiro Conjecture

Let γ be a real rational normal curve. If $F^1_{\bullet}, \ldots, F^m_{\bullet}$ are real flags tangent to γ ,

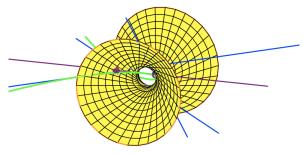




Shapiro Conjecture

Let γ be a real rational normal curve. If $F_{\bullet}^{1}, \ldots, F_{\bullet}^{m}$ are real flags tangent to γ , then $X_{\sigma_1}F_{\bullet}^{1} \cap X_{\sigma_2}F_{\bullet}^{2} \cap \cdots \cap X_{\sigma_m}F_{\bullet}^{m}$ is transverse and all points are real.

Always real solutions



Shapiro Conjecture

Let γ be a real rational normal curve. If $F_{\bullet}^{1}, \ldots, F_{\bullet}^{m}$ are real flags tangent to γ , then $X_{\sigma_{1}}F_{\bullet}^{1} \cap X_{\sigma_{2}}F_{\bullet}^{2} \cap \cdots \cap X_{\sigma_{m}}F_{\bullet}^{m}$ is transverse and all points are real.

[Eremenko-Gabrielov, 2002]: Proof for Gr(n-2, n).

[Mukhin-Tarasov-Varshenko, 2010]: Proof for Gr(a, n).

Shapiro Conjecture

Let γ be a real rational normal curve. If $F_{\bullet}^{1}, \ldots, F_{\bullet}^{m}$ are real flags tangent to γ , then $X_{\sigma_1}F_{\bullet}^{1} \cap X_{\sigma_2}F_{\bullet}^{2} \cap \cdots \cap X_{\sigma_m}F_{\bullet}^{m}$ is transverse and all points are real.

[Eremenko-Gabrielov, 2002]: Proof for Gr(n-2, n).

[Mukhin-Tarasov-Varshenko, 2010]: Proof for Gr(a, n).

Not true for $\mathbb{F}\ell(\alpha; n)$ in general.

Shapiro Conjecture

Let γ be a real rational normal curve. If $F_{\bullet}^{1}, \ldots, F_{\bullet}^{m}$ are real flags tangent to γ , then $X_{\sigma_1}F_{\bullet}^{1} \cap X_{\sigma_2}F_{\bullet}^{2} \cap \cdots \cap X_{\sigma_m}F_{\bullet}^{m}$ is transverse and all points are real.

[Eremenko-Gabrielov, 2002]: Proof for Gr(n-2, n).

[Mukhin-Tarasov-Varshenko, 2010]: Proof for Gr(a, n).

Not true for $\mathbb{F}\ell(\alpha; n)$ in general.

[**Ruffo-Sivan-Soprunova-Sottile**, 2005]: Tested 520,420,135 instances of 1,126 Schubert problems, taking 15.76 GHz-years.

Shapiro Conjecture

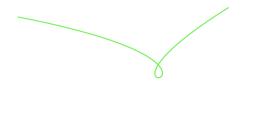
Let γ be a real rational normal curve. If $F_{\bullet}^{1}, \ldots, F_{\bullet}^{m}$ are real flags tangent to γ , then $X_{\sigma_1}F_{\bullet}^{1} \cap X_{\sigma_2}F_{\bullet}^{2} \cap \cdots \cap X_{\sigma_m}F_{\bullet}^{m}$ is transverse and all points are real.

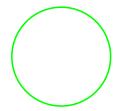
The Monotone-Secant Conjecture

Is a generalization of the Shapiro conjecture in two directions:

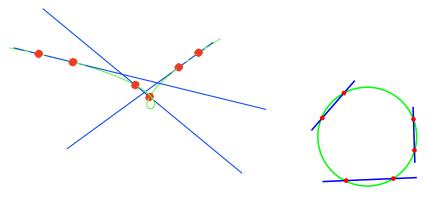
- For Schubert problems in $\mathbb{F}\ell(\alpha; n)$.
- **2** When the flags $F_{\bullet}^1, \ldots, F_{\bullet}^m$ are secant to γ .

Begin with a rational normal curve in 3-space:

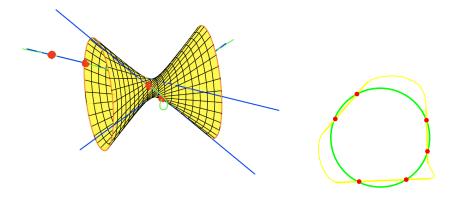




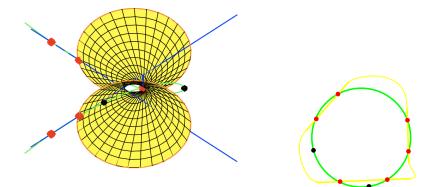
Select three secant lines:



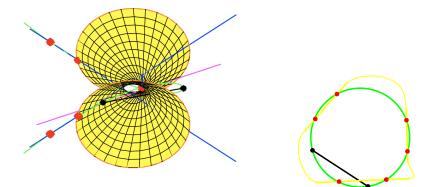
Introduce the hyperboloid defined by the three secant lines:



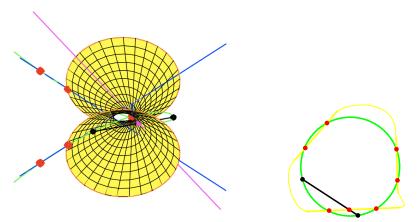
Consider an extra pair of points in the rational normal curve:



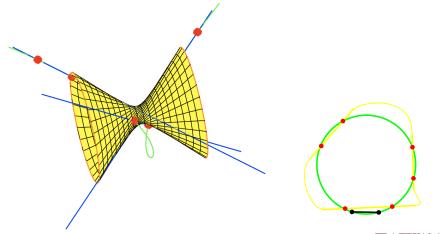
There is one (hence two) real solution(s):



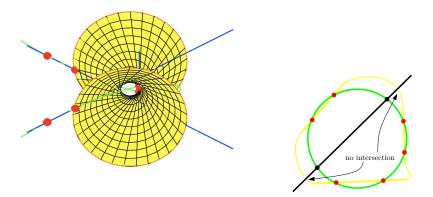
Here is the other solution:



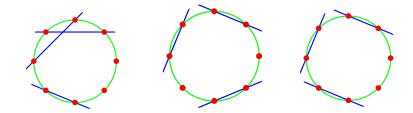
Two points in the curve may lead to no real solutions:



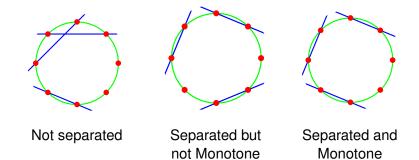
This view shows the same behavior "inside" the hyperboloid:



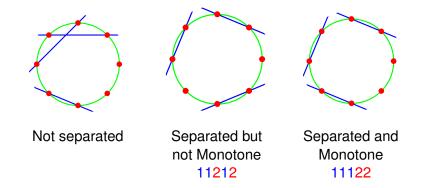
If $F_{\bullet}^1, \ldots, F_{\bullet}^m$ are real secant that are separated and monotone, then $X_{\sigma_1}F_{\bullet}^1 \cap X_{\sigma_2}F_{\bullet}^2 \cap \cdots \cap X_{\sigma_m}F_{\bullet}^m$ is transverse and all points are real.



If $F^1_{\bullet}, \ldots, F^m_{\bullet}$ are real secant that are separated and monotone, then $X_{\sigma_1}F^1_{\bullet} \cap X_{\sigma_2}F^2_{\bullet} \cap \cdots \cap X_{\sigma_m}F^m_{\bullet}$ is transverse and all points are real.



If $F^1_{\bullet}, \ldots, F^m_{\bullet}$ are real secant that are separated and monotone, then $X_{\sigma_1}F^1_{\bullet} \cap X_{\sigma_2}F^2_{\bullet} \cap \cdots \cap X_{\sigma_m}F^m_{\bullet}$ is transverse and all points are real.



If $F_{\bullet}^1, \ldots, F_{\bullet}^m$ are real secant that are separated and monotone, then $X_{\sigma_1}F_{\bullet}^1 \cap X_{\sigma_2}F_{\bullet}^2 \cap \cdots \cap X_{\sigma_m}F_{\bullet}^m$ is transverse and all points are real.

So far, we have verified the *Monotone Secant conjecture* in **4,114,827,720** instances of 775 Schubert problems.

It has taken 615.978 GHz-years of computation.

If $F^1_{\bullet}, \ldots, F^m_{\bullet}$ are real secant that are separated and monotone, then $X_{\sigma_1}F^1_{\bullet} \cap X_{\sigma_2}F^2_{\bullet} \cap \cdots \cap X_{\sigma_m}F^m_{\bullet}$ is transverse and all points are real.

So far, we have verified the *Monotone Secant conjecture* in **4,114,827,720** instances of 775 Schubert problems.

It has taken 615.978 GHz-years of computation.

You can see our data here:

http://www.math.tamu.edu/~secant/

Thank you!

Abraham Martín del Campo

www.math.tamu.edu/~asanchez/

Thank you!

Abraham Martín del Campo Sánchez

www.math.tamu.edu/~asanchez/