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NEWTON POLYTOPES AND WITNESS SETS

JONATHAN D. HAUENSTEIN AND FRANK SOTTILE

Abstract. We present two algorithms that compute the Newton polytope of a polyno-
mial defining a hypersurface H in Cn using numerical computation. The first algorithm
assumes that we may only compute values of f—this may occur if f is given as a straight-
line program, as a determinant, or as an oracle. The second algorithm assumes that H
is represented numerically via a witness set. That is, it computes the Newton polytope
of H using only the ability to compute numerical representatives of its intersections with
lines. Such witness set representations are readily obtained when H is the image of a
map or is a discriminant. We use the second algorithm to compute a face of the Newton
polytope of the Lüroth invariant, as well as its restriction to that face.

Introduction

While a hypersurface H in Cn is always defined by the vanishing of a single polynomial
f , we may not always have access to the monomial representation of f . This occurs, for
example, when H is the image of a map or if f is represented as a straight-line program,
and it is a well-understood and challenging problem to determine the polynomial f whenH
is represented in this way. Elimination theory gives a symbolic method based on Gröbner
bases that can determine f from a representation of H as the image of a map or as a
discriminant [7]. Such computations require that the map be represented symbolically,
and they may be infeasible for moderately-sized input.
The set of monomials in f , or more simply the convex hull of their exponent vectors (the

Newton polytope of f), is an important combinatorial invariant of the hypersurface. The
Newton polytope encodes asymptotic information about H and determining it from H is a
step towards determining the polynomial f . For example, numerical linear algebra [6, 11]
may be used to find f given its Newton polytope. Similarly, the Newton polytope of an
image of a map may be computed from Newton polytopes of the polynomials defining the
map [10, 12, 13, 25, 26], and computed using tropical geometric algorithms [27].
We propose numerical methods to compute the Newton polytope of f in two cases

when f is not known explicitly. We first show how to compute the Newton polytope when
we are able to evaluate f . This occurs, for example, if f is represented as a straight-
line program or as a determinant (neither of which we want to expand as a sum of
monomials), or perhaps as a compiled program. For the other case, we suppose that f
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defines a hypersurface H that is represented numerically as a witness set. Our basic idea
is similar to ideas from tropical geometry. The tropical variety of a hypersurface H in
(C×)n is the normal fan to the Newton polytope of a defining polynomial f , augmented
with the edge lengths. The underlying fan coincides with the logarithmic limit set [3, 4]
of H, which records the asymptotic behavior of H in (C×)n. We use numerical nonlinear
algebra to study the asymptotic behavior ofH in (C×)n and use this to recover the Newton
polytope of a defining equation of H. As both our algorithms are easily parallelizable, this
numerical approach to Newton polytopes should allow the computation of significantly
larger examples than are possible with purely symbolic methods.
This paper is organized as follows. In Section 1, we explain symbolic and geometric-

combinatorial preliminaries, including representations of polytopes, Newton polytopes,
and straight-line programs. In Section 2, we discuss the essentials of numerical nonlinear
algebra (also called numerical algebraic geometry [24]), in particular explaining the fun-
damental data structure of witness sets. Our main results are in the next two sections. In
Section 3 we explain (in Theorem 4 and Remark 5) how to compute the Newton polytope
of f , given only that we may numerically evaluate f , and in Section 4, we explain (in The-
orems 8 and 9, and Remark 10) how to use witness sets to compute the Newton polytope
of f . Illustrative examples are presented in these sections. In Section 5, we combine our
approach with other techniques in numerical nonlinear algebra to explicitly compute the
hypersurface of even Lüroth quartics.

1. Polynomials and Polytopes

We explain necessary background from geometric combinatorics and algebra.

1.1. Polytopes. A polytope P is the convex hull of finitely many points A ⊂ Rn,

(1.1) P = conv(A) :=
{∑

α∈A

λαα : λα ≥ 0 ,
∑
α

λα = 1
}
.

Dually, a polytope is the intersection of finitely many halfspaces in Rn,

(1.2) P = {x ∈ Rn : wi · x ≤ bi for i = 1, . . . , N} ,

where w1, . . . , wN ∈ Rn and b1, . . . , bN ∈ R. These are two of the most common representa-
tions of a polytope. The first (1.1) is the convex hull representation and the second (1.2)
is the halfspace representation. The classical algorithm of Fourier-Motzkin elimination
converts between these two representations.
The affine hull of a polytope P is the smallest affine-linear space containing P . The

boundary of P (in its affine hull) is a union of polytopes of smaller dimension than P ,
called faces of P . A facet of P is a maximal proper face, while a vertex is a minimal face
of P (which is necessarily a point). An edge is a 1-dimensional face.
In addition to the two representations given above, polytopes also have a tropical rep-

resentation, which consists of the edge lengths, together with the normal fan to the edges.
(This normal fan encodes the edge-face incidences.) Jensen and Yu [19] gave an algorithm
for converting a tropical representation into a convex hull representation.
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Every linear function x 7→ w · x on Rn (here, w ∈ Rn) achieves a maximum value on
a polytope P . The subset Pw of P where this maximum value is achieved is a face of
P , called the face exposed by w. Let hP (w) be this maximum value of w · x on P . The
function w 7→ hP (w) is called the support function of P . The support function encodes
the halfspace representation as

P = {x ∈ Rn : w · x ≤ hP (w) for w ∈ Rn} .
The oracle representation is a fourth natural representation of a polytope P . There are

two versions. For the first, given w ∈ Rn, if the face Pw exposed by w is a vertex, then it
returns that vertex, and if Pw is not a vertex, it either returns a vertex on Pw or detects
that Pw is not a vertex. Alternatively, it returns the value hP (w) of the support function
at w. The classical beneath-beyond algorithm [14, §5.2] uses an oracle representation of
a polytope to simultaneously construct its convex-hull and halfspace representations. It
iteratively builds a description of the polytope, including the faces and facet-supporting
hyperplanes, adding one vertex at a time. The software package iB4e [18] implements this
algorithm. Another algorithm converting the oracle representation to the convex hull and
halfspace representation is “gift-wrapping” [5].
Our numerical algorithms return oracle representations.

1.2. Polynomials and their Newton polytopes. Let N = {0, 1, . . . } be the nonneg-
ative integers and write C× for the nonzero complex numbers. Of the many ways to
represent a polynomial f ∈ C[x1, . . . , xn], perhaps the most familiar is in terms of mono-
mials. For α ∈ Nn, we have the monomial

xα := xα1
1 xα2

2 · · · xαn
n ,

which has degree |α| := α1+· · ·+αn. A polynomial f is a linear combination of monomials

(1.3) f =
∑
α∈Nn

cαx
α cα ∈ C ,

where only finitely many coefficients cα are nonzero. The set {α ∈ Nn : cα ̸= 0} is the
support of f , which we will write as A(f), or simply A when f is understood.
A coarser invariant of the polynomial f is its Newton polytope, N (f). This is the

convex hull of its support

N (f) := conv(A(f)) .

For w ∈ Rn, the restriction fw of f to the face N (f)w of N (f) exposed by w is

(1.4) fw :=
∑

α∈A∩N (f)w

cαx
α ,

the sum over all terms cαx
α of f where w · α is maximal (and thus equal to hN (f)(w).)

A hypersurface H ⊂ Cn is defined by the vanishing of a single polynomial, H = V(f).
This polynomial f is well-defined up to multiplication by non-zero scalars if we require it
to be of minimal degree among all polynomials vanishing on H. We define the Newton
polytope, N (H), of H to be the Newton polytope of any minimal degree polynomial
f ∈ C[x1, . . . , xn] defining H.
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Polynomials are not always given as a linear combination of monomials (1.3). For exam-
ple, a polynomial may be given as a determinant whose entries are themselves polynomials.
It may be prohibitive to expand this into a sum of monomials, but it is computationally
efficient to evaluate the determinant. For another example, a polynomial may be given
as an oracle or as a compiled program.
An efficient encoding of a polynomial is as a straight line program. For a polynomial

f : Cn → C, this is a list
(f−n, . . . , f−1, f0, f1, . . . , fl)

of polynomials where f = fl and we have the initial values f−i = xi for i = 1, . . . , n, and
for every k ≥ 0, fk is one of

fi + fj , fi · fj , or c ,

where i, j < k and c ∈ Q[
√
−1] is a Gaussian rational number. (Gaussian rational numbers

are used for they are representable on a computer.)

Our goal is twofold, we present an algorithm to compute the Newton polytope of a poly-
nomial f that we can only evaluate numerically, and we present an algorithm to recover
the Newton polytope of a polynomial f defining a hypersurface H that is represented
numerically as a witness set (defined in § 2 below).
In the first case, we explain how to compute the support function hN (f) of the Newton

polytope of f , and to compute N (f)w, when this is a vertex. This becomes an algorithm,
at least for general w, when we have additional information about f , such as a finite
superset B ⊂ Zn of its support and bounds on the magnitudes of its coefficients. This is
discussed in Remark 5.
In the second case, we show how to compute N (f)w, when this is a vertex. This is

discussed in Remark 10.

2. Numerical nonlinear algebra and witness sets

Numerical nonlinear algebra (also called numerical algebraic geometry [24]) provides
methods based on numerical continuation for studying algebraic varieties on a computer.
The fundamental data structure in this field is a witness set, which is a geometric repre-
sentation based on linear sections and generic points.
Given a polynomial system F : Cm → Cn, consider an irreducible component V ⊂

V(F ) := F−1(0) of its zero set of dimension k and degree d. Let L : Cm → Ck be a
system of general affine-linear polynomials so that V(L) is a general codimension k affine
subspace of Cm. Then W := V ∩ V(L) will consist of d distinct points, and we call the
triple (F,L,W ) (or simply W for short) a witness set for V . The set W represents a
general linear section of V . Numerical continuation may be used to follow the points of
W as L (and hence V(L)) varies continuously. This allows us to sample points from V .
Ideally, V is a generically reduced component of the scheme V(F ) in that the Jacobian

of F at a general point w ∈ W ⊂ V of V has a k-dimensional null space. Otherwise
the scheme V(F ) is not reduced along V . When V is a generically reduced component
of V(F ), the points of W are nonsingular zeroes of the polynomial system [ FL ]. When
V(F ) is not reduced along V , the points of W are singular zeroes of this system, and it is
numerically challenging to compute such singular points.
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The method of deflation, building from [22], can compute W when V(F ) is not reduced
along V . In particular, the strong deflation method of [17] yields a system F ′ : Cm → Cn′

where n′ ≥ n such that V is a generically reduced component of the scheme V(F ′).
Replacing F with F ′, we will assume that V is a generically reduced component of V(F ).
The notion of a witness set for the image of an irreducible variety under a linear map was

developed in [15]. Suppose that we have a polynomial system F : Cm → Cn, a generically
reduced component V of V(F ) of dimension k and degree d, and a linear map ω : Cm → Cp

defined by ω(x) = Ax for A ∈ Cp×m. Suppose that the algebraic set U = ω(V ) ⊂ Cp has
dimension k′ and degree d′. A witness set for the projection U requires an affine-linear
map L adapted to the projection ω. Let B be a matrix

[
B1
B2

]
where the rows of the matrix

B1 ∈ Ck′×m are general vectors in the row space of A and the rows of B2 ∈ C(k−k′)×m are
general vectors in Cm. Define L : Cm → Ck by L(x) = Bx − 1 and set W := V ∩ V(L).
Then the quadruple (F, ω,L,W ) is a witness set for the projection U . By our choice of
B, the number of points in ω(W ) is the degree d′ of U and for any fixed u ∈ ω(W ), the
number of points in W ∩ ω−1(u) is the degree of the general fiber of ω restricted to V .
Note that k − k′ is the dimension of the general fiber.

Example 1. Consider the discriminant hypersurface H ⊂ C3 for univariate quadratic
polynomials, that is, H := V(f) where f(a, b, c) = b2 − 4ac. The triple (f,L,W ) where

L(a, b, c) :=

[
2a− 2b+ 3c− 1
3a+ b− 5c− 1

]
and W = H ∩ V(L), which consists of the two points, (a, b, c),

{(0.3816,−0.1071, 0.00752) , (1.2243, 2.1801, 0.97058)} ,

is a witness set for H.
This discriminant also has the form H = ω(V ) where ω is the linear projection mapping

(a, b, c, x) to (a, b, c) and V = V(F ) where

F (a, b, c, x) =

[
ax2 + bx+ c

2ax+ b

]
.

This variety V has dimension 2 and degree 3, and ω is defined by the matrix

A =

 1 0 0 0
0 1 0 0
0 0 1 0

 .

The quadruple (F, ω,L′,W ′) where L′(a, b, c, x) = L(a, b, c) and W ′ = V ∩ V(L′), which
also consists of two points, (a, b, c, x),

{(0.3816,−0.1071, 0.00752, 0.1403882) , (1.2243, 2.1801, 0.97058,−0.8903882)} ,

is also a witness set for H. In particular, ω(W ′) = W and we see that ω restricted to V
is generically one-to-one. �
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3. Newton polytopes via evaluation

We address the problem of computing the Newton polytope of a polynomial f : Cn → C
when we have a method to evaluate f . This is improved when we have some additional
information about the polynomial f .
For t a positive real number and w ∈ Rn, set tw := (tw1 , tw2 , . . . , twn). Consider the

monomial expansion of the polynomial f ,

f =
∑
α∈A

cαx
α where cα ∈ C× .

For x ∈ Cn, we define

tw.x := (tw1x1 , t
w2x2 , . . . , t

wnxn) ,

the coordinatewise product, and consider the evaluation,

(3.1) f(tw.x) =
∑
α∈A

cαt
w·αxα .

Let F := N (f)w be the face of N (f) that is exposed by w. Then if α ∈ F , we have
w · α = hN (f)(w). There is a positive real number dw such that if α ∈ A r F , then
w · α ≤ hN (f)(w)− dw. Thus (3.1) becomes

f(tw.x) =
∑

α∈A∩F

cαt
w·αxα +

∑
α∈ArF

cαt
w·αxα

= thN (f)(w)
(
fw(x) +

∑
α∈ArF

cαt
w·α−hN (f)(w)xα

)
,

where fw is the restriction of f to the face F . Observe that no exponent of t which occurs
in the sum exceeds −dw. This gives an asymptotic expression for t ≫ 0,

(3.2) log |f(tw.x)| = hN (f)(w) log(t) + log |fw(x)| + O(t−dw) ,

from which we deduce the following limit.

Lemma 2. If fw(x) ̸= 0, then

hN (f)(w) = lim
t→∞

log |f(tw.x)|
log(t)

.

Thus we may approximate the support function of N (f) by evaluating f numerically.

Remark 3. To turn Lemma 2 into an algorithm for computing hN (f), we need more
information about f , so that we may estimate the rate of convergence. For example, if
we have a bound, in the form of a finite superset B ⊂ Nn of A, then {w · α | α ∈ B} is a
discrete set which contains the value of hN (f)(w), and therefore the limit in Lemma 2. �

When w is generic in that α 7→ w · α is injective on A, then the face N (f)w of N (f)
exposed by w is a vertex so that fw(x) ̸= 0 for any x ∈ (C×)n. We may dispense with the
limit given an a priori estimate on the magnitude of the coefficients of f .
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Theorem 4. Let f : Cn → C be a polynomial with monomial expansion,

f(x) =
∑
α∈A

cαx
α , cα ∈ C× .

Suppose that δ, λ ≥ 1 and B ⊂ Nn are such that

(1) log |cα| ≤ δ for all α ∈ A,
(2) log |cα| ≤ λ+ log |cβ| for all α, β ∈ A, and
(3) A ⊂ B with |B| < ∞.

Let w ∈ RN be general in that

dw := min
α ̸=β∈B

|w · α− w · β| > 0 .

Then the face of N (f) exposed by w is a vertex which equals the unique β ∈ B such that∣∣∣∣w · β − log |f(tw)|
log(t)

∣∣∣∣ <
dw
2

where t > 0 is any number with log(t) exceeding max{2λ, 2(δ + e−1), λ+ log |B|+ 1}/dw.
Similarly, the face exposed by −w is a vertex which equals the unique β ∈ B such that∣∣∣∣−w · β − log |f(t−w)|

log(t)

∣∣∣∣ <
dw
2

where t > 0 is any number with log(t) exceeding max{2λ, 2(δ + e−1), λ+ log |B|+ 1}/dw.

Remark 5. Suppose that we know or may estimate the quantities B, δ, and λ of
Theorem 4. Then, for general w ∈ Rn we may compute dw, and therefore evaluating
log |f(tw)|/ log(t) for tdw > max{e2λ, e2+2δ, |B|eλ+1} will yield w · β and hence β.
Even without this knowledge, we may still compute the support function hN (f)(w) for

w ∈ Qn as follows. For 0 ̸= w ∈ Qn the map Zn → Q given by β 7→ w · β has image a free
group Zdw for some dw > 0. For x ∈ Cn with fw(x) ̸= 0 and t := eτ with τ > 0, we have∣∣∣∣ log |f(eτw.x)|τ

− hN (f)(w)

∣∣∣∣ ≈ log |fw(x)|
τ

+ O(e−dwτ ) .

Since hN (f)(w) ∈ Zdw, we may do the following. Pick a general x ∈ Cn (so that
fw(x) ̸= 0), and compute the quantity

(3.3)
log |f(eτw.x)|

τ

for τ in some increasing sequence of positive numbers. We monitor (3.3) for 1
τ
-convergence

to some κdw ∈ Zdw. Then hN (f)(w) = κdw.
Every such computation gives a halfspace

{x ∈ Rn | w · x ≤ hN (f)(w)}
containing N (f). Since N (f) lies in the positive orthant, we may repeat this one or more
times to obtain a bounded polytope P containing N (f). Having done so, set B := P ∩Nn.
Suppose that w ∈ Rn is general in that the values of w · α for α ∈ B are dis-

tinct. This implies that w exposes a vertex β of N (f). Then a similar (but simpler
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as fw(t
w) = cβt

hN (f)(w)) scheme as described above will result in the computation of the
support function hN (f)(w) and the vertex β. �

Proof of Theorem 4. By the choice of w, the face ofN (f) it exposes is a vertex, say β ∈ A,
and we have w · β = hN (f)(w). We may write

f(tw) = cβt
w·β +

(
f(tw)− cβt

w·β) = cβt
w·β

(
1 +

f(tw)− cβt
w·β

cβtw·β

)
.

Taking absolute value and logarithms, and using that log |cβ| < δ and w · β = h(w),

log |f(tw)| = log
∣∣cβtw·β∣∣+ log

∣∣∣∣1 + f(tw)− cβt
w·β

cβtw·β

∣∣∣∣(3.4)

≤ δ + w · β log(t) + log

∣∣∣∣1 + f(tw)− cβt
w·β

cβtw·β

∣∣∣∣ .
Let us estimate the last term. As A ⊂ B, we have∣∣∣∣f(tw)− cβt

w·β

cβtw·β

∣∣∣∣ =

∣∣∣∣∣∣∣
∑
α∈A
α ̸=β

cα
cβ

tw·α−w·β

∣∣∣∣∣∣∣ ≤
∑
α∈A
α ̸=β

eλt−dw ≤ |B| eλ−log(t)dw .

Since log(t) > (λ + log |B| + 1)/dw, we have |B|eλ−log(t)dw < e−1. Since log |1 + x| ≤ |x|,
we have

log

∣∣∣∣1 + f(tw)− cβt
w·β

cβtw·β

∣∣∣∣ ≤
∣∣∣∣f(tw)− cβt

w·β

cβtw·β

∣∣∣∣ ≤ |B| eλ−dw log(t) < e−1 .

Finally, as we have log(t) > 2(δ + e−1)/dw, we obtain

(3.5)
log |f(tw)|
log(t)

≤ w · β + (δ + e−1)
1

log(t)
< w · β +

dw
2
.

For the other inequality, using (3.4) and Condition (2) of the theorem,

(3.6) log |f(tw)| ≥ δ − λ+ log(t)w · β + log

∣∣∣∣1 + f(tw)− cβt
w·β

cβtw·β

∣∣∣∣ .
Since ∣∣∣∣f(tw)− cβt

w·β

cβtw·β

∣∣∣∣ < e−1 ,

the logarithm on the right of (3.6) exceeds −1. As δ − λ ≥ 1− λ, we have

log |f(tw)|
log(t)

> − λ

log(t)
+ w · β ≥ w · β − dw

2
,

since dw log(t) ≥ 2λ. Combining this with (3.5) proves the first statement about f(tw).
The statement about f(t−w) has the same proof, replacing w with −w. �
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Example 6. Reconsider the polynomial f(a, b, c) = b2 − 4ac from Ex. 1 with the vector
w = (−1.2, 0.4, 3.7). Suppose that we take λ = δ = 2 and B = {a2, ab, ac, b2, bc, c2} which
are the columns of the matrix

B =

2 1 1 0 0 0
0 1 0 2 1 0
0 0 1 0 1 2

 .

Then the dot products are w · B = (−2.4,−0.8, 2.5, 0.8, 4.1, 7.4), so that dw = 1.6. Since
we need log(t) > 3.75, we can take t = 45, and so tw = (45−1.2, 450.4, 453.7). We compute

log |f(tw)|
log(t)

= 2.864 and − log |f(t−w)|
log(t)

= 0.8016 .

Thus, the monomials ac and b2 are the vertices N (f)w and N (f)−w, respectively. �

4. Newton polytopes via witness sets

Let H ⊂ Cn be an irreducible hypersurface and suppose that we have a witness set
representation for H. As discussed in Section 2, this means that we may compute the
intersections ofH∩ℓ where ℓ is a general line in Cn. We explain how to use this information
to compute an oracle representation of the Newton polytope of H.
The hypersurface H ⊂ Cn is defined by a single irreducible polynomial

(4.1) f =
∑
α∈A

cαx
α cα ∈ C× ,

which is determined by H up to multiplication by a scalar.
Let a, b ∈ Cn be general points, and consider the parametrized line

ℓa,b = ℓ(s) := {sa− b | s ∈ C} .
Then the solutions to f(ℓ(s)) = 0 parameterize the intersection of H with the line ℓa,b,
which is a witness set for H.
Let w ∈ Rn. For t a positive real number, consider f(tw.ℓ(s)), which is

(4.2)
∑
α∈A

cα(sa1 − b1)
α1(sa2 − b2)

α2 · · · (san − bn)
αn .tw·α

Write (sa− b)α for the product of terms (sai − bi)
αi appearing in the sum.

Let F := N (H)w be the face of the Newton polytope of H exposed by w. If α ∈ F ,
then w · α = h(w), where h is the support function of N (H). There is a positive number
dw such that if α ∈ Ar F , then w · α ≤ h(w)− dw. We may rewrite (4.2),

f(tw.ℓ(s)) = th(w)
∑

α∈A∩F

cα(as− b)α +
∑

α∈ArF

cα(as− b)αtw·α .

Multiplying by t−h(w) and rewriting using the definition (1.4) of fw gives

(4.3) t−h(w)f(tw.ℓ(s)) = fw(ℓ(s)) +
∑

α∈ArF

cα(as− b)αtw·α−h(w) .

Observe that the exponent of t in each term of the sum over Ar F is at most −dw.
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As s 7→ ℓ(s) and s 7→ tw.ℓ(s) are general parametrized lines in Cn, the zeroes (in s) of
f(tw.ℓ(s)) and fw(ℓ(s)) parameterize witness sets for f and fw, respectively. The following
summarizes this discussion.

Lemma 7. In the limit as t → ∞, there are deg(f) − deg(fw) points of the witness set
f(tw.ℓ(s)) = 0 which diverge to ∞ (in s) and the remaining points converge to the witness
set fw(ℓ(s)) = 0.

When N (H)w is a vertex β, then fw = cβx
β (and deg(fw) = |β|), and

fw(ℓ(s)) = cβ(sa1 − b1)
β1(sa2 − b2)

β2 · · · (san − bn)
βn = cβ(sa− b)β .

In particular, there will be βi points of f(t
w.ℓ(s)) = 0 converging to bi/ai as t → ∞, and

so Lemma 7 gives a method to compute the vertices β of N (H). We give some definitions
to make these notions more precise.
Let a ∈ (C×)n and b ∈ Cn be general in that the univariate polynomial f(ℓa,b(s)) has

d = deg(H) nondegenerate roots, and if i ̸= j, then bi/ai ̸= bj/aj. For any w ∈ Rn with
N (H)w = {β}, consider the bivariate function ga,b,w(s, t) = g(s, t) := f(tw.ℓa,b(s)). Since
g(s, 1) has d simple zeroes, there are at most finitely many positive numbers t for which
g(s, t) does not have d simple zeroes. Therefore, there is a t0 > 0 and d disjoint analytic
curves s(t) ∈ C for t > t0 which parameterize the zeroes of g(s, t) for t > t0 (that is,
g(s(t), t) ≡ 0 for t > t0).
By Lemma 7 and our choice of a, b, for each i = 1, . . . , n, exactly βi of these curves will

converge to bi/ai as t → ∞, for each i = 1, . . . , n, while the remaining d− |β| curves will
diverge to infinity. We give an estimate of the rates of these convergences/divergences.

Let w ∈ Rn be general in that N (H)w is a vertex, β. Let dw be as above, and set

C :=
max{|cα| : α ∈ A}

|cβ|
.

Furthermore, set amin := min{1, |ai| : i = 1, . . . , n}, amax := max{1, |ai| : i = 1, . . . , n},
and the same, bmin and bmax, for b. Finally, for each i = 1, . . . , n, define

γi := min

{
amin ,

1

2

∣∣∣∣ biai − bj
aj

∣∣∣∣ : i ̸= j

}
, and

Γi := max

{
2

amax

,

∣∣∣∣ biai − bj
aj

∣∣∣∣ : i ̸= j

}
.

We give two results about the rate of convergence/divergence of the analytic curves s(t)
of zeroes of g(s, t), and then discuss how these may be used to compute N (H).

Theorem 8. With the above definitions, suppose that s : (t0,∞) → C is a continuous
function such that ga,b,w(s(t), t) ≡ 0 for t > t0 and that s(t) converges to bi/ai as t → ∞.
Let t1 ≥ t0 be a number such that if t > t1 then

(4.4)

∣∣∣∣s(t) − bi
ai

∣∣∣∣ ≤ γi .
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Then, for all t > t1,

(4.5)

∣∣∣∣s(t) − bi
ai

∣∣∣∣βi

≤ t−dw · C · |A| ·
(
amax

amin

(
1 +

Γi

γi

))d

.

Theorem 9. With the above definitions, suppose that s : (t0,∞) → C is a continuous
function such that ga,b,w(s(t), t) = 0 for t > t0 and that s(t) diverges to ∞ as t → ∞. Let
t1 ≥ t0 be a number such that if t > t1 then

(4.6) |s(t)| >
2bmax

amin

≥ 2 .

Then, for all t > t1,

(4.7) |s(t)|d−|β| ≥ tdw

C · |A|
·
(

amin

2(amax + amin)

)d

.

Remark 10. Theorems 8 and 9 lead to an algorithm to determine vertices of N (H).
First, choose a, b ∈ Cn as above and compute γi, bmax, and amin. For a general w ∈ Rn,
follow points in the witness set H ∩ (tw.ℓa,b(s)) as t increases until the inequalities (4.4)
and (4.6) are satisfied by the different points of the witness sets, at some t1. This will give
likely values for the integer components of the vertex β exposed by w. Next, continue
following these points until the subexponential convergence in (4.5) and (4.7) is observed,
which will confirm the value of β.
If we do not observe clustering of points of the witness set at s = bi/ai and s = ∞,

then we discard w, as it is not sufficiently general. That is, either it exposes a positive
dimensional face of N (H) or else it is very close to doing so in that dw is too small. �

Proof of Theorem 8. Fix t > t1. Since 0 = ga,b,w(s(t), t) = f(tw.ℓa,b(s(t))) and fw(x) =
cβx

β, (4.3) gives

|(s(t)a− b)β| ≤
∑

α∈Ar{β}

tw·α−w·β · |cα|
|cβ|

· |(s(t)a− b)α|

≤ t−dw · C ·
∑

α∈Ar{β}

|(s(t)a− b)α| .(4.8)

For any i and j we have

|s(t)aj − bj| = |aj| · |s(t)− bj
aj
| ≤ amax

∣∣s(t)− bi
ai

+ bi
ai
− bj

aj

∣∣ ≤ amax(γi + Γi) .

Since 2 ≤ amaxΓi and if α ∈ A, then |α| ≤ d, we have

(4.9) |(s(t)a− b)α| ≤
(
amax(γi + Γi)

)d
.

With (4.8), this becomes

(4.10) |(s(t)a− b)β| ≤ t−dw · C · |A|·
(
amax(γi + Γi)

)d
.
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If j ̸= i, then

|s(t)aj − bj| = |aj| ·
∣∣s(t)− bj

aj

∣∣ = |aj| ·
∣∣s(t)− bi

ai
+ bi

ai
− bj

aj

∣∣
≥ amin ·

∣∣∣∣∣ biai − bj
aj

∣∣ −
∣∣s(t)− bi

ai

∣∣∣∣∣
≥ amin · (2γi − γi) = aminγi .

Since aminγi ≤ 1 and |β| ≤ d, we have

(4.11)
∏
j ̸=i

∣∣(s(t)aj − bj)
βj
∣∣ ≥ (aminγi)

d−βi .

Observe that we have∣∣∣∣s(t) − bi
ai

∣∣∣∣βi

=
1

|ai|βi
· |s(t)ai − bi|βi =

1

|ai|βi
· |(s(t)a− b)β|∏

j ̸=i

∣∣(s(t)aj − bj)βj

∣∣ .
Combining this with (4.10) and (4.11) gives∣∣∣∣s(t) − bi

ai

∣∣∣∣βi

≤ t−dw · C · |A| ·
(
amax(γi + Γi)

)d · 1

aβi

min

· 1

(aminγi)d−βi
.

Since 1 ≥ amin ≥ γi and d ≥ βi ≥ 0, we have∣∣∣∣s(t) − bi
ai

∣∣∣∣βi

≤ t−dw · C · |A| ·
(
amax

amin

(
1 +

Γi

γi

))d

,

which completes the proof. �

Proof of Theorem 9. Fix t > t1. Then |s(t)| > 2. Since ga,b,w(s(t), t) = 0, we have

|cβtw·β(s(t)a− b)β| =
∣∣∣ ∑
α∈Ar{β}

cαt
w·α(s(t)a− b)α

∣∣∣ ≤
∑

α∈Ar{β}

|cαtw·α(s(t)a− b)α| .

Factoring out powers of |s(t)|, we obtain

tw·β|s(t)||β||cβ| |(a− b s(t)−1)β| ≤
∑

α∈Ar{β}

tw·α|s(t)||α||cα| |(a− b s(t)−1)α| .

Since s(t) → ∞ as t → ∞, we must have d− |β| > 0. Dividing by most of the left hand
side and by |s(t)|d and using the definition of dw, we obtain

|s(t)||β|−d ≤
∑

α∈Ar{β}

tw·α−w·β|s(t)||α|−d |cα|
|cβ|

|(a− b s(t)−1)α|
|(a− b s(t)−1)β|

≤ t−dw · C ·
∑

α∈Ar{β}

|s(t)||α|−d |(a− b s(t)−1)α|
|(a− b s(t)−1)β|

.(4.12)

We estimate the terms in this last sum. As |s(t)| ≥ 2, for any i we have

|ai − bi s(t)
−1| ≤ |ai|+ |bi s(t)−1| ≤ amax + bmax ,
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and so |(a− b s(t)−1)α| ≤ (amax + bmax)
|α|. Similarly, for any i we have

|ai − bi s(t)
−1| ≥ |ai| − |bi s(t)−1| ≥ amin − bmax ·

amin

2bmax

=
amin

2
.

Thus

|(a− b s(t)−1)α|
|(a− b s(t)−1)β|

≤ (amax + bmax)
|α|( 2

amin

)|β|
<

(2(amax + bmax)

amin

)d

.

Substituting this into (4.12) completes the proof of the theorem. �

Example 11. We demonstrate the convergence and divergence bounds by considering
the polynomial f(x, y) = x2 + 3x + 2y − 5 with the hypersurface H := V(f) it defines.
We have A = {1, x, y, x2} with |A| = 4 and will take C = 5, a = (2 +

√
−1, 3 − 2

√
−1),

b = (−1−
√
−1, 2−3

√
−1), amin = 1, amax =

√
13, bmin = 1, and bmax =

√
13. Additionally,

γi = Γi ≈ 1.5342 for i = 1, 2.
First, consider the vector w = (1, 1) for which N (H)w = (2, 0) and dw = 1. We

have ga,b(s, t) = f(t · (sa1 − b1), t · (sa2 − b2)), and ga,b(s, t) = 0 has two nonsingular
solutions for all t > 0. Since N (H)w = (2, 0) both solutions paths converge to b1/a1
as t → ∞. The following table compares the actual values for the two solution paths,
s1(t) and s2(t), with the upper bound (4.5) in Theorem 8. In particular, this table shows
|si(t)− b1/a1|2 ≈ 2.2t−1 whereas the upper bound is 1040t−1.

t |s1(t)− b1/a1|2 |s2(t)− b1/a1|2 Upper bound (4.5)
1e2 0.26 0.19 10.4
1e4 2.2e-4 2.2e-4 0.104
1e6 2.2e-6 2.2e-6 1.04e-3
1e8 2.2e-8 2.2e-8 1.04e-5

We now consider the vector w = (−1,−1) for which N (H)w = (0, 0) and dw = 2. With
the same a, b as above, ga,b(s, t) = f(t−1 · (sa1 − b1), t

−1 · (sa2 − b2)) and ga,b(s, t) = 0
has two nonsingular solutions for all t > 0. Since N (H)w = (0, 0), both solution paths
diverge to ∞ as t → ∞. The following table compares the actual values for the two
solution paths, s1(t) and s2(t), and the lower bound (4.7) in Theorem 9. This table shows
|si(t)|2 ≈ t2/8.71 whereas the lower bound is t2/4160.

t |s1(t)|2 |s2(t)|2 Lower bound (4.7)
1e2 1.17e3 1.13e3 2.40
1e4 1.15e7 1.15e7 2.40e4
1e6 1.15e11 1.15e11 2.40e8
1e8 1.15e15 1.15e15 2.40e12

�
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5. Even Lüroth quartics

Associating a plane quartic curve to a defining equation identifies the set of plane
quartics with P14. This projective space has an interesting Lüroth hypersurface whose
general point is a Lüroth quartic, which is a quartic that contains the ten vertices of some
pentalateral (arrangement of five lines). The equation for this hypersurface is the Lüroth
invariant, which has degree 54 [21] and is invariant under the induced action of PGL(3)
on P(S4C3) ≃ P14. A discussion of this remarkable hypersurface, with references, is given
in [8, Remark 6.3.31].
We use the algorithm of Section 4 to investigate the Lüroth polytope, the Newton

polytope of the Lüroth invariant. While we are not yet able to compute the full Lüroth
polytope, we can compute some of its vertices, including all those on a particular three-
dimensional face. This face is the Newton polytope of the Lüroth hypersurface in the
five-dimensional family of even quartics whose monomials are squares,

E := {q400x4 + q040y
4 + q004z

4 +2q220x
2y2 +2q202x

2z2 +2q022y
2z2 : [q400, . . . , q022] ∈ P5} .

(Note the coefficients of 2 on the last three terms. This scaling tempers the coefficients
in the equation f5 in Figure 1 for the even Lüroth quartics.) We show that this Newton
polytope is a bipyramid that is affinely isomorphic to

(5.1) conv
{(

0
0
0

)
,
(

1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)
,
(

1
1
1

)}
=

We will furthermore use the numerical interpolation method of [2] to compute the equation
for the hypersurface in E of even Lüroth quartics.

If ℓ1, . . . , ℓ5 are general linear forms on P2, then the quartic with equation

(5.2) ℓ1ℓ2ℓ3ℓ4ℓ5 · ( 1
ℓ1
+ 1

ℓ2
+ 1

ℓ3
+ 1

ℓ4
+ 1

ℓ5
) = 0

contains the ten points of pairwise intersection of the five lines defined by ℓ1, . . . , ℓ5.
Counting constants suggests that there is a 14-dimensional family of such quartics, but
Lüroth showed [20] that the set of such quartics forms a hypersurface in P14.
The formula (5.2) exhibits the Lüroth hypersurface LH as the closure of the intersection

of a general affine hyperplane M ⊂ C15 with the image of the map

(5.3)

g : (C3)5 −→ C15

(ℓ1, . . . , ℓ5) 7−→
5∏

i=1

ℓi ·
5∑

i=1

1
ℓi

The codimension of LH and the dimension of the general fiber (both 1) are easily
verified using this parameterization [15, Lemma 3]. In particular, we used the method

of [15] described in § 2 with Bertini [1] to compute a witness set for LH = g(C15) ∩M.
This witness set verifies that the degree of LH is 54. As shown in [16], this witness set
also provides the ability to test membership in LH by tracking at most 54 paths.
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The space C15 of quartic polynomials has coordinates given by the coefficients of the
monomials in a quartic,∑

i+j+k=4

qijkx
iyjzk = q400x

4 + q310x
3y + q301x

3z + q220x
2y2 + q211x

2yz

+q202x
2z2 + q130xy

3 + q121xy
2z + q112xyz

2 + q103xz
3

+q040y
2 + q031y

3z + q022y
2z2 + q013yz

3 + q004z
4 .

In theory, we may use the algorithm of Remark 10 to determine the Newton polytope
of LH. While difficult in practice, we may compute some vertices. For example,

q6400q
6
301q

30
121q

12
013 ↔ (6, 0, 6, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 12, 0) ,

is the extreme monomial in the direction

(3,−5, 3, 2, 3,−2,−1, 4,−3,−2, 3, 1,−5, 3,−5) .

By symmetry, this gives five other vertices,

q6400q
6
310q

30
112q

12
031 , q

6
040q

6
031q

30
211q

12
103 , q

6
040q

6
130q

30
112q

12
301 , q

6
004q

6
013q

30
211q

12
130 , q

6
004q

6
103q

30
121q

12
310 .

It is dramatically more feasible to compute the Newton polytope of the hypersurface of
Lüroth quartics in the space E of even quartics. This is the face of the Lüroth polytope
that is extreme in the direction of v, where

v · (q400, q310, . . . , q004) = −
∑

{qijk | one of i, j, k is odd} .

Obtaining a witness set for the even Lüroth quartics, EH := E ∩ LH, is straightforward;
we reparameterize using the 2’s in the definition of E and include the linear equations

qijk = 0 where one of i, j, k is odd

among the affine linear equations L : C15 → C13 used for the witness set computation.
When performing this specialization, some of the 54 points from LH coalesce. More
precisely, six points of EH arise as the coalescence of four points each, nine points of EH
arise the coalescence of two points each, and the remaining twelve points remain distinct.
This implies that EH is reducible with non-reduced components.
Numerical irreducible decomposition shows that EH consists of eight components, only

one of which is reduced. However, as we are using witness sets for images of maps [15]
(as described in § 2) the numerical computations are not performed in E , but rather on
the smooth incidence variety of the map g (5.3).
We first determine the Newton polytope of each component and then use interpola-

tion [2] to recover the defining equation for each component. For f1, . . . , f5 as given in
Figure 1, EH is defined by

(5.4) q4400 · q4040 · q4004 · f 4
1 · f 2

2 · f 2
3 · f 2

4 · f5 = 0 .

For completeness, we used the algorithm of [16] to verify that a random element of each
hypersurface V(fi) lies on LH.
Observe that f1, f2, f3, and f4 all have the same support and therefore the same Newton

polytope, ∆. Every integer point of ∆ corresponds to a monomial in these polynomials
and all are extreme. The Newton polytope of f5 is 4∆ and it has 65 nonzero terms,
which correspond to all the integer points in 4∆. Thus the Newton polytope of EH is
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f1 = q400q040q004 − q400q
2
022 − q040q

2
202 − q004q

2
220 − 2q220q202q022

f2 = q400q040q004 − q400q
2
022 + 3q040q

2
202 − q004q

2
220 + 2q220q202q022

f3 = q400q040q004 + 3q400q
2
022 − q040q

2
202 − q004q

2
220 + 2q220q202q022

f4 = q400q040q004 − q400q
2
022 − q040q

2
202 + 3q004q

2
220 + 2q220q202q022

f5 = 2401q4400q
4
040q

4
004 − 196q4400q

3
040q

3
004q

2
022 + 102q4400q

2
040q

2
004q

4
022 − 4q4400q040q004q

6
022

+ q4400q
8
022 − 196q3400q

4
040q

3
004q

2
202 − 196q3400q

3
040q

4
004q

2
220 + 840q3400q

3
040q

3
004q220q202q022

− 820q3400q
3
040q

2
004q

2
202q

2
022 − 820q3400q

2
040q

3
004q

2
220q

2
022 + 232q3400q

2
040q

2
004q220q202q

3
022

− 12q3400q
2
040q004q

2
202q

4
022 − 12q3400q040q

2
004q

2
220q

4
022 − 40q3400q040q004q220q202q

5
022

+ 4q3400q040q
2
202q

6
022 + 4q3400q004q

2
220q

6
022 − 8q3400q220q202q

7
022 + 102q2400q

4
040q

2
004q

4
202

− 820q2400q
3
040q

3
004q

2
220q

2
202 + 232q2400q

3
040q

2
004q220q

3
202q022 − 12q2400q

3
040q004q

4
202q

2
022

+ 102q2400q
2
040q

4
004q

4
220 + 232q2400q

2
040q

3
004q

3
220q202q022 + 128q2400q

2
040q

2
004q

2
220q

2
202q

2
022

− 80q2400q
2
040q004q220q

3
202q

3
022 + 6q2400q

2
040q

4
202q

4
022 − 12q2400q040q

3
004q

4
220q

2
022

− 80q2400q040q
2
004q

3
220q202q

3
022 + 220q2400q040q004q

2
220q

2
202q

4
022 − 24q2400q040q220q

3
202q

5
022

+ 6q2400q
2
004q

4
220q

4
022 − 24q2400q004q

3
220q202q

5
022 + 24q2400q

2
220q

2
202q

6
022

− 4q400q
4
040q004q

6
202 − 12q400q

3
040q

2
004q

2
220q

4
202 − 40q400q

3
040q004q220q

5
202q022

+ 4q400q
3
040q

6
202q

2
022 − 12q400q

2
040q

3
004q

4
220q

2
202 − 80q400q

2
040q

2
004q

3
220q

3
202q022

+ 220q400q
2
040q004q

2
220q

4
202q

2
022 − 24q400q

2
040q220q

5
202q

3
022 − 4q400q040q

4
004q

6
220

− 40q400q040q
3
004q

5
220q202q022 + 220q400q040q

2
004q

4
220q

2
202q

2
022 − 272q400q040q004q

3
220q

3
202q

3
022

+ 48q400q040q
2
220q

4
202q

4
022 + 4q400q

3
004q

6
220q

2
022 − 24q400q

2
004q

5
220q202q

3
022

+ 48q400q004q
4
220q

2
202q

4
022 − 32q400q

3
220q

3
202q

5
022 + q4040q

8
202 + 4q3040q004q

2
220q

6
202

− 8q3040q220q
7
202q022 + 6q2040q

2
004q

4
220q

4
202 − 24q2040q004q

3
220q

5
202q022 + 24q2040q

2
220q

6
202q

2
022

+ 4q040q
3
004q

6
220q

2
202 − 24q040q

2
004q

5
220q

3
202q022 + 48q040q004q

4
220q

4
202q

2
022

−32 q040q
3
220q

5
202q

3
022 + q4004q

8
220 − 8q3004q

7
220q202q022 + 24q2004q

6
220q

2
202q

2
022

− 32q004q
5
220q

3
202q

3
022 + 16q4220q

4
202q

4
022 .

Figure 1. Polynomials defining EH

14∆+ α, where α is the exponent vector of q4400q
4
040q

4
004. To complete the identification of

N (EH), consider the integer points {O,A,B,C,D} of ∆, which are on the left in Table 1
Replacing {O, . . . , D} by their differences with O gives the points o, a, b, c, d on the right
in Table 1. Note that a + b + c = d. Projecting to the first three coordinates is an
isomorphism of the integer span of a, b, c with Z3, and shows that ∆ is affinely isomorphic
to the bipyramid (5.1)
Using (5.4), we can determine which Edge quartics [9, 23] are Lüroth quartics since the

family of Edge quartics ED is contained in E with

ED := {V(s(x4 + y4 + z4)− t(y2z2 + x2z2 + x2y2)) : [s, t] ∈ P1} .
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Table 1. Vertices of ∆

q400 q040 q004 q022 q202 q220
O 0 0 0 1 1 1
A 1 0 0 2 0 0
B 0 1 0 0 2 0
C 0 0 1 0 0 2
D 1 1 1 0 0 0

q400 q040 q004 q022 q202 q220
o 0 0 0 0 0 0
a 1 0 0 1 −1 −1
b 0 1 0 −1 1 −1
c 0 0 1 −1 −1 1
d 1 1 1 −1 −1 −1

Identifying ED with P1, and evaluating at (5.4) gives the equation for ED ∩ LH,

s12(s+ t)4(2s− t)16(7s+ t)(2s2 + st+ t2)6(28s3 + 8s2t+ 3st2 + t3)3 = 0 .

Set ω :=
3
√
297 + 24

√
159. Besides the point [0, 1], the eight points [1, t] corresponding to

Edge quartics that are Lüroth quartics are

t1 = −1 ,

t2 = 2 ,

t3 = −7 ,

t4 =
1

2
(
√
−7− 1) ,

t5 =
−1

2
(1 +

√
−7) ,

t6 =
1

3ω
(15− 3ω − ω2) ,

t7 =
1

6ω
(ω2 − 6ω − 15 +

√
−3 (ω2 + 15)) ,

t8 =
1

6ω
(ω2 − 6ω − 15−

√
−3 (ω2 + 15)) .

In particular, there are four real values t1, t2, t3, t6 and four nonreal values t4, t5, t7, t8.
The Edge Lüroth quartic corresponding to [0, 1] has three real points, each of which is
singular. Also, except for t = t2 = 2, which is the union of four lines

x− y + z = x− y − z = x+ y − z = x+ y + z = 0 ,

the Edge Lüroth quartic corresponding to [1, ti] is smooth with no real points.

6. Conclusion

We presented two algorithms for computing the Newton polytope of a hypersurface H
given numerically. The first assumes that we may evaluate a polynomial defining H while
the second uses a witness set representation of H. The second is illustrated through the
determination of the polynomial defining the hypersurface of even Lüroth quartics (which
gives a face of the Lüroth poytope), along with some other vertices of the Lüroth polytope.
Implementing these algorithms remains a future project.
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