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Abstract. We work out details of the extrinsic geometry for two Hilbert schemes of some contemporary

interest: the Hilbert scheme Hilb2 P2 of two points on P2 and the dense open set parametrizing non-

planar clusters in the punctual Hilbert scheme Hilb4
0(A3) of clusters of length four on A3 with support

at the origin. We find explicit equations in natural projective, respectively affine embeddings for these

spaces. In particular, we answer a question of Bernd Sturmfels who asked for a description of the latter

space that is amenable to further computations. While the explicit equations we find are controlled in
a precise way by the representation theory of SL3, our arguments also rely on computer algebra.

Introduction

The Hilbert scheme Hilb2 P2 of two points on the affine plane has a natural projective embedding

(1) Hilb2 P2 ↪→ P14

defined as a composition of a natural map into Gr(2, 6) followed by the Plücker embedding (for details,
see Section 1.1). On the other hand, the Hilbert scheme Hilb4(A3) of 4 points on affine 3-space has a
distinguished affine open subset Hilb4(A3)np of non-planar clusters, which has a natural affine embedding

Hilb4(A3)np ↪→ A15,

whose image is the cone over the same Grassmannian (see Section 2.1). This latter Hilbert scheme has
a natural closed subset, the space Hilb4

0(A3)np of non-planar, punctual clusters, where punctual means
that the scheme-theoretic support of the subscheme parametrized is at a single point (chosen to be the
origin; see Section 2.2 for details). We thus obtain an affine embedding

(2) Hilb4
0(A3)np ↪→ A15.

The connection between these Hilbert schemes goes back to Tikhomirov’s [20, Thm 3]: the affine cone
over Hilb2 P2 ⊂ P14 is the singular locus of Hilb4

0(A3)np.

Our aim in this paper is twofold: we give explicit equations to describe the images of the embeddings (1)
and (2), and we recover this relationship between the spaces. We begin in Section 1.2 by identifying
various spaces of interest as PGL3-orbit closures in Gr(2, 6). Their defining polynomials arise from the
representation theory of SL3 (see Section 1.3). We use computer algebra to derive specific polynomials,
as well as to check various properties of the resulting systems of equations, in particular that they define
reduced ideals. We also provide a more synthetic way to derive the equations in Section 1.4.

Our main result is Theorem 2.2 in Section 2.2. Section 2.3 presents an explicit calculation to illuminate,
and yet again reprove, some of the main results. The explicit polynomials defining the embeddings (1)
and (2) are listed in the Appendix.
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1. The Hilbert scheme of two points on the projective plane

1.1. Basics on the Hilbert scheme of two points on the projective plane. Let U be a 3-
dimensional vector space. In this section, we recall some standard facts about the Hilbert scheme
Hilb2 P(U) of two points on the projective plane P(U). Let h : Hilb2 P(U)→ Sym2 P(U) be the Hilbert–
Chow morphism, H = h∗(O(1)) the pullback of the natural generator of Pic(Sym2 P(U)). Let ∆ ⊂
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Sym2 P(U) be the diagonal and B = h−1(∆) the exceptional locus of h, a threefold ruled over ∆ ∼= P(U).
It is known that

Pic(Hilb2 P(U)) ∼= Z[H]⊕ Z
[
B

2

]
.

Let L denote the line bundle O(2) on P(U). There is an associated rank two bundle L[2] on Hilb2 P(U)
whose fiber over a length 2 subscheme ζ ⊂ P(U) is H0(ζ,L). Its space of sections is

H0(Hilb2 P(U),L[2]) ∼= H0(P(U),L) = S2U∗

and it is globally generated. Its determinant

D = det(L[2]) = 2[H]−
[
B

2

]
∈ Pic(Hilb2 P(U))

is very ample (see [1] and references therein) and yields a PGL(U)-equivariant chain of embeddings

ϕD : Hilb2 P(U) ↪→ Gr(4, S2U∗) = Gr(2, S2U) ↪→ P(∧2S2U) ∼= P14.

The image of ϕD is of degree

D4 = 16H4 − 16H3B + 6H2B2 −HB3 +
B4

16
= 21

which arises from the known intersection numbers [16] on the Hilbert scheme, namely

(H4, H3B,H2B2, HB3, B4) = (3, 0,−8,−24,−48).

The embedding ϕD restricts to a PGL(U)-equivariant chain of embeddings

ϕD|B : B ↪→ Gr(2, S2U) ↪→ P(∧2S2U) ∼= P14

of degree

(D|B)3 = D3B = 8H3B − 6H2B2 +
3HB3

2
− B4

8
= 18.

1.2. Pencils of conics and orbit structure. Consider the space Gr(2, S2U) parametrizing pencils of
conics on U∗. The decomposition of this space into PGL(U)-orbits is classical, see e.g. [15]. There are
eight types with normal forms as in the following table, yielding a decomposition of the Grassmannian
Gr(2, S2U) into PGL(U)-orbits Oi (and sometimes O′i) of dimension i.

O3 〈x2, xy〉
O4 〈x2, y2〉
O′4 〈xy, xz〉
O5 〈x2, y2 + xz〉
O6 〈x2, yz〉
O′6 〈x2 + yz, xz〉
O7 〈x2 + y2, xz〉
O8 〈x2 + y2, x2 + z2〉
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Let Yi, Y
′
i denote the closure of Oi,O′i in Gr(2, S2U). Clearly, Y8 = Gr(2, S2U). The Hasse diagram,

where Oi is connected to Oj if the latter is open in Yi \ Oi, is the following:

O8

��
O7

  ~~
O6

  

O′6

~~

��

O5

~~
O4

  

O′4

~~
O3

Proposition 1.1. (1) Y6 ⊂ Gr(2, S2U) is birational to a P4-bundle over P2.
(2) Y5 ⊂ Gr(2, S2U) is birational to a quadric bundle over P2 and is a non-normal projective variety

with singular locus equal to Y4.
(3) Y ′4 ' P(U)× P(U∗) which is embedded in P14 via the linear series O(2, 1).
(4) The chain of embeddings

Y3 ⊂ Y4 ⊂ Gr(2, S2U) ⊂ P(∧2S2U) ∼= P14

is isomorphic to the chain

B ⊂ Hilb2 P(U) ⊂ Gr(2, S2U) ⊂ P(∧2S2U) ∼= P14

discussed in the previous section.

Proof. First, note that the variety Y6 parametrizes pencils of conics containing a double line. We thus

have a birational model Ỹ6 → Y6 parametrizing pairs (P, `) of a pencil P of conics on U∗ and a line

` ⊂ P(U∗) such that `2 belongs to P . For the bundle E = S2U/O(−2) over P(U), we see that Ỹ6 = P(E),
a P4-bundle over P2.

Next, Y5 parametrizes pencils generated by a double line and a conic tangent to this line. Consider the

birational model Ỹ5 → Y5 defined as the preimage of Y5 in Ỹ6. Let Q = U/O(−1) which is a bundle over
P(U). Note that there is a natural morphism E → S2Q and hence a natural rank three quadratic form

S2E → S2(S2Q)→ det(Q)2. Then, Ỹ5 ⊂ Ỹ6 = P(E) is the corresponding quadric bundle over P(U). The

morphism Ỹ5 → Y5 is birational and is a double cover over Y4. Thus, Y5 is not normal along Y4 and,
since the latter is the complement of the open orbit in Y5, it has to be the singular locus.

The variety Y ′4 parametrizes pencils of reducible conics containing a fixed line `. Such a pencil is of
the form `L where L is a hyperplane of U . Hence, we have an isomorphism Y ′4

∼= P(U) × P(U∗). The
restriction of the tautological bundle of Gr(2, S2U) is the product of the rank one tautological bundle on
P(U) with the rank two tautological bundle on the dual P(U∗). Its determinant is O(2, 1) showing that
the degree of Y ′4 is (2h+ h′)4 = 24.

In this description, we see that Y3 ⊂ Y ′4 = P(U)× P(U∗) is the incidence quadric, the full flag variety
of U . Its degree is (h+ h′)(2h+ h′)3 = 18.

To conclude, consider the variety Y4 parametrizing pencils generated by two double lines and their
degeneracies. Its dense open subset O4 is isomorphic to Sym2 P(U) −∆ where ∆ denotes the diagonal.
For dimension reasons, its closure Y4 must be Hilb2 P(U) ⊂ Gr(2, S2U). Finally, note that the diagonal
in Hilb2 P(U) = Y4 is P(TP(U)) ∼= F ∼= Y3 as claimed which completes the proof. �

1.3. Explicit equations. Consider the group SL(U) ∼= SL3(C). Denote by Sa,b the representation of
SL(U) with highest weight (a− b)ω1 + bω2, where ω1 and ω2 are the fundamental weights and a ≥ b ≥ 0.
Clearly, S0,0 = C is the trivial module, S1,0 = U is the three-dimensional “vector” representation, and



4 JONATHAN D. HAUENSTEIN, LAURENT MANIVEL, AND BALÁZS SZENDRŐI

S1,1 = U∗ is its dual. Consider the SL(U)-module W = ∧2S2U∗ = S3,2 of dimension 15. Its second
symmetric square splits into irreducibles as

(3) S2W ∼= S6,4 ⊕ S4,3 ⊕ S4,0 ⊕ S3,1 ⊕ S2,2

of dimension 120 = 60 + 24 + 15 + 15 + 6. This decomposition can be easily checked computationally,
e.g., via the SchurRings [18] package in Macaulay2 [10].

Consider the 14-dimensional projective space PW ∗ = P(∧2S2U) ∼= P14 with coordinate ring S∗(W ).
Regard elements of S2W as quadrics on PW ∗. Using the decomposition (3) above, define ideals of the
ring S∗(W ) generated by spaces of quadrics as follows:

I8 = 〈S3,1〉C S∗(W ),

I5 = 〈S3,1, S2,2〉C S∗(W ),

I4 = 〈S3,1, S2,2, S4,3〉C S∗(W ),

I3 = 〈S3,1, S2,2, S4,3, S4,0〉C S∗(W ).

(4)

These ideals are generated by 15, 21, 45 and 60 quadrics, respectively. The first ideal I8 consists of quadrics
parametrized by S3,1 = ∧2S2U itself and it is well known that its vanishing locus is the Grassmannian:

V(I8) = Gr(2, S2U) ⊂ P(∧2S2U).

Proposition 1.2. For i = 3, 4, 5 we have, using the notations of the previous section,

V(Ii) ∼= Yi ⊂ Gr(2, S2U) ⊂ P(∧2S2U) ∼= P14.

In particular, the ideals of the orbit closures Y3, Y4, Y5 ⊂ Gr(2, S2U) discussed before are generated by
quadrics.

Proof. Our proof uses computational methods, with some details omitted.

Fix a basis {vi} of U∗. The key to finding explicit equations is to derive an explicit form of the
decomposition (3) yielding basis elements for each of the modules on the right hand side in terms of
the obvious basis of the left hand side S2W ∼= S2

(
∧2S2U∗

)
consisting of symmetric pairs of elements

of the form [(vi ⊗ vj) ∧ (vk ⊗ vl)]. This can be done using SLA [7] in GAP [19]. We obtain explicit
generators of these four ideals, which are listed in the Appendix. As expected, the 15-dimensional space
S3,1 has a basis whose elements can readily be identified with the quadratic Plücker relations defining
V(I8) = Gr(2, 6) ⊂ P14.

Given the explicit polynomial generators, the dimension and degree of the remaining ideals can be
computed using Macaulay2 [10], namely:

ideal dimension degree Hilbert series
I5 5 56 (1 + 9t+ 24t2 + 19t3 + 3t4)/(1− t)6

I4 4 21 (1 + 10t+ 10t2)/(1− t)5

I3 3 18 (1 + 11t+ 6t2)/(1− t)4

We next claim that each of these ideals defines an irreducible and reduced subscheme in P14.

We first verify that each top-dimensional component in each scheme is irreducible of multiplicity 1.
To that end, certifiable witness point sets can be computed in numerical algebraic geometry [3, 17] using
Bertini [2] and alphaCertified [13] via well-constrained subsystems [9]. Each witness point set consists
of degree-many points along a complimentary dimensional linear space, which are nonsingular with respect
to the resulting system. Certifiable monodromy loops following [11] yield that all of the witness points for
each system are smoothly connected, showing that each of the top-dimensional components is irreducible
of multiplicity 1 with respect to the corresponding ideal.

In each case, showing that the scheme is irreducible and reduced is now equivalent to showing that the
top-dimensional irreducible component has the same Hilbert series as the entire scheme; this precludes the
existence of embedded components. This was verified using [6] with certified numerical Hilbert function
computations [12]. In fact, this also showed that each scheme is arithmetically Cohen-Macaulay.

The ideals I5 ⊂ I4 ⊂ I3 thus define SL(3)-invariant irreducible reduced subschemes of V(I8) =
Gr(2, 6) ⊂ P14 of dimensions 5, 4, 3 respectively. As there is only one five-dimensional orbit closure
in Gr(2, 6) by our results in the previous section, we must have V(I5) = Y5 ⊂ P14, and then necessarily
V(I4) = Y4 ⊃ V(I3) = Y3 as claimed. �
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Remark 1.3. The 45 quadrics defining Y4
∼= Hilb2 P2 ⊂ Gr(2, 6) were also determined, using a different

method, in [4, Sect. 2]. That paper also studied the corresponding tropicalization.

Remark 1.4. In the language of the previous section, the quadrics in S3,1 and S4,0 define a four-
dimensional variety of degree 24 inside of Gr(2, S2U) which is Y ′4

∼= P2×P2 embedded by O(2, 1) as above.

1.4. A different way to derive equations for orbit closures. We explain here an alternative, syn-
thetic way to re-derive the quadratic equations of the orbit closures obtained above by a computer-based
calculation. In this section, we will use the language of GL(U)-modules to respect the full symmetry
of the problem. By a slight abuse of notation, we will use ψ(−) as shorthand for the quadratic form
associated to a symmetric bilinear form ψ(−,−).

The equations of Y5. The equations of Y5 ⊂ P14 are the Plücker equations together with another
irreducible module of quadratic equations that is GL(U)-isomorphic to S2U∗⊗det(U∗)2. Those equations
have a simple description in terms of the discriminant of ternary quadratic forms (or symmetric tensors),
which is a GL(U)-equivariant map

δ : S3(S2U)→ det(U)2.

Polarizing yields a morphism

∆ : S2(S2U)→ S2U∗ ⊗ det(U)2.

Using the same trick for U∗ and twisting by det(U) appropriately, we get another GL(U)-equivariant
map

∆∗ : S2(S2U∗ ⊗ det(U)2)→ S2U ⊗ det(U)2.

In order to describe the equations of Y5 ⊂ Gr(2, S2U), since it is the unique irreducible GL(U)-
component of S2(∧2S2U∗) isomorphic to S2U∗ ⊗ det(U∗)2, it suffices to exhibit a nonzero morphism

Ψ: S2(∧2S2U)→ S2U ⊗ det(U)2

from the dual of the former to the dual of the latter. For q1, q2, q3, q4 belonging to S2U , we claim that
the following formula defines such a morphism:

Ψ(q1 ∧ q2, q3 ∧ q4) = ∆∗(∆(q1, q3),∆(q2, q4))−∆∗(∆(q1, q4),∆(q2, q3)).

Since this is nonzero (see below) and has all the required properties, it expresses in a compact form all
the equations of Y5 apart from the Plücker relations.

Proposition 1.5. The subvariety Y5 ⊂ Gr(2, S2U) of the Grassmannian Gr(2, S2U) is defined by

Ψ(q1 ∧ q2) = ∆∗(∆(q1),∆(q2))−∆∗(∆(q1, q2)) = 0

for q1, q2 ∈ S2U .

As a sanity check, let us evaluate Ψ on the representatives of the PGL3-orbits of G(2, S2U). For this
we normalize ∆ by letting ∆(u2, v2) = (u ∧ v)2.

• For O5, we let q1 = x2 and q2 = y2 + xz. Hence, ∆(q1) = 0 and ∆(q1, q2) = (x ∧ y)2 has rank
one, so that Ψ(q1 ∧ q2) = −∆∗(∆(q1, q2)) = 0.

• For O6, we let q1 = x2 and q2 = yz. Hence, ∆(q1) = 0 and writing 4q2 = (y + z)2 − (y − z)2, we
get ∆(q1, q2) = (x ∧ y)(x ∧ z). Since this has rank two, Ψ(q1 ∧ q2) = −∆∗(∆(q1, q2)) 6= 0.

• For O′4, we let q1 = xy, q2 = xz, u = x ∧ y, and v = x ∧ z. Then, 2∆(q1) = −u2, 2∆(q2) = −v2,
and 2∆(q1, q2) = −uv. Therefore, ∆∗(∆(q1),∆(q2)) = ∆∗(u2, v2)/4 = (u ∧ v)2/4 together with
∆∗(∆(q1, q2)) = ∆∗(uv)/4 = −(u ∧ v)2/8 yields Ψ(q1 ∧ q2) = 3(v ∧ w)2/8 6= 0.

The other quadratic equations. Consider the remaining modules of equations defining Y4, Y3 ⊂ P14.
These irreducible modules are generated by highest weight vectors. We can write down explicit quadratic
polynomials on the Grassmannian in terms of those highest weight vectors as follows.

The 15-dimensional module is the irreducible GL(U)-module S4(∧2U∗), whose highest weights vectors
are the tensors of the form (e ∧ f)4 for e, f ∈ U∗. We want to associate to such a vector a quadratic
polynomial P on the cone of tensors of the form q1 ∧ q2 for q1, q2 ∈ S2U . In other words, we need to find
a polynomial in e, f, q1, q2, which has degree four in e and f , degree two in q1 and q2, invariant under the
action of GL(U), and compatible with the skew-symmetry conditions. By the Fundamental Theorems of
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Invariant Theory, such an invariant polynomial has to be expressed in terms of contractions of q1 and q2

by e and f . A straightforward computation shows that up to scalar, there is only one possibility, namely

P (q1 ∧ q2) =
(
q1(e)q2(f)− q2(e)q1(f)

)2

+ 4
(
q1(e, f)q2(f)− q2(e, f)q1(f)

)(
q1(e, f)q2(e)− q2(e, f)q1(e)

)
.

One can easily test this polynomial on representatives of the orbits in Gr(2, S2U) and check that it
vanishes identically only on the orbit O3 = Y3.

The second, 24-dimensional module is the GL(U)-submodule of S3U∗ ⊗ ∧2U∗ ⊗ ∧3U∗ whose highest
weights vectors are the tensors of the form e3(e∧f)(e∧f ∧g) for e, f, g ∈ U∗. Again, we need to associate
to such a vector a quadratic polynomial Q on the cone of tensors of the form q1 ∧ q2 for q1, q2 ∈ S2U .
Thus, we need to find a polynomial in e, f , g, q1, and q2 which has degree five in e, degree two in f ,
degree one in g, degree two in q1 and q2, invariant under the action of GL(U), and compatible with the
skew-symmetry conditions. Another straightforward computation shows that up to scalar, there is only
one possibility, namely

Q(q1 ∧ q2) =
(
q1(e, g)q2(e)− q2(e, g)q1(e)

)(
q1(e)q2(f)− q2(e)q1(f)

)
+(

q1(e, f)q2(e)− q2(e, f)q1(e)
)(

q1(f, g)q2(e)− q2(f, g)q1(e) + q1(e, g)q2(e, f)− q2(e, g)q1(e, f)
)
.

Again, one can easily test this polynomial on representatives of the orbits in Gr(2, S2U) and check that
it vanishes identically only on O3 and O4. We deduce

Proposition 1.6. The subvarieties Y3 ⊂ Y4 ⊂ Gr(2, S2U) of the Grassmannian Gr(2, S2U) are defined
by the sets of equations

Ψ(q1 ∧ q2) = Q(q1 ∧ q2) = 0

and
Ψ(q1 ∧ q2) = P (q1 ∧ q2) = Q(q1 ∧ q2) = 0

for q1, q2 ∈ S2U , respectively.

2. The punctual Hilbert scheme of four points on A3

2.1. Non-planar clusters of length four on affine three-space. Recall the fixed three-dimensional
vector space U from the previous section. In this section, we will think of its dual T = U∗ as a copy of
affine 3-space A3 with ring of functions C[T ] = Sym• U .

Let Hilbm(T ) ∼= Hilbm(A3) denote the Hilbert scheme of m points on affine three-space. The additive
structure on T yields a center-of-mass morphism c : Hilbm(T )→ T . As is true in all dimensions, Hilbm(T )
is a nonsingular variety for m ≤ 3. It is also known [14] that Hilb4(T ) is an irreducible and reduced
variety of dimension 12, singular along the locus of length-four subschemes of T given by the squares
[m2

p] ∈ Hilb4(T ) of maximal ideals of points p ∈ T . It has a dense affine open subset Hilb4(T )np containing
all its singularities defined by the condition that the clusters parametrized by its points are non-planar,
i.e., not scheme-theoretically contained in a plane.

The following was already proved in [8]; we present a variant of the proof suited to the present narrative.

Theorem 2.1. There is an SL(U)-equivariant isomorphism

Hilb4(T )np
∼= T × CGr(2, S2U),

where CGr(2, S2U) ⊂ ∧2S2U is the affine cone over the Grassmannian Gr(2, S2U) ⊂ P(∧2S2U) ∼= P14.

Proof. If Iξ C C[T ] = Spec Sym• U is the ideal corresponding to a point ξ ∈ Hilb4(T )np, then the map
C⊕ U → C[T ]/Iξ is an isomorphism of vector spaces. The resulting algebra structure on the vector space
C⊕ U is encoded by two symmetric bilinear maps:

a : U ⊗ U → C and m : U ⊗ U → U.

Requiring the product on C⊕ U to be associative leads to the following equations for any x, y, z ∈ U :

a(x,m(y, z)) = a(y,m(x, z)),(5)

m(x,m(y, z)) + a(y, z)x = m(y,m(x, z)) + a(x, z)y.(6)

Using the highest weight notation for SL3-modules introduced in the previous section, first observe
that m is a tensor in S2U∗ ⊗ U ∼= U∗ ⊕ S3,2 and the projection to T = U∗ is the center of mass map c.
Using a translation by the evident action of U∗ on the whole setup, it suffices to restrict to the case where
the center of mass of the ideal Iξ is at the origin in T so that m ∈ S3,2.
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Equation (6) shows that a(y, z)x − a(x, z)y is determined by m, x, y, and z which implies that a is
uniquely determined by m and depends quadratically on it. As confirmed by [18], there exists a unique
SL(U)-equivariant map up to scale, namely

Θ : S2(S3,2)→ S2U∗.

Fixing the correct normalization, equation (6) implies that a = Θ(m). Now, for any x, y, z ∈ U , we can
rewrite equations (5)-(6) in the following form:

Θ(m)(x,m(y, z)) = Θ(m)(y,m(x, z)),(7)

m(x,m(y, z)) + Θ(m)(y, z)x = m(y,m(x, z)) + Θ(m)(x, z)y.(8)

These equations are families of cubic and quadratic equations on m ∈ S3,2. We claim that

(a) the quadratic equations (8) on m are equivalent to the Plücker equations on ∧2S2U ;
(b) the cubic equations (7) are implied by the quadratic ones.

In order to prove (a), recall the SL3-decomposition

(9) S2S3,2
∼= S6,4 ⊕ S4,3 ⊕ S4,0 ⊕ S3,1 ⊕ S2,2

already used above in (3). Equation (8) asks for the vanishing of a cubic tensor in x, y, and z, skew-
symmetric in x and y, and takes values in U , i.e., an element of the SL3-decomposition

(10) Hom(∧2U ⊗ U,U) ∼= 2S1,1 ⊕ S3,1 ⊕ S2,2.

Comparing (9) with (10), the common terms are the last two irreducible components; they are the only
ones imposing non-trivial conditions. The component S2,2 has already been taken into account by letting
a = Θ(m). The remaining conditions are the quadratic equations parametrized by S3,1. This means that
we get the quadratic equations spanning the ideal I8 C S∗(∧2S2U∗) from (4), parametrized by ∧2S2U ,
which are precisely the Plücker equations.

We conclude that Hilb4(T )np is contained in T × CGr(2, S2U) which implies, by a dimension count,
that these two reduced schemes must be equal. Since the ideal of CGr(2, S2U) is radical, we also deduce
claim (b): the cubic relations (7) do not impose any further conditions on m. �

2.2. The space of non-planar punctual clusters. Let Hilbm0 (T ) ⊂ Hilbm(T ) denote the punctual
Hilbert scheme of m points, the subscheme of the Hilbert scheme Hilbm(T ) given by the condition that
the support of the zero-dimensional subscheme being parametrized is at the origin. It carries a natural
projective scheme structure as the scheme-theoretic fiber of the Hilbert–Chow morphism, but here we
consider it in its reduced scheme structure.

Clearly, Hilb2
0(T ) ∼= P(T ), and Hilb3

0(T ) and Hilb4
0(T ) are known to be irreducible but singular pro-

jective varieties of dimensions 4 and 6 respectively. Descriptions of these spaces as well as natural
desingularizations are given in [20] from a sheaf-theoretic perspective. We will describe the affine open
set Hilbm0 (T )np ⊂ Hilb4

0(T ) obtained by intersecting Hilb4
0(T ) with the set of non-planar clusters. Note

that Hilbm0 (A3)np is dense in Hilb4
0(A3) and forms an affine neighbourhood of its most interesting point

[m2
0] ∈ Hilb4

0(A3). The following is our main result.

Theorem 2.2. The reduced space Hilb4
0(T )np of non-planar, punctual clusters of length 4 on T is SL(U)-

equivariantly isomorphic to the cone CY5 ⊂ ∧2S2U ∼= A15 over the projective variety Y5 ⊂ P(∧2S2U)
described in Propositions 1.1-1.2. In particular, Hilb4

0(T )np is a non-normal subvariety of A15 cut out by
21 explicitly computable quadrics and has a codimension one singular locus isomorphic to the affine cone
C Hilb2(P2) ⊂ ∧2S2U with the apex of the cone corresponding to the distinguished ideal [m2

0] ∈ Hilb4
0(T ).

Proof. The classification of PGL(U)-orbits in Gr(2, U) explained in Section 1.2 above shows that CY5 is
the only six-dimensional SL(U)-stable subvariety of CGr(2, U). �

Remark 2.3. The description of the singular locus of (a neighbourhood of [m2
0] in) Hilb4(T )0 is not

a new result as it was also obtained in [20] using sheaf-theoretic methods. The main advantage of our
approach is that we can describe all these spaces by explicit affine equations which may be useful in
applications [5].

Remark 2.4. It is also possible to prove this result using the language used in [8] followed by some
computer calculations. In coordinates, we can represent a non-planar cluster of length four using three
four-by-four matrices ϕ1, ϕ2, and ϕ3 which describe the action of the coordinate functions of T on the
4-dimensional vector space C⊕ U . The conditions for a triple (ϕi) to describe a cluster become explicit
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equations which reduce to the Plücker relations. To describe a punctual cluster based at 0, the matrices ϕi
should additionally be nilpotent. It can be checked computationally that the reduced ideal of conditions
arising from tr∧kϕi = 0 for 1 ≤ k ≤ 4 are generated by the linear relations trϕi = 0 and the quadratic
conditions tr∧2ϕi = tr∧2(ϕi + ϕj) = 0, the latter being the 6 extra quadrics of I5 defining Y5 inside
Gr(2, S2U) in Proposition 1.2 above.

Remark 2.5. The orbit decomposition of Gr(2, S2U) from Section 1.2 yields a decomposition of the
cone CGr(2, S2U). It is easy to check that the various orbits correspond to different length four sub-
schemes in T as follows.

(1) CO8 parametrizes four general points;
(2) CO7 parametrizes two reduced general points p, q ∈ T and a degree two scheme at −(p+ q)/2;
(3) CO6 parametrizes two degree two schemes supported on opposite general points;
(4) CO′6 parametrizes one reduced point at p ∈ T and a degree three scheme supported on −p/3;
(5) CO5 parametrizes an open subset of Hilb4

0(T );
(6) CO4 parametrizes clusters with normal form xy = z, all other products being equal to zero;
(7) CO′4 parametrizes one reduced point p and a fat point in a plane at −p/3;
(8) CO3 parametrizes clusters with normal form x2 = z, all other products being equal to zero.

2.3. A concrete computation. Starting from a non-planar scheme with center of mass 0 corresponding
to an ideal I C C[T ], consider the associated multiplication map

m ∈ Hom(S2U,U) ∼= S2U∗ ⊗ ∧2U∗ ⊗ det(U).

Apply to m the morphism

Γ : S2U∗ ⊗ ∧2U∗ → ∧2(S2U∗)
a2 ⊗ b ∧ c 7→ ab ∧ ac.

Then, the discussion above shows that Γ(m) ∈ ∧2(S2U∗)⊗ det(U) must be a decomposable tensor.

To see this in a concrete example, fix a basis {x, y, z} of U and consider the reduced scheme

ζ = {(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1)} ⊂ T.

In the ring C[x, y, z]/Iζ , we have

x2 =
1

2
(1− x+ y + z), y2 =

1

2
(1 + x− y + z), z2 =

1

2
(1− x+ y − z),

xy = yz = zx =
1

4
(1 + x+ y + z).

The tensor m is obtained by keeping the degree one part of the right hand side in these equations. In

terms of the dual basis {e, f, g} of U∗, note that the basis of S2U∗ dual to the basis {x2, y2, z2, yz, xz, xy}
of S2U is {e2, f2, g2, 2fg, 2eg, 2ef}. So, as a tensor,

4m = 2e2 ⊗ (−x+ y + z) + 2f2 ⊗ (x− y + z) + 2g2 ⊗ (x+ y − z) + 2(fg + ge+ ef)⊗ (x+ y + z)
= (e2 + f2 + g2 + (e+ f + g)2)⊗ (x+ y + z)− 4(e2 ⊗ x+ f2 ⊗ y + g2 ⊗ z).

Note that up, to a common factor, x identifies with f ∧ g, y with g ∧ e and z with e ∧ f . Substituting
these expressions and applying Γ, we get, after letting h = e+ f + g,

4Γ(m) = ef ∧ eg + eg ∧ e2 + e2 ∧ ef + f2 ∧ fg + fg ∧ fe+ fe ∧ f2 + gf ∧ g2 + g2 ∧ ge+ ge ∧ gf
+hf ∧ hg + hg ∧ he+ he ∧ hf − 4(ef ∧ eg + fg ∧ fe+ ge ∧ gf)

= hf ∧ hg + hg ∧ he+ he ∧ hf − (ef ∧ eg + fg ∧ fe+ ge ∧ gf)
+he ∧ (ef − eg) + hf ∧ (fg − ef) + hg ∧ (eg − fg),

and the final result of our computation is

4Γ(m) = (he− hf + eg − fg) ∧ (hf − hg + ef − eg).

This is, as expected, a decomposable tensor. Note that since the GL3-orbit of our scheme is open in
the subvariety of Hilb4(T ) parametrizing schemes with center of mass at the origin, this yields another
proof of Theorem 2.1.

Moreover, observe that we can rewrite he− hf + eg− fg = e2 − f2 + 2eg− 2fg = (e+ g)2 − (f + g)2,
and similarly hf − hg + ef − eg = (e+ f)2 − (f + g)2, so that

4Γ(m) = (e+ f)2 ∧ (f + g)2 + (f + g)2 ∧ (g + e)2 + (g + e)2 ∧ (e+ f)2.
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This leads to a down-to-earth interpretation of the map

π : Hilb4(T )np 7→ CGr(2, S2U)

from Theorem 2.1 on the open set of reduced subschemes.

Proposition 2.6. Consider a finite subscheme ζ ⊂ T consisting of four non-coplanar reduced points
p1, p2, p3, p4 ∈ T with center of mass p0. The squares of the six vectors pij = pi + pj − 2p0 ∈ T are three
tensors p2

12 = p2
34, p2

13 = p2
24 and p2

14 = p2
23 in S2T = S2U∗ and

π(ζ) = (p2
12 ∧ p2

13 + p2
13 ∧ p2

14 + p2
14 ∧ p2

12)⊗ ω−1

where the twist ω ∈ det(U∗) is given by

ω = p1 ∧ p2 ∧ p3 − p2 ∧ p3 ∧ p4 + p3 ∧ p4 ∧ p1 − p4 ∧ p1 ∧ p2.

Note that ω is invariant under a common translation of the four points and is non-zero exactly when
ζ ⊂ T is non-planar. Moreover, permuting the four points multiplies ω by the sign of the permutation
but π(ζ) itself remains invariant. Thus, it only depends on ζ and not on the order of the four points.

Proof of Proposition 2.6. The expression for π(ζ) depends equivariantly on ζ and yields the correct ex-
pression when

ζ = (−e,−f,−g, e+ f + g).

Since the orbit of ζ in Hilb4(T )np is dense, this expression must be correct everywhere. �

Appendix. Explicit polynomials

The following set of Macaulay2 commands generates the ideals I8, I5, I4 and I3 in (4). As proved in
the main body of the paper, the ideal I4 defines the projective image of the embedding (1), whereas I5
defines the affine image of the embedding (2).

S=QQ[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o];

I8=ideal(a*j-b*g+c*f, a*k-b*h+d*f, a*l-b*i+e*f, a*m-c*h+d*g, a*n-c*i+e*g, a*o-d*i+e*h,

b*m-c*k+d*j, b*n-c*l+e*j, b*o-d*l+e*k, c*o-d*n+e*m, f*m-g*k+h*j, f*n-g*l+i*j,

f*o-h*l+i*k, g*o-h*n+i*m, j*o-k*n+l*m);

I5=I8+ideal(2*d*o-e*n-2*f*o-2*h*l+i*i-2*j*l+3*k*k, 2*a*i-2*a*k-2*b*h+2*b*j-c*e+d*d+3*f*f,

c*n-2*d*m-2*f*m-2*g*i-2*g*k+3*h*h+j*j, a*n-2*b*m-c*k+d*h+d*j-e*g+f*h-f*j,

2*a*o-b*n-c*l+d*i+d*k-e*h+f*i-f*k, c*o-e*m-f*n-2*g*l+h*i+h*k-i*j+j*k);

I4=I5+ideal(a*d+a*f-b*c, a*e-b*d+b*f, g*n-h*m-j*m, c*m-g*h+g*j, e*o-i*l+k*l, i*o+k*o-l*n,

3*a*i+a*k-b*h-3*b*j-2*d*f, 2*a*k+b*h-3*b*j-3*c*e+3*d*d-d*f-6*f*f, 2*a*l+b*i-3*b*k-e*f,

2*a*m+c*h-d*g-3*f*g, a*n+2*b*m-c*i+c*k+3*d*h-d*j-2*e*g-6*f*h, 2*b*o+d*l-e*k-3*f*l,

2*a*o+3*b*n+d*i+3*d*k-e*h-3*e*j-6*f*i-6*f*k, 2*b*m-3*c*i+c*k+6*d*h-d*j-3*e*g-6*f*h+3*f*j,

b*n-c*l+3*d*k-2*e*j-3*f*i, 3*c*n-9*d*m+5*f*m+12*g*i-2*g*k-6*h*h-7*h*j+3*j*j,

c*o+2*d*n+e*m-3*h*i+3*j*k, 3*d*m-f*m-3*g*i+g*k+2*h*j, 2*d*o+e*n-h*l-i*i-i*k+j*l+2*k*k,

3*d*n+3*e*m-f*n-2*g*l-6*h*i+6*h*k-i*j+3*j*k, 3*e*n-2*f*o-h*l-3*i*i+i*k-3*j*l+6*k*k,

2*g*o+h*n-i*m-3*k*m, 3*h*o+j*o-k*n-2*l*m, 3*a*h-a*j-2*b*g-c*f);

I3=I4+ideal(4*a*g-c*c, 4*b*l-e*e, 4*m*o-n*n, 2*a*h+a*j+b*g-c*d, a*l+b*i+2*b*k-d*e,

a*m+c*j-d*g+2*f*g, b*o+d*l-e*i+2*f*l, g*o-i*m-j*n+2*k*m, 2*h*o-i*n-j*o+l*m,

2*a*i+4*a*k+4*b*h+2*b*j-c*e-2*d*d, c*n-2*d*m+4*f*m-2*g*i+4*g*k-2*j*j,

2*d*o-e*n+4*f*o+4*h*l-2*i*i-2*j*l, a*n+b*m+2*c*k-2*d*h+d*j-e*g+4*f*h+2*f*j,

a*o+b*n+c*l-d*i+2*d*k-2*e*h+2*f*i+4*f*k, c*o-e*m+2*f*n+g*l-2*h*i+4*h*k-i*j-2*j*k);
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