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Abstract

Many algorithms for determining properties of real algebraic or semi-algebraic sets rely upon
the ability to compute smooth points. Existing methods to compute smooth points on semi-
algebraic sets use symbolic quantifier elimination tools. In this paper, we present a simple algo-
rithm based on computing the critical points of some well-chosen function that guarantees the
computation of smooth points in each connected compact component of a real (semi)-algebraic
set. Our technique is intuitive in principal, performs well on previously difficult examples, and is
straightforward to implement using existing numerical algebraic geometry software. The practi-
cal efficiency of our approach is demonstrated by solving a conjecture on the number of equilibria
of the Kuramoto model for the n = 4 case. We also apply our method to design an efficient
algorithm to compute the real dimension of (semi)-algebraic sets, the original motivation for
this research.

1 Introduction

Consider the semi-algebraic set

S = {x ∈ Rn : f1(x) = · · · = fs(x) = 0, q1(x) > 0, . . . , qm(x) > 0}

for some f1, . . . , fs, q1, . . . , qm ∈ R[x1, . . . , xn]. When studying real semi-algebraic sets we often
first study the complex variety defined by V = {x ∈ Cn : f1(x) = · · · = fs(x) = 0} and deduce
properties of S from the properties of V . In particular, if S contains a smooth point and V is
irreducible then S is Zariski dense in V , so all algebraic information of S is contained in V . Thus,
deciding the existence of smooth points in real semi-algebraic sets and finding such points is a
central problem in real algebraic geometry with many applications. For example, if ϕ : S → S′

is a polynomial map of semi-algebraic sets then smooth points in Im(ϕ) are points where the
Jacobian of ϕ has maximal rank within its connected component, also called the typical rank. In
particular, finding real smooth points in each connected component of a semi-algebraic set allows
one to compute all typical ranks of real morphisms (see [56] for applications of this property).
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One of the main results of this paper is to give a new technique to compute smooth points on
the compact connected components of real semi-algebraic sets. Our method is simple and suggests
natural implementation using numerical homotopy methods and deformations. It complements
other approaches that compute sample points on real semi-algebraic sets, such as computing the
critical points of the distance function, in the sense that our method also guarantees the smoothness
of the sample points. In the paper we demonstrate this advantage on examples where the critical
points of the distance function are singular from the majority of points, while our method always
computes smooth points. The main idea is very simple: Suppose V is irreducible. If a polynomial
g vanishes on the singular points of V but does not vanish on all of V then the extreme points
of g on S must contain points in every compact connected component of S that are non-singular,
if such points exist. We extend this idea to the case when V is not equidimensional by using
infinitesimal deformations of V and limits. We show that this limiting approach is well-suited
for numerical homotopy continuation methods after we translate an infinitesimal real deformation
(that may only work for arbitrary small values) into a complex deformation that works along a real
arc parameterized by the interval (0, 1].

To demonstrate the practical efficiency of our new approach, we present the solution of a
conjecture for the first time: counting the equilibria of the Kuramoto model in the n = 4 case [60]
(see [40] for the original model and [24] for a detailed historical overview and additional references).

We also apply our method to compute the dimension of real semi-algebraic sets. The difficulty
of this problem, compared to its complex counterpart, is that in many cases the real part lies
within the singular set of the smallest complex variety containing it, and its real dimension is
smaller than the complex one. In terms of worst case complexity bounds of the existing algorithms
in the literature, it is an open problem if the real dimension can be computed within the same
asymptotic complexity bounds as the complex dimension. The algorithm presented in this paper
does not improve the existing complexity bounds in the worst case (see [8] and the references
therein). However, in the Conclusions, we give a conjecture which is a slight modification of our
main theorem in the limiting case, and if true, it would allow significant improvement in the worst
case complexity of computing real dimension of semi-algebraic sets.

1.1 Related Work

Two main approaches to computing at least one real point on every connected component of a
semi-algebraic set are quantifier elimination and critical point methods. Quantifier elimination
methods go back to Collins [22] and his Cylindrical Algebraic Decomposition (CAD) algorithm,
which decomposes a real semi-algebraic set into cells via projections, eliminating variables one after
another. This original algorithm is doubly exponential in the number of variables and work has
been done in the following decades improve the complexity and provide efficient implementations
(e.g., [30, 23, 31, 37]). Current algorithms and implementations of partial CAD and single open cell
CAD can be found in [15, 16, 17]. Alternatively, the best current symbolic bound using quantifier
elimination is provided by Basu, Pollack, and Roy [9] and the most recent implementation utilizing
it can be found in [53].

The use critical point methods to compute real points on every connected component of a semi-
algebraic set dates back to Seidenberg [54]. While this method also relies on quantifier elimination,
the approach varies from CAD in that it computes critical points of the distance function, and
work has been done to present better complexity bounds and implementations ever since. A major
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leap was made by [48] when they presented a symbolic algorithm to find the critical points of the
projection function, introducing only one infinitesimal variable to show improvements over CAD
computations. Others have continued to improve on these ideas using algebraic techniques such
as triangular decompositions, Rational Univariate Representations, and geometric resolutions (e.g.,
[1, 49, 27]). A homotopy-based approach is presented in [32] and a similar approach uses critical
points with respect to a generic line that can be translated rather than one point is found in [59].

Another line of work has been developed in parallel which specifically focuses on computing
critical points while utilizing the tool of polar varieties, introduced and developed in [3, 4, 50, 5,
6, 7]. The most recent implementation of such techniques can be found in [51]. It is important to
note, however, that these methods, along with the other critical point methods cited above, only
guarantee the finding of real points on every connected component of a semi-algebraic set, rather
than real smooth points.

Prior work on computing the real dimension of semi-algebraic sets begins with the quantifier
elimination techniques of CAD [22]. Work done by Koiran [39] and Vorobjov [58] analyzed and
introduced ideas for how such an algorithm could be improved, with the former suggesting the use of
randomness to create probabilistic algorithms and the latter using stratifications of semi-algebraic
sets. In [10, Chap. 14], Basu, Pollack, and Roy provide complexity bounds for a deterministic
implementation which improves Vorobjov’s results, and Hong and Safey El Din present a variant
of quantifier elimination in [38] which works for smooth and compact semi-algebraic sets. Recent
work has been presented giving probabilistic algorithms utilizing polar varieties which improve on
complexity bounds even further in [52, 8].

One can also compute the real dimension by computing the real radical of a semi-algebraic
set, first studied in Becker and Neuhaus [13], with improvement and implementations in [47, 57].
Decompositions of semi-algebraic sest into a union of regular semi-algebraic sets using triangular
decompositions, border bases, and moment matrices are detailed in [19, 21, 20]. The most recent
implementation can be found in [53]. This approach, however, computes iteratively singularities
of singularities, which can increase the complexity significantly in the worst case. An alternative
method using semidefinite programming techniques was proposed by Laserre [42] and has been
improved upon in [41, 45]. Finally, methods for numerically computing homologies are given in
[25, 18], but they only apply to the smooth generic case.

2 Preliminaries

The following collects some basic notions used throughout starting with atomic semi-algebraic sets,
semi-algebraic sets, and (real) algebraic sets.

Definition 2.1. A set S ⊂ Rn is an atomic semi-algebraic set if it is of the form

S = {x ∈ Rn : f1(x) = · · · = fs(x) = 0, q1(x) > 0, . . . , qm(x) > 0} . (1)

A set T ⊂ Rn is a semi-algebraic set if it is a finite union of atomic semi-algebraic sets. A set
U ⊂ Rn is a (real) algebraic set if it is defined by polynomial equations only.

Smoothness on atomic semi-algebraic sets is described next.

Definition 2.2. Let S ⊂ Rn be an atomic semi-algebraic set as in (1). Then z ∈ S is smooth in
S if z is smooth in the algebraic set V (f1, . . . , fs) = {x ∈ Cn : f1(x) = · · · = fs(x) = 0}, i.e. if
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V ⊂ Cn is the irreducible component of V (f1, . . . , fs) containing z with

dimTz(V ) = dimV

where Tz(V ) is the tangent space of V at z.

An algebraic set V ⊂ Cn is equidimensional of dimension d if all irreducible components of V
has dimension d. The following defines the real dimension of semi-algebraic sets from [9, §5.3]:

Definition 2.3. Let S ⊂ Rn be a semi-algebraic set. Its real dimension dimR S is the largest k such
that there exists an injective semi-algebraic map from (0, 1)k to S. Here, a map ϕ : (0, 1)k → S is
semi-algebraic if the graph of ϕ in Rn+k is semi-algebraic. By convention, the dimension (real or
complex) of the empty set is −1.

The main ingredient in our results is the following theorem that was proved in [46, Theorem
12.6.1]:

Theorem 2.4. Let V ⊂ Cn be an irreducible algebraic set and let VR := V ∩ Rn. Then

dimR VR = dimC V

if and only if there exists z ∈ VR that is smooth.

2.1 Semi-algebraic to Algebraic

We next describe a construction of how to get semi-algebraic sets as a union of projections of
algebraic sets.

Let S ⊂ Rn be a semi-algebraic set defined as the union of atomic semi-algebraic sets S =⋃k
i=1 Si where for i = 1, . . . , k

Si =
{
x ∈ Rn : f

(i)
1 (x) = · · · = f (i)si (x) = 0, q

(i)
1 (x) > 0, . . . , q(i)mi

(x) > 0
}
.

Then we can define the real algebraic sets for i = 1, . . . , k

Wi :=
{

(x, z) ∈ Rn × Rmi : f
(i)
1 (x) = · · · = f (i)si (x) = z21q

(i)
1 (x)− 1 = · · · = z2mi

q(i)mi
(x)− 1 = 0

}
.

Clearly, Si = πx(Wi) ⊂ Rn, where πx : Rn × Rmi → Rn is the projection to the x coordinates.
Moreover, for each x ∈ Si there are finitely many preimages in Wi that projects to x. This implies
that the dimension of Si and Wi are the same. Also, for each connected component C ⊂ Si there
are finitely many connected component of Wi that has projection C. If C 6= C ′ two connected
components of Si, then the connected components of Wi that project to C and the ones that
project to C ′ are disjoint.

If the task is to find smooth points on each connected components of S =
⋃k
i=1 Si where

Si are atomic semi-algebraic sets, we can find smooth points on each connected components of
Si for i = 1, . . . , k. To achieve this, we compute smooth points on each connected component
Wi ⊂ Rn × Rmi . The following proposition shows that the projections of these points by πx will
give points on each connected component of Si that are also smooth.

4



Proposition 2.5. Let S be an atomic semi-algebraic set as in (1) and let

W :=
{

(x, z) ∈ Rn × Rmi : f1(x) = · · · = fn(x) = z21q1(x)− 1 = · · · = z2mqm(x)− 1 = 0
}
.

If y ∈ W is smooth then πx(y) ∈ S is also smooth. Conversely, if x ∈ S is smooth then for all
z = (z1, . . . , zm) ∈ Rm such that (x, z) ∈W we have that (x, z) is smooth.

Proposition 2.6. Let S be an atomic semi-algebraic set as in (1) and

W := {(x, z) ∈ Rn × Rm : f1(x) = · · · = fn(x) = 0

z21q1(x)− 1 = · · · = z2mqm(x)− 1 = 0
}
.

If y ∈ W is smooth then πx(y) ∈ S is also smooth. Conversely, if x ∈ S is smooth, then (x, z) is
smooth in W for all z = (z1, . . . , zm) ∈ Rm such that (x, z) ∈W .

Proof. Without loss of generaility we can assume that V (f1, . . . , fs) ⊂ Cn is irreducible, otherwise
we further divide S as a union of smaller atomic semi-algebraic sets. We can also assume that
f1, . . . , fs generate a prime ideal, otherwise we could replace these polynomials by the generators of
the radical ideal without changing either S or W . The Jacobian matrix of the polynomial system
defining W has the structure

J(x, z) =
∇f(x) 0

∗ diag(2zigi(x))

Note that for (x, z) ∈W we have zigi(x)) 6= 0 for i = 1, . . . ,m. Thus, the Jacobian ∇f(x) has full
column rank if and only if J(x, z) has full column rank, which proves the claim.

For the rest of the paper, we assume that we are given a real algebraic set and the goal is to
compute smooth points on each connected components.

2.2 Boundedness

The next reduction is to replace an arbitrary real algebraic set with a compact one. We use a
standard trick used in real algebraic geometry, described in the following proposition.

Proposition 2.7. Let f1, . . . , fs ∈ R[x1, . . . , xn−1] and consider a point q =(q1, . . . , qn−1) ∈ Rn−1.
Let δ ∈ R+, introduce a new variable xn, and consider

fs+1 := (x1 − q1)2 + · · ·+ (xn−1 − qn−1)2 + x2n − δ

Then, V (f1, . . . , fs+1) ∩ Rn is bounded and

πn−1 (V (f1, . . . , fs+1) ∩ Rn) = V (f1, . . . , fs) ∩
{
z ∈ Rn−1 : ‖z − q‖2 ≤ δ

}
where πn−1(x1, . . . , xn) = (x1, . . . , xn−1).

Proof. V (f1, . . . , fs+1)∩Rn is bounded because it is a subset of the real sphere centered at (q, 0) of
radius δ. To prove the second claim, let z ∈ V (f1, . . . , fs) ∩

{
z ∈ Rn−1 : ‖q− z‖ ≤ δ

}
. Then for

zn :=
√
δ − ‖q− z‖2 we have zn ∈ R and fs+1(z, zn) = 0. Thus z ∈ πn−1 (V (f1, . . . , fs+1) ∩ Rn).

Conversely, if z ∈ πn−1 (V (f1, . . . , fs+1) ∩ Rn). Then there exists zn ∈ R such that (z, zn) ∈
V (f1, . . . , fs+1) ∩ Rn), which implies that fj(z) = 0 for j = 1, . . . , s and z2n = δ − ‖q− z‖2 ≥ 0, so
‖q− z‖ ≤ δ as claimed.
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Remark 2.8. The definition of fs+1 above is based on a standard trick used in real algebraic
geometry to make an arbitrary real algebraic set bounded (see for example [10]). In general,
V ∩Rn−1 is embedded into a sphere in Rn around the origin of radius 1/ζ where ζ is infinitesimal.
The introduction of the infinitesimal variable allows to include points in V ∩ Rn−1 of arbitrary
2-norm. Here, in this paper, we are only interested in computing points with bounded coordinates,
so we do not need to embed the entire real variety V ∩Rn−1, it is sufficient to embed its intersection
with a closed ball around q of radius δ for some fixed δ ∈ R+. Thus, we will not use infinitesimal
variables.

By using Proposition 2.7 as needed, for the rest of the paper we assume that we are given
f1, . . . , fs ∈ R[x1, . . . , xn] such that V (f1, . . . , fs) ∩ Rn is compact.

3 Computation of Real Smooth Points

In this section we present some of the main results of the paper.

Theorem 3.1. Let f1, . . . , fn−d ∈ R[x1, . . . , xn] and assume that V := V (f1, . . . , fn−d) ⊂ Cn is
equidimensional of dimension d and V ∩ Rn is compact. Suppose that g ∈ R[x1, . . . , xn] satisfies:

1. Sing(V ) ∩ Rn ⊂ V (g);

2. dimV ∩ V (g) ≤ d− 1.

The points in Rn where {g(x) : x ∈ V ∩ Rn} ⊂ R takes its extreme values intersects each connected
component of (V \ Sing(V )) ∩ Rn.

We use the following lemma:

Lemma 3.2. Let V be as in Theorem 3.1. Let g ∈ R[x1, . . . , xn] such that dimV ∩ V (g) ≤ d− 1.
Then, either (V \ V (g)) ∩ Rn = ∅ or the set {g(x) : x ∈ V ∩ Rn} ⊂ R attains a non-zero extreme
value on each connected component of (V \ V (g)) ∩ Rn.

Proof. Assume that (V \ V (g))∩Rn 6= ∅ and let C be a connected component of (V \ V (g))∩Rn.
Since C 6⊂ V (g), there exists x ∈ C with g(x) 6= 0. Let C be the Euclidean closure of C so that
C ⊂ V ∩Rn is closed and bounded. By the extreme value theorem, g attains both a minimum and
a maximum on C. Since g is not identically zero on C, either the minimum or the maximum value
of g on C must be nonzero, so it is in C.

Proof of Theorem. Assume that (V \ Sing(V )) ∩ Rn 6= ∅. By Theorem 2.4, dimR V ∩ Rn = d. By
(2), (V \ V (g))∩Rn 6= ∅. By (1), (V \ V (g))∩Rn ⊂ (V \ Sing(V ))∩Rn so connected components of
(V \ V (g))∩Rn are subsets of connected components of (V \ Sing(V ))∩Rn. By Lemma 3.2, {g(x) :
x ∈ V ∩Rn} ⊂ R attains a non-zero extreme value on each connected component of (V \ V (g))∩Rn.
Thus, these points will give a point in every connected component of (V \ Sing(V )) ∩ Rn.

Example 3.3 (“Thom’s lips”). An example of a real curve with two singular cusps is often referred
to as “Thom’s lips,” e.g., f = y2 − (−x2 + x3)2 as shown in Figure 1. One straightforward
choice for g which satisfies the above conditions is g = x(x − 1). Using Lagrange multipliers to
optimize with respect to this g results in the two red points. Alternatively, we could select a g
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constructed algorithmically using the polar varieties technique detailed later in the paper, namely
g = 3(2x− 1)(x− x2)2 + 2y. Optimization yields the two black points. In either case, this results
in a real smooth point on each of the two connected components of (V \ Sing(V )) ∩ Rn.

Example 3.4 (“Samosa”). An example of a real surface with three singular points coming from
semidefinite programming is sometimes referred to as the ”Samosa”. It’s defining equation is found
by taking the determinant of a 3 × 3 matrix, resulting in f = 2xy − x2 − y2 − z2 + 1. We note
that the surface defined by f is not bounded, but by restricting to the bounded component shown
in the figure we can apply the theorem. The most straightforward choice for g which satisfies the
above formula is g = x2 + y2 + z2 − 3. Using Lagrange multipliers to optimizing with respect
to this g results in the red points in the figure. Alternatively, we could select a g which satisfies
the theorem using the polar varieties technique detailed later in the paper. In this case, we use
g = 2xy + 2xz + 2yz − 2x− 2y − 2z and optimization with Lagrange multipliers results in the two
blue points in the figure.

We now consider when V (f1, . . . , fn−d) is not equidimensional of dimension d. In this case, we
perturb the polynomials by constants. The following lemma was proved in [27, Lemma 1].

Lemma 3.5. Let f1, . . . , fs ∈ R[x1, . . . , xn] and fix l ≤ s and I = {i1, . . . , il} ⊂ {1, . . . , s}. Then
there exists a Zariski closed sebset A × E ⊂ Cs × C such that for all (a1, . . . , as) ∈ Rs \ A and
e ∈ R \ E, the ideal generated by the polynomials

fi1 − eai1 , . . . , fil − eail

is a radical equidimensional ideal and V (fi1 − eai1 , . . . , fil − eail) is either empty or smooth of
dimension n− l.

Definition 3.6. Let f1, . . . , fs ∈ R[x1, . . . , xn] and consider a point a = (a1, . . . , as) ∈ Rs. We say
that f1, . . . fs and a satisfy Assumption A if

Figure 1: “Thom’s lips” and “Samosa”
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A: There exists e0 > 0 such that for all 0 < e ≤ e0, the polynomials f1−ea1, . . . , fs−eas generate
a radical equidimensional ideal and V (f1 − ea1, . . . , fs − eas) is smooth and has dimension
n− s.

Then we have the following theorem:

Theorem 3.7. Assume that f1, . . . , fn−d ∈ R[x1, . . . , xn] and point a ∈ Qn−d satisfies Assumption
A. For e > 0, define

V a
e := V (f1 − ea1, . . . , fn−d − ean−d) and V := lim

e→0+
V a
e ⊂ Cn.

Suppose that V ∩ Rn is compact. Let g ∈ R[x1, . . . , xn] such that

dimV ∩ V (g) ≤ d− 1.

Denote by Le ⊂ R[x1, . . . , xn, λ1, . . . , λn−d] the following polynomial system using Lagrange multi-
pliers to compute the critical points of g on V a

ε :

Le :=

 ∂g

∂xi
+
n−d∑
j=1

λj
∂fj
∂xi

: i = 1, . . . , n

 ∪ {f1 − ea1, f2 − ea2, . . . , fn−d − ean−d} .
Let πx : Cn×Cn−d → Cn be the projection to the x coordinates and define S := lime→0 πx(V (Le)) ⊂
V ⊂ Cn. Then, S is finite and either (V \ V (g)) ∩ Rn = ∅ or for each connected component C of
V ∩Rn where g is not identically zero, there exists z ∈ S ∩C such that g(z) 6= 0. In particular, if g
such that Sing(V )∩Rn ⊂ V (g), then S ∩Rn contains smooth points in each connected components
of V ∩ Rn that has dimension d.

Proof. By Assumption A, we know V a
e is smooth and equidimensional of dimension d for all suffi-

ciently small e > 0. We can apply [10, Prop. 12.38] over C instead of R to show V = lime→0 V
a
e ⊂ Cn

is a Zariski closed set and is equidimensional of dimension d or empty if all limits go to infinity.
Assumption A also implies that V (Le) ⊂ Cn × Cn−d is zero dimensional for all sufficiently small
e > 0, and so S is finite. Suppose (V \ V (g)) ∩ Rn 6= ∅. Let C1, . . . , Cr ⊂ V ∩ Rn be the con-
nected components of V ∩ Rn where g is not identically zero. Since V ∩ Rn is compact, each Ci
is compact, which implies that the distance from Ci to Cj is positive for each i 6= j. Also, for all
sufficiently small e, V a

e ∩ Rn is also compact. Fix i ∈ {1, . . . , r} . In [52, Prop. 5], it is proved

that there exist connected components C
(e)
i,1 , . . . , C

(e)
i,si

of V a
e ∩ Rn for all sufficiently small e > 0

such that Ci =
⋃si
k=1 lime→0+ C

(e)
i,k . Moreover, since Ci and Cj has positive distance for i 6= j, also

by [52, Prop. 5] we have that
⋃si
k=1C

(e)
i,k is disjoint from

⋃sj
k=1C

(e)
j,k . For each k = 1, . . . , si let

S(e)i,k := πx(V (Le)) ∩C(e)
i,k . Then, by Theorem 3.1, S(e)i,k 6= ∅, and it contains all points in C

(e)
i,k where

g takes its extreme values. Let Si :=
⋃si
k=1 lime→0 S(e)i,k . Since S(e)i,k is bounded for all sufficiently

small e, none of the limit points escape to infinity. Suppose that for all z ∈ Si we have g(z) = 0.
Since Ci is compact, by the extreme value theorem, g attains both a minimum and a maximum
on Ci. Since g is not identically zero on Ci, either the minimum or the maximum value of g on

Ci must be nonzero. Let z∗ ∈ Ci such that |g(z∗)| > 0. Let z∗e ∈ C
(e)
i such that lime→0 z

∗
e = z∗.

Then for any z ∈ Si, if ze ∈ S(e)i such that lime→0 ze = z, then for sufficiently small e we have
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that |g(z∗e )| > |g(ze)|. Since Si is finite, we can choose a common e0 value for all z ∈ Si so that if

0 < e < e0 then |g(z∗e )| > |g(ze)| for all ze ∈ S(e)i . Thus, S(e)i could not contain all points of C
(e)
i

where g takes its extreme values, a contradiction. So this proves that for each i = 1, . . . r, S ∩ Rn
contains a point z ∈ Ci such that g(z) 6= 0.

To prove the last claim, assume that Sing(V ) ∩ Rn ⊂ V (g). If Ci is a connected component
of V ∩ Rn where g is not identically zero, then Ci has non-singular points, so by Theorem 2.4
dimCi = d. Conversely, if Ci a connected component of V ∩ Rn of dimension d then g cannot
identically vanish on Ci by the assumption that dimV ∩ V (g) ≤ d − 1. Thus S ∩ Rn contains a
point z ∈ Ci \ Sing(V ), so it is smooth.

Remark 3.8. We assumed in Theorems 3.1 and 3.7 that g is a polynomial, but we can straight-
forwardly extend the results to g : Rn → R differentiable functions as long as ∂g

∂xi
for i = 1, . . . , n

are rational functions.

4 Application to Real Dimension

This section applies Theorem 3.7 to compute the real dimension of real algebraic (and semi-
algebraic) sets.

The main idea of our algorithm is as follows. We can apply Theorem 3.7 to try to compute
real smooth points on the algebraic variety. Using Theorem 2.4, if we find a real smooth point, we
find the real dimension to be the same as the complex one. If there are no real smooth points, we
conclude that the real dimension is smaller than the complex dimension. In that case, we need to
lower the complex dimension in a way that we do not lose any real points in the variety. To do this
we use the following notion of polar varieties, using the notation in [52]:

Definition 4.1. Let f ∈ C[x1, . . . , xn] and V = V (f) ⊂ Cn. Consider the projections πi(x1, . . . , xn) =
(x1, . . . , xi) for i = 1, . . . , n. The polar variety associated to πi of V is defined as

crit(V, πi) := V

(
f,

∂f

∂xi+1
, . . . ,

∂f

∂xn

)
⊂ Cn i = 1, . . . , n.

Remark 4.2. There is extensive literature about different notions of polar varieties (see for example
[7] for a survey). Here we use the simplest kind of polar varieties, following [52], using a single
polynomial f that we think of the sum of squares of the input polynomials f1, . . . , fs. If V is singular
then crit(V, πi) contains all singular points of V , as well as the critical points of the projection πi.
In the usual definition of polar varieties in the literature they usually exclude the singular points
of V and then take Zariski closure, the definition above is different. See the details on the results
we need about these polar varieties in Section 5. In practice, other notions of polar varieties may
work better, but their presentation require more space.

The other ingredient in our algorithm is to compute points on varieties that are given as limits.
This is to avoid higher dimensional components that appear in the polar varieties, but disappear
in perturbations, so also disappear in the limits. Numerical homotopy continuation methods are
especially well suited for taking limits. Section 7 describes how to weed out extraneous components
in the limit embedded in those higher dimensional components that we want to avoid.
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The outline of our real dimension algorithm is as follows:

Algorithm: Numerical Real Dimension

Input: f1, . . . , fs ∈ R[x1, . . . , xn] such that V (f1, . . . , fs) ∩ Rn is compact where n ≥ 2.
Output: The real dimension of V (f1, . . . , fs) ∩ Rn.

(1) Choose random A ∈ GLn(R) and define

f(x) :=
s∑
i=1

fi(Ax)2 ∈ R[x1, . . . , xn].

Choose a random ξ ∈ C with |ξ| = 1. Let i := n.

(2) For simplicity, suppose here that

V := lim
t→0

crit (V (f − tξ), πi)

is irreducible and compute g with the following properties:

(a) Sing(V ) ∩ Rn ⊂ V (g)

(b) dimV ∩ V (g) = i− 2.

See Section 6 for details and also for how to handle the case when V is not irreducible.

(3) Define

Ltξi :=

 ∂g

∂xk
+

n−d∑
j=1

λj
∂fj
∂xk

: k = 1, . . . , n

 ∪
{
f − tξ, ∂f

∂xi+1
, . . . ,

∂f

∂xn

}

and compute Si := limt→0 πx

(
V (Ltξi,j)

)
∩ Rn \ V (g). If Si 6= ∅ then RETURN i-1.

(4) Set i := i− 1. If i = 0 RETURN(−1). If i > 0 go to Step 2.

Example 4.3. The Whitney umbrella is a real surface that consists of a 2-dimensional umbrella-
like surface with a 1-dimensional handle along the z-axis and defined by f1 = x2 − y2z. Since the
surface is not compact, we can add f2 = x2 + y2 + z2 +w2− 4 and only consider the bounded part
shown in Figure 2. The polynomial g = x satisfies the requirements and results in the red smooth
points shown in Figure 2(a) confirming the real dimension is two.

However, suppose instead that we wish to determine the local real dimension of the handle of
the umbrella. To do this, we localize our computations by taking f2 = x2 + y2 + (z+ 1)2 +w2− 1

4 .
As expected, the optimization using g = z+1 results in no smooth real points. So, we compute the
equation defining our next polar variety, namely f3 = 2y3 − 4yz2 − 4yz. Optimizing with respect
to g = z + 1 which satisfies the requirements yields the smooth real point on the handle shown in
Figure 2(b). This computation confirms that the real dimension of the handle is one.

10



(a) Dim. 2 Smooth Points (b) Dim. 1 Smooth Point

Figure 2: Whitney umbrella

Remark 4.4. In Step 2 of the Algorithm, we could replace g with a polynomial satisfying the
following conditions:

1. limt→0 crit(V (f − tξ), πi−1) ∩ Rn ⊂ V (g)

2. dim limt→0 crit(V (f − tξ), πi) ∩ V (g) = i− 2.

Note that these conditions imply the conditions in Step 2 for all irreducible component of V . The
reason we chose the conditions in Step 2 is because it allows g’s that may have lower degree or
easier to compute.

Remark 4.5. Regarding certification of Step 3 of the Algorithm, suppose our input polyno-
mials f1, . . . , fs ∈ Q[x1, . . . , xn] and we want to certify the correctness of the elements of Si
computed numerically. We can certify numerical approximations to the points in the finite set

limt→0 πx

(
V (Ltξi,j)

)
using the symbolic-numeric certification algorithm of [2], which first computes

a rational univariate representation for this set. Then we use α-theory as in [34] to certify that the
computed points are approximate roots of the rational univariate representation, are real and also
give upper bounds for their approximation errors. Using these error bounds, we can also certify
that g does not vanish at the real roots. Conversely, to certify that a point approximates a root of
g, again we can use [2].

5 Polar varieties

In the above algorithm we take a random coordinate transformation to obtain the polynomial f
and compute points on the limit of the polar varieties of V (f − tξ) as t→ 0, where ξ ∈ C, |ξ| = 1 is
random and t ∈ (0, 1]. In this section we prove that for almost all linear transformation and ξ, the
complex dimension of the limit of the polar variety limt→0 crit(V (f − tξ), πi) is i−1 and it contains
all real points of V (f) as long as dim(V (f) ∩ Rn) ≤ i − 1. The proof is based on the analogous
results of [52, Props. 2-3] where they use a perturbation f − ε by an infinitesimal variable ε.
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In the rest of this section, we use the following notation from [52]: For f, g1, . . . , gm ∈ R[x1, . . . , xn]
and x = (x1, . . . , xn)

U := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0} ⊂ Rn,

and
S := V (f) ∩ U ⊂ Rn.

Definition 5.1. Let f ∈ R[x1, . . . , xn], V = V (f) ⊂ Cn, and A ∈ GLn(R). Then, we denote
fA(x) := f(Ax), i.e., V (fA) is the image of V via the map x 7→ A−1x.

Theorem 5.2. Let f, g1, . . . , gm ∈ R[x1, . . . , xn], and U and S as above. Suppose f ≥ 0 on Rn and
V (f) ∩ Rn is bounded. There is an open dense subset O ⊂ GLn(R) and finite set Z ⊂ S1 := {ξ ∈
C : |ξ| = 1} such that for all A ∈ O and ξ ∈ S1 \ Z, i = 1, . . . , n and t ∈ (0, 1]

crit(V (fA − tξ), πi) empty or smooth and equidimensional of dim i− 1 (2)(
limt→0 crit(V (fA − tξ), πi)

)
∩ U = S ⇔ dimR(S) ≤ i− 1. (3)

Proof. First, we show that for all but a finite number of choices of ξ ∈ C, V (f − ξ) is smooth. This
follows from Sard’s theorem [14, Thm. 9.6.2] since V (f − ξ, ∂f∂x1 , . . . ,

∂f
∂xn

) ⊂ Cn is empty for all but
finitely many ξ ∈ C. This also implies that for all but finitely many ξ ∈ C with |ξ| = 1 and for
all t ∈ (0, 1] we have that V (f − tξ) is smooth. Fix ξ ∈ C such that V (f − tξ) is smooth for all
t ∈ (0, 1]. Fix i ∈ {1, . . . , n}. Next we show that there is an open dense subset Oi ⊂ GLn(R) such
that if A = [ak,l]

n
k,l=1 ∈ Oi then crit(V (fA− tξ)), πi) ∈ Cn is empty or smooth and equidimensional

of dimension i− 1. The proof is a slight modification of the proof of [3, Prop. 3] using the map

Φi : Cn ×GLn(R)→ Cn−i+1

mapping (y1, . . . , yn, A = [ak,l]
n
k,l=1) ∈ Cn ×GLn(R) to(

f(y)− tξ,
n∑
k=1

ak,i+1
∂f(y)

∂yk
, . . . ,

n∑
k=1

ak,n
∂f(y)

∂yk

)
.

Here y = Ax. Since (f − tξ)A = f(y)− tξ, our assumption on t and ξ implies that V (f(y)− tξ) is
smooth. This implies that for every point in Φ−1i (0) the Jacobian matrix of Φi has maximal rank of
n− i+ 1. If Φ−1i (0) = ∅ then for all A ∈ GLn(R) we have crit(V (fA − tξ)), πi) = ∅. If Φ−1i (0) 6= ∅,
then just as in the proof of [3, Prop. 3], we can apply weak transversality due to Thom/Sard to the
surjective projection Φ−1i (0) → GLn(R) to prove that for a dense subset of Oi ⊂ GLn(R), for any
fixed A ∈ Oi the Jacobian of the map Φi|A has full row rank at every point in (Φi|A)−1(0). This is
equivalent to crit(V (fA − tξ)), πi) ∈ Cn being smooth and equidimensional of dimension i − 1 for
every A ∈ Oi as above. Setting O′ :=

⋂n
i=1Oi, O

′ is still dense and open GLn(R), which proves the
first claim.

The second claim follows from Propositions 5.3 and 5.4 and Lemma 5.5 as follows. Let Z ⊂ C
be a finite set such that for all ξ ∈ S1 \ Z we have that V (f − tξ) is smooth for all t ∈ (0, 1], as
was proved above. Let O′ ⊂ GLn(R) defined in part (1). Let O′′ ⊂ GLn(C) Zariski open defined in
Proposition 5.3 such that for all A ∈ O′′∩GLn(R), fA satisfies properties N. Let O := O′∩O′′. Then
O is open and dense in GLn(R) and for all A ∈ O fA satisfies the assumptions of both Proposition
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5.4 and Lemma 5.5. Thus for all ξ ∈ S1 \ Z, t ∈ (0, 1] and A ∈ O we have dimR(S) ≤ i− 1 if and
only if (

lim
t→0

crit(V (fA − tξ), πi)
)
∩ U =

(
lim
ε→0

crit(V (fA − ε), πi)
)
∩ U = S.

To prove the second claim of Theorem 5.2, we use Puiseux series in an infinitesimal variable ε.
Let K = R or C and denote by K〈ε〉 the field of Puiseux series over K, i.e.

K〈ε〉 :=

∑
i≥i0

aiε
i/q : i0 ∈ Z, q ∈ Z>0, ai ∈ K

 .

A Puiseux series z =
∑

i≥i0 aiε
i/q ∈ K〈ε〉 is called bounded if i0 ≥ 0.

The following two propositions are proved in [52, Props. 2-3]:

Proposition 5.3. Let f ∈ R[x1, . . . , xn]. There exists a non-empty Zariski open set O ∈ GLn(C)
such that for A ∈ O ∩ GLn(R), if V A = V (fA) and V A

ε := V (fA − ε) ⊂ C〈ε〉n for ε infinitesimal
then

N1: For all 1 ≤ i ≤ n, crit(V A
ε , πi) is either empty or is smooth and equidimensional with complex

dimension i− 1.

N2: For all p ∈ V A ∩Rn we have π−1d (πd(p)) ∩ V A ∩Rn is finite, where d is larger than or equal
to the local real dimension of V A at p.

Proposition 5.4. Let f, g1, . . . , gm ∈ R[x1, . . . , xn] and let ε be infinitesimal. Suppose f ≥ 0 on Rn,
f satisfies property N1 and N2, and V (f)∩Rn is bounded. Then for i = 1, . . . , n, limε→0 crit(Vε, πi)
is equidimensional of dimension i− 1 and for U and S as above we have(

lim
ε→0

crit(Vε, πi)
)
∩ U = S ⇔ dimR(S) ≤ i− 1.

Finally, the next lemma is the last missing piece in the proof of (2) in Theorem 5.2.

Lemma 5.5. Let f, g1, . . . , gm ∈ R[x1, . . . , xn], let ε be infinitesimal. Assume that Vε := V (f −
ε, g1, . . . , gm) ⊂ C〈ε〉n is smooth and equidimensional of dimension n−m− 1. Suppose ξ ∈ C with
|ξ| = 1 and assume that for Vtξ := V (f − tξ, g1, . . . , gm) ⊂ Cn is smooth and equidimensional of
dimension n−m− 1 for all t ∈ (0, 1]. Then we have that

lim
ε→0
Vε = lim

t→0
Vtξ.

Proof. Let L1, . . . , Ln−m−1 ∈ C[x1, . . . , xn] be linear polynomials such that L = {L1, . . . , Ln−m−1}
is a generic linear space of codimension m+1 which intersects both lim

ε→0
Vε and lim

t→0
Vtξ transversely.

By our assumptions, both Vε ∩ L and Vtξ ∩ L are finite. Then since L does not depend on either ε
or t, one can see that is suffice to show that

lim
ε→0

(
Vε ∩ L

)
= lim

t→0

(
Vtξ ∩ L

)
.
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Let H ⊂ R[x1, . . . , xn, ε] be the system

H := H(x, ε) = [f(x)− ε, g1, . . . , gm, L1, . . . , Ln−m−1] .

Let S ⊂ C〈ε〉n be the finite set of bounded solutions of H = 0, where bounded is as defined for
Puiseux series above. Then for all x(ε) ∈ S, let x0 = limε→0 x(ε) = x0 ∈ Cn. Furthermore, by the

definition of H, limε→0 S = limε→0

(
Vε ∩ L

)
.

Since ε > 0 is a real infinitesimal, each x(ε) has an interval of convergence (0, εx) ⊂ R for some
εx > 0. Choose ε0 > 0 such that ε0 < min

x∈S
εx. Then, for z ∈ C with |z| ≤ ε0, x(z) ∈ Cn for x ∈ S.

We consider the branch points of x(z) for all x ∈ S. In particular, the critical points C associated
to these branch points are all z ∈ C such that there exists an x ∈ Cn where H(x, z) = 0 and
det JH(x, z) = 0, where JH is the Jacobian matrix of H with respect to x. Then, since |S| <∞,
we know |C| <∞,

Now let z ∈ C. Then there exists some ξz ∈ S1 such that for t ∈ R, the path ξzt passes through
z, so that x(tξz) ∈ Cn has some branching point. Let Z = {ξz : z ∈ C} ⊂ S1, since |C| < ∞,
|Z| < ∞. Then, for ξ ∈ S1 \ Z, x(tξ) ∈ Cn for t ∈ (0, 1] does not pass through branching points.
Since S1 \ Z is Zariski dense in S1, the same holds for generic ξ ∈ S1.

So let ξ ∈ S1 be generic and Hξ ⊂ Cn+1 be the homotopy defined by the system

Hξ := Hξ(x, t) = [f(x)− tξ, g1, . . . , gm, L1 . . . , Ln−m−1] . (4)

The limit points of the solutions of Hξ are lim
t→0

(
Vtξ ∩ L

)
. Let T ⊂ Cn be the roots of Hξ(x, 1).

Then |T | = |Vε ∩ L| < ∞. Furthermore, by the above argument the homotopy paths for Hξ are
exactly described by the points in Vε ∩ L ⊂ C〈ε〉n by replacing ε with tξ. Hence,

lim
ε→0

(
Vε ∩ L

)
= lim

t→0

(
Vtξ ∩ L

)
.

6 Computation of g

In this section we present a method to compute g that satisfy the conditions of Step 2 in our
Algorithm using isoingular deflations (see [35] and Section 7 below).

Proposition 6.1. Suppose f ∈ R[x1, . . . , xn] and ξ ∈ C with |ξ| = 1 satisfy (2) in Theorem 5.2
with U = Rn and A = I. Let V ⊂ Cn be an irreducible component of limt→0 crit(V (f − tξ), πi)
and z ∈ V be a non-singular point on V . Let F = {F1, . . . , FN} ⊂ R[x1, . . . , xn] be the isosingular
deflation sequence satisfying {

f,
∂f

∂xi+1
, . . . ,

∂f

∂xn

}
⊂ F,

F (z) = 0 and rank(JF (z)) = n− i+ 1. Here JF (x) ∈ R[x1, . . . , xn]N×n is the Jacobian matrix of
F . Let M(x) be an (n − i + 1) × (n − i + 1) submatrix of JF (x) such that M(z) is non-singular.
Then for g(x) := det(M(x)) we have
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1. Sing(V ) ⊂ V (g)

2. dimV ∩ V (g) ≤ i− 2.

Proof. If y ∈ Sing(V ) then rank(JF (y)) < n − i + 1 so all (n − i + 1) × (n − i + 1) subdetermi-
nants of JF (y) are singular, so g(y) = det(M(y)) = 0, which proves (1). By Theorem 5.2 (2),
limt→0 crit(V (f − tξ), πi) is equidimensional of dimension i − 1, so dimV = i − 1. Since V is
irreducible and V 6⊂ V (g), we have (2).

Section 7 explains how to compute an isosingular deflation sequence F for one or more irreducible
components of the limit variety limt→0 crit(V (f − tξ), πi) by first computing a witness set as in
Definition 7.1.

The next theorem proves the correctness of our Algorithm even in the case when the irre-
ducible components of the limit variety limt→0 crit(V (f − tξ), πi) require several isosingular de-
flation sequences. In the Algorithm, for the simplicity of the presentation, we assumed that
limt→0 crit(V (f − tξ), πi) is irreducible.

Theorem 6.2. Suppose f ∈ R[x1, . . . , xn] and ξ ∈ C with |ξ| = 1 satisfy (2) and (3) in Theorem
5.2 with U = Rn and A = I. Fix i ∈ {1, . . . , n} and assume that

dimR V (f) ∩ Rn ≤ i− 1.

Let g1, . . . , gr ⊂ R[x1, . . . , xn] be polynomials such that for each j ∈ {1, . . . , r} there exists a
nonempty set of irreducible components Ij := {Vj,1, . . . , Vj,sj} of limt→0 crit(V (f − tξ), πi) such
that

⋃r
j=1

⋃
V ∈Ij V = limt→0 crit(V (f − tξ), πi) and for k = 1, . . . , sj

1. Sing(Vj,k) ∩ Rn ⊂ V (gj)

2. dimVj,k ∩ V (gj) ≤ i− 2.

Define for j = 1, . . . , r,

Ltξi,j :=

{
∂gj
∂xk

+
n−d∑
s=1

λs
∂fs
∂xk

: k = 1, . . . , n

}
∪
{
f − tξ, ∂f

∂xi+1
, . . . ,

∂f

∂xn

}
and let

Si,j :=
(

lim
t→0

πx

(
V (Ltξi,j)

)
\ V (gj)

)
∩
⋃
V ∈Ij

V ∩ Rn.

Define Si :=
⋃r
j=1 Si,j . Then Si 6= ∅ if and only if dimR V (f) ∩ Rn = i− 1.

Proof. Suppose dimR V (f)∩Rn = i−1. Then by Theorem 5.2 we have (limt→0 crit(V (f − tξ), πi))∩
Rn = V (f) ∩ Rn. Since dimC (limt→0 crit(V (f − tξ), πi)) = i − 1, its complex and real dimensions
are the the same, so it must contain a real smooth point by Theorem 2.4. Suppose the irreducible
component V ⊂ Cn of limt→0 crit(V (f − tξ), πi) contains such smooth real points. Let gj be the

polynomial satisfying (1) and (2) of the claim for V . Then by Theorem 3.7 limt→0 πx

(
V (Ltξi,j)

)
contains a smooth point on every component of V ∩ Rn. Thus, Si 6= ∅. Suppose now that Si 6= ∅.
Then there exists j ∈ {1, . . . , r} such that Si,j 6= ∅, so let z ∈ Rn be an element of it. Since
Si,j ⊂

⋃
V ∈Ij V , there exists k ∈ {1, . . . , sj} such that z ∈ Vj,k. Since Sing(Vj,k) ∩ Rn ⊂ V (gj) and

gj(z) 6= 0, z is a smooth point of Vj,k ∩ Rn, so dimR Vj,k ∩ Rn = dimC Vj,k = i− 1.
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To compute elements in
(

limt→0 πx

(
V (Ltξi,j)

))
∩
⋃
V ∈Ij V as in Theorem 6.2, we need to ex-

clude points from limt→0 πx(V (Ltξi,j)) that do not correspond to components with the prescribed
isosingular deflation sequence. Once we computed the isosingular deflation sequence, this can be
done by a membership test, e.g., [12, Chap. 8].

7 Witness sets and isosingular deflation

In this section, we show how to construct witness sets, which is a numerical algebraic geometry
data structure for representing algebraic sets, for the limits of polar varieties.

Definition 7.1. If V ⊂ Cn is equidimensional with dimV = k, a witness set for V is the triple
{F,L,W} such that

• F is a witness system for V in that each irreducible component of V is an irreducible compo-
nent of V (F );

• L is a linear system where V (L) is a linear space of codimension k that intersects V trans-
versely;

• W is a witness point set which is equal to V ∩ V (L).

See the books [12, 55] for more details on witness sets.
The proof of Lemma 5.5 describe computing witness point sets in the limits of polar varieties.

Thus, all that remains is to compute a witness system in order to perform computations on this
limit variety. One difficulty is that a witness point could lie on some irreducible component of
crit(V, πi) of dimension greater than i − 1. Another difficulty is that the limit points may be
singular arising from multiple paths converging to the same limit point. Isosingular deflation [35]
with [36, Thm. 6.2] yields a procedure to compute a witness system for each irreducible component
of the limit.

Let Hξ be as (4) and p a limit point of the solutions of Hξ. Therefore, p is a general point
on an irreducible component Vp of V = limε→0 Vε. The following describes constructing a witness
system for Vp. Define F0(x, t, s) = {Hξ(x, t), s} and q = (p, 0, 0) ∈ V (F0). Define the isosingular
deflation operator D via

(F1,q) := D(F0,q)

where F1 consists of F0 and all (r + 1) × (r + 1) minors of the Jacobian matrix JF0 for F0 where
r = rank JF0(q). Thus, q ∈ V (F1) meaning that we can iterate this operator to construct a
sequence of systems Fj(x, t, s) with (Fj ,q) = D(Fj−1,q) for j ≥ 1.

Theorem 7.2. With the setup described above, there exists j∗ ≥ 0 such that, for all j ≥ j∗, the
system F (x) := Fj(x, 0, 0) is a witness system for Vp ⊂ V .

Proof. Since Vp is an irreducible component of V , we know that Vp×{0} is an irreducible component
of V ∩V (t). Hence, it follows from the isosingular deflation approach applied to intersections in [36,
Thm. 6.2] that there exists j∗ ≥ 0 such that, for all j ≥ j∗, Gj(x, t) := Fj(x, t, t) is a witness system
for Vp × {0}. Since s is contained in F0(x, t, s), we know t ∈ Gj(x, t) yielding V (Gj) ⊂ Cn × {0}.
Thus, it immediately follows that, for every j ≥ j∗, Vp must be an irreducible component of
πx(V (Gj)) = V (F ) where F (x) = Gj(x, 0) = Fj(x, 0, 0).
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The number j∗ can be determined algorithmically [35, Alg. 6.3].

Example 7.3. Consider H1(x, t) = [x1x2 − t, x1x2 − x1] with p = (0, 1) and Vp = V = {(0, 1)}.
The system H1(x, 0) is not a witness system for Vp since V (H1(x, 0)) = V (x1) is one-dimensional.
Take q = (0, 1, 0, 0) and F0(x, t, s) = {H1(x, t), s}. Since rank JF0(q) = 2,

F1(x, t, s) = {F0(x, t, s), x1, x2 − 1}

Hence, F (x) := F1(x, 0, 0) is clearly a witness system for Vp.

We note that Theorem 7.2 only guarantees that Vp is an irreducible component of V (F ), but
it may have multiplicity larger than one. Hence, once a witness system F (x) has been constructed
for Vp, one can construct another sequence of polynomials, say G0(x) := F (x) and (Gj ,p) =
D(Gj−1,p) for j ≥ 1. Once dim null JGj(p) = k = dimVp, then Gj(x) is a witness system for Vp
which has multiplicity one. This is the system that we use in Proposition 6.1.

Example 7.4. For H1(x, t) = {x21 − x2 − t, x2} with p = (0, 0) and Vp = V = {(0, 0)}, the
system H1(x, 0) = {x21 − x2, x2} is a witness system for Vp, but has multiplicity 2. Moreover,
Fj(x, t, s) = F0(x, t, s) = {H1(x, t), s} for all j ≥ 1 showing that the witness system generated by
Theorem 7.2 may have multiplicity greater than 1. For G0(x) = {x21−x2, x2}, isosingular deflation
yields G1(x) = {G0(x), 2x1} with dim null JG1(p) = 0 = dimVp.

We note that the isosingular deflation operator presented above utilized all appropriate minors
for constructing the two sequences of polynomial systems. One could utilize alternative deflation
approaches such as [26, 28, 33, 43, 44] to possibly simplify the construction of the witness system.

8 Application to Kuramoto model

The Kuramoto model [40] is a dynamical system used to model synchronization amongst n coupled
oscillators. The maximum number of equilibria (i.e., real solutions to steady-state equations) for
n ≥ 4 remains an open problem [24]. The following confirms the conjecture in [60] for n = 4 with
the rest of the section describing its proof.

Theorem 8.1. The maximum number of equilibria for the Kuramoto model with n = 4 oscillators
is 10.

The steady-state equations for the n = 4 Kuramoto model are

fi(θ;ω) = ωi −
1

4

4∑
j=1

sin(θi − θj) = 0, i = 1, . . . , 4

parameterized by the natural frequencies ωi ∈ R. Since only the angle differences matter, one can
assume θ4 = 0 and observe a necessary condition for equilibria is

0 = f1 + f2 + f3 + f4 = ω1 + ω2 + ω3 + ω4,

i.e., assume ω4 = −(ω1 + ω2 + ω3). Replacing θi by si = sin(θi) and ci = cos(θi) yields the
polynomial system

F (s, c;ω) =

ωi − 1

4

4∑
j=1

(sicj − sjci), s2i + c2i − 1, for i = 1, 2, 3
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(a) one slice (b) zoomed in

(c) other slice (d) zoomed in

Figure 3: Compact connected regions and critical points for the Kuramoto model with n = 4

with variables s = (s1, s2, s3) and c = (c1, c2, c3), parameters ω = (ω1, ω2, ω3), and constants s4 = 0
and c4 = 1.

The goal is to compute the maximum number of isolated real solutions of F = 0 as ω varies
over R3. Clearly, a necessary condition for having real solutions is for |ωi| ≤ 0.75 showing that
we are only interested in computing at least one point in each compact connected component of
R3 \ V (D) where D(ω) is the discriminant, a polynomial of degree 48. Since D attains a non-zero
extreme value on each compact connected component of R3 \ V (D), one simply needs to compute
all real solutions of ∇D = 0 where D 6= 0. This was accomplished by exploiting symmetry and
utilizing Bertini [11], alphaCertified [34], and Macaulay2 [29] certifying all solutions have been
found. In fact, this computation showed that all real critical points arose, up to symmetry, along
two slices shown in Figure 3. A similar computation then counted the number of real solutions to
F = 0 showing that the maximum number of equilibria is 10. All code used in these computations
is available at dx.doi.org/10.7274/r0-5c1t-jw53.
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9 Conclusion

This paper describes an algorithm that computes real smooth points on a given algebraic set V via
a polynomial g ∈ R[x1, . . . , xn] that vanishes on Sing(V ) but transversely intersects V . We applied
this result to compute the dimension of real varieties.

The bottleneck of our algorithm is that the polynomial g satisfying the above conditions may
have high degree. Since the Lagrange multiplier system uses the partial derivatives of g to con-
struct a zero dimensional system, the a priori bound on the number of roots of this system may
be very large.

We conjecture that one can replace the condition dimV ∩ V (g) ≤ d − 1 in Theorem 3.7 with
the weaker condition dimWg ≤ d − 1 for Wg := lime→0(V

a
e ∩ V (g)). This would allow using

polynomials g that have degrees similar to the degrees of the input polynomials.
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Autón. Puebla, Puebla, 1997.

[4] B. Bank, M. Giusti, J. Heintz, and G. M. Mbakop. Polar varieties and efficient real elimination.
Math. Z., 238(1):115–144, 2001.

[5] B. Bank, M. Giusti, J. Heintz, and L. M. Pardo. Generalized polar varieties and an efficient
real elimination procedure. Kybernetika (Prague), 40(5):519–550, 2004.

[6] B. Bank, M. Giusti, J. Heintz, and L. M. Pardo. On the intrinsic complexity of point finding
in real singular hypersurfaces. Inform. Process. Lett., 109(19):1141–1144, 2009.

[7] B. Bank, M. Giusti, J. Heintz, M. Safey El Din, and E. Schost. On the geometry of polar
varieties. Applicable Algebra in Engineering, Communication and Computing, 21(1):33–83,
Jan 2010.

[8] I. Bannwarth and M. Safey El Din. Probabilistic algorithm for computing the dimension of
real algebraic sets. In ISSAC’15—Proceedings of the 2015 ACM International Symposium on
Symbolic and Algebraic Computation, pages 37–44. ACM, New York, 2015.

19



[9] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry, volume 10 of
Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, second edition, 2006.

[10] S. Basu, R. Pollack, and M.-F. Roy. Computing the dimension of a semi-algebraic set. Journal
of Mathematical Sciences, 134(5):2346–2353, May 2006.

[11] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Bertini: Software for
numerical algebraic geometry. Available at bertini.nd.edu.

[12] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Numerically solving
polynomial systems with Bertini, volume 25 of Software, Environments, and Tools. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.

[13] E. Becker and R. Neuhaus. Computation of real radicals of polynomial ideals. In Computational
algebraic geometry (Nice, 1992), volume 109 of Progr. Math., pages 1–20. Birkhäuser Boston,
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[17] C. W. Brown and M. Košta. Constructing a single cell in cylindrical algebraic decomposition.
J. Symbolic Comput., 70:14–48, 2015.

[18] P. Bürgisser, F. Cucker, and P. Lairez. Computing the homology of basic semialgebraic sets
in weak exponential time. J. ACM, 66(1):Art. 5, 30, 2019. [Publication date initially given as
2018].

[19] C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. Triangular de-
composition of semi-algebraic systems. In ISSAC 2010—Proceedings of the 2010 International
Symposium on Symbolic and Algebraic Computation, pages 187–194. ACM, New York, 2010.

[20] C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. Triangular
decomposition of semi-algebraic systems. J. Symbolic Comput., 49:3–26, 2013.

[21] C. Chen, J. H. Davenport, M. Moreno Maza, B. Xia, and R. Xiao. Computing with semi-
algebraic sets represented by triangular decomposition. In ISSAC 2011—Proceedings of the
36th International Symposium on Symbolic and Algebraic Computation, pages 75–82. ACM,
New York, 2011.

[22] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompos-
tion. In H. Brakhage, editor, Automata Theory and Formal Languages, pages 134–183, Berlin,
Heidelberg, 1975. Springer Berlin Heidelberg.

20



[23] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier elimina-
tion. J. Symbolic Comput., 12(3):299–328, 1991.

[24] O. Coss, J. D. Hauenstein, H. Hong, and D. K. Molzahn. Locating and counting equilibria
of the Kuramoto model with rank-one coupling. SIAM J. Appl. Algebra Geom., 2(1):45–71,
2018.

[25] F. Cucker, T. Krick, and M. Shub. Computing the homology of real projective sets. Found.
Comput. Math., 18(4):929–970, 2018.

[26] B. H. Dayton and Z. Zeng. Computing the multiplicity structure in solving polynomial systems.
In ISSAC’05, pages 116–123. ACM, New York, 2005.

[27] J.-C. Faugère, G. Moroz, F. Rouillier, and M. S. El Din. Classification of the perspective-
three-point problem, discriminant variety and real solving polynomial systems of inequalities.
In Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’08, pages 79–86, New York, NY, USA, 2008. ACM.

[28] M. Giusti and J.-C. Yakoubsohn. Multiplicity hunting and approximating multiple roots of
polynomial systems. In Recent advances in real complexity and computation, volume 604 of
Contemp. Math., pages 105–128. Amer. Math. Soc., Providence, RI, 2013.

[29] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in algebraic
geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

[30] D. Y. Grigor′ev and N. N. Vorobjov, Jr. Solving systems of polynomial inequalities in subex-
ponential time. J. Symbolic Comput., 5(1-2):37–64, 1988.

[31] D. Y. Grigor′ev and N. N. Vorobjov, Jr. Counting connected components of a semialgebraic
set in subexponential time. Comput. Complexity, 2(2):133–186, 1992.

[32] J. D. Hauenstein. Numerically computing real points on algebraic sets. Acta Applicandae
Mathematicae, 125(1):105–119, Jun 2013.

[33] J. D. Hauenstein, B. Mourrain, and A. Szanto. On deflation and multiplicity structure. J.
Symbolic Comput., 83:228–253, 2017.

[34] J. D. Hauenstein and F. Sottile. Algorithm 921: alphaCertified: certifying solutions to poly-
nomial systems. ACM Trans. Math. Software, 38(4):Art. 28, 20, 2012.

[35] J. D. Hauenstein and C. W. Wampler. Isosingular sets and deflation. Found. Comput. Math.,
13(3):371–403, 2013.

[36] J. D. Hauenstein and C. W. Wampler. Unification and extension of intersection algorithms in
numerical algebraic geometry. Appl. Math. Comput., 293:226–243, 2017.
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