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Abstract. The growth of tumors can be modeled as a free boundary problem involving partial

differential equations. We consider one such model and compute steady-state solutions for this

model. These solutions include radially symmetric solutions where the free boundary is a sphere and

nonradially symmetric solutions. Linear and nonlinear stability for these solutions are determined

numerically.
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1. The Model. We consider the free boundary problem modeling tumor growth
that was studied in [12] and the references [1, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16] therein.

Let Ω(t) denote the tumor domain at time t, and p the pressure within the tumor
resulting from the proliferation of the tumor cells. The density of the cells, c, depends
on the concentration of nutrients, σ, and, assuming that this dependence is linear,
we simply identify c with σ. We also assume a linear dependence of the proliferation
rate S on σ: S = μ(σ − σ̃) (σ̃ > 0) where σ̃ is a threshold concentration and μ

is a parameter expressing the “intensity” of the expansion by mitosis (if σ > σ̃) or
shrinkage by apoptosis (if σ < σ̃) within the tumor. The function σ satisfies the
diffusion equation:

σt − Δσ = −σ in Ω(t). (1.1)

The pressure p is related to the velocity �V of the concentration σ, and, assuming
Darcy’s law in the tissue, we have �V = −∇p. Since, by conservation of mass, div�V =
S, we obtain for the pressure p the equation

Δp = −μ(σ − σ̃) in Ω(t). (1.2)
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As in the papers cited above, σ and p satisfy the boundary conditions:

σ = 1 on ∂Ω(t) (1 > σ̃), (1.3)

p = κ on ∂Ω(t) (1.4)

where κ is the mean curvature (κ > 0 if Ω(t) is a ball). Furthermore,

Vn = − ∂p

∂n
on ∂Ω(t) (1.5)

where n is the outward normal and Vn is the velocity of the free boundary ∂Ω(t) in
the direction n.

The model is summarized into the following reaction-diffusion system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σt − Δσ = −σ in Ω(t)
−Δp = μ(σ − σ̃) in Ω(t)

σ = 1 on ∂Ω(t)
p = κ on ∂Ω(t)

∂p
∂n = −Vn on ∂Ω(t).

(1.6)

The steady-state tumor model of (1.6) is thus given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δσ = −σ in Ω
−Δp = μ(σ − σ̃) in Ω

σ = 1 on ∂Ω
p = κ on ∂Ω

∂p
∂n = 0 on ∂Ω.

(1.7)

For the system (1.6) with smooth initial data, local existence and uniqueness
was proved in [3, 4]. In [13] it was proved that for any 0 < σ̃ < 1 there exists a
unique radially symmetric stationary solution, and its radius depends on σ̃, but not
on μ. It is proved that for small μ, radially symmetric solutions are asymptotically
stable. In [14] it was proved in the 2-dimensional case that there exists a sequence
of symmetric-breaking branches of stationary solutions of (1.7) bifurcating from μn

(n = 2, 3, 4, . . . ). A general simplified proof, which works also for the 3-dimensional
case, was proved in [10]. The asymptotic stability of the spherical solution for μ < μ2

and of the first bifurcation branch was studied extensively in [11, 12]; earlier results
for small μ were established in [4].

There results imply, in particular, there exists a radially symmetric stationary
solution with free boundary r = R for any positive number R. Since tumors grown
in vitro have a nearly spherical shape, it is important to determine whether these
radially symmetric tumors are asymptotically stable.

While tumors grown in vitro have a nearly spherical shape, tumors grown in
vivo are usually not. It is therefore also very interesting to study the behavior of
non-radially symmetric tumors.

It was shown that the bifurcation points satisfies μ2 < μ3 < · · · . It was shown
in [11] that it is possible for the radially symmetric solution to change the stability
at μ2. Moreover, [12] showed that it is possible to have a branch of stable non-
radially symmetric solutions near μ2 and an unstable branch of non-radially symmetric
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Fig. 2.1: Spherical polar coordinates

solutions also near μ2. In particular, this shows that the non-radially symmetric
solution branches near μ2 are of particular interest.

Note that these results are valid only in a small neighborhood of the bifurcation
branching point. A very challenging question is to find out what happens if the
parameters go beyond this small neighborhood. It is clear that numerical computation
is needed to answer these questions. In particular, it is interesting to find out whether
it is possible for the tumor to grow into other shapes. This is the goal of this paper,
by discretizing our system and tracking the condition number, we were able to track
along the bifurcation branch well beyond the bifurcation point, and in the process we
found a variety of possible shapes of steady state solutions. Some of these solutions
are stable while some others are not. Our results are shown in Figures 3.3–3.6.

2. Discretization. We utilize spherical coordinates to discretize the system with
the exception of the origin and Z-axis, which are singular. Any spherical coordinate
triplet (r, θ, φ) showed in Figure 2 specifies a single point of three-dimensional space:

x = r cos(φ) sin(θ)

y = r sin(φ) sin(θ)

z = r cos(θ),

where

0 ≤ r < ∞
0 ≤ θ ≤ π

0 ≤ φ < 2π.

We first consider the tumor model which is symmetrical in the φ direction. In
this case, we just consider the model in the θ direction. We will discuss the model
without such symmetry in section 4. To handle the free boundary, we developed a
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Table 2.1: Errors and orders

Formula value
max |x10 − x20| 7.941387350995921× 10−6

max |x10 − x40| 7.410376192340529× 10−6

max |x20 − x40| 6.082857159639410× 10−7

max |x10 − x80| 7.365667755276917× 10−6

max |x20 − x80| 6.552861596662352× 10−7

max |x40 − x80| 4.488189964124700× 10−8

log2

(
‖x10−x80‖2
‖x20−x80‖2

)
2.650665052445782

log2

(
‖x20−x80‖2
‖x40−x80‖2

)
2.747739401255624

novel discretization approach to allow the length of the grid to change in coordination
with the boundary, i.e., let Ri be the length of tumor in the θi direction, which change
independently and model the free boundary in that direction. In this case, we setup
NR equally spaced grid points between the origin and Ri in each direction. Let Nθ

denote the number of grid points in the θ direction. Near the boundary, we add two
additional grid points for improved accuracy that also change in accordance with the
boundary. Figure 2.2 presents the grid points for a radial and nonradial solution with
Nθ = 20 and NR = 20.

Using this grid, we apply the third order finite difference scheme to setup a dis-
cretization of the system (1.7) yielding a polynomial system. The variables of this
polynomial system correspond to the location of the boundaries in each direction and
the concentration of nutrients and pressure at each grid point. We check the conver-
gence of the numerical solution of the system by doubling the number of grid points
and quadrupling the number of grid points. In table 2.1, x10×i represents the solu-
tions with NR = 10 × i, Nθ = 10 × i respectively, where i = 1, 2, 4, 8. It shows that
the numerical solution converges to the actual solution by increasing grid points.

3. Bifurcation Problem. As mentioned in Section 1, the system depends on
the positive parameter μ and, for a sequence of values μ2 < μ3 < · · · , there exists
branches of symmetry breaking stationary solutions [10]. These solution branches
extend beyond a small neighborhood of the bifurcation points along the branch of
radially symmetry solutions. One goal of this paper is to compute the values of μn

where these bifurcations occur.

Starting from a radially symmetric solution and using parameter continuation
with respect to μ, we are able to track along the set of radially symmetric solutions
of the discretized polynomial system for a given radius. At the values of μ where
nonradially symmetric solution branches exist, the radially symmetric solution is sin-
gular, i.e., the Jacobian matrix of the non-symmetrized system is rank deficient. By
monitoring the Jacobian matrix of the discretized polynomial system using parameter
continuation, we can compute the values of μ2, μ3, . . . numerically.
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By monitoring the “condition number,” that is,

CN = ‖J(x)‖‖J−1(x)‖ (3.1)

where J(x) is the Jacobian matrix evaluated at x, we can identify when the Jaco-
bian matrix becomes rank deficient. In our tests, the error between the numerically
computed values of μn, 2 ≤ n ≤ 10, and the theoretic values is relatively small. For
example, using a radius of 2.5, we numerically computed μ2 = 4.043 and μ3 = 9.314.
The theoretical values are μ2 = 4.042 and μ3 = 9.319 [12]. Figure 3.1 plots the con-
dition number with respect to μ as we track along the radially symmetric solution
branch with radius 2.5 from μ = 3 to μ = 10. This plot clearly shows the two blows
up that occur at μ2 and μ3.

In order to track along the multiple solution branches which intersect at μn, we
numerically computed the tangent direction for each solution branch. Since the Jaco-
bian matrix is singular at μn, the double precision arithmetic in Matlab was unable to
accurately compute these tangent directions. By using multiprecision arithmetic im-
plemented in Bertini[2], we were able to compute the tangent directions which agreed
with the symbolic formulas. Upon computing the tangent direction, we utilized pa-
rameter continuation to track the non-radially symmetric solution branches passing
through μ2 and μ3 computed above. Figure 3.2 shows the solution behavior of these
branches which were computed using NR = Nθ = 20. For this figure, the function
ε(μ) is defined as the difference between max

θ
r(θ, μ) and min

θ
r(θ, μ). It is positive if

min
θ

r(θ, μ) is reached first as θ goes from 0 to π and negative if max
θ

r(θ, μ) is reached

first as θ goes from 0 to π , i.e.,

ε(μ) = (r(θ, μ) − r(θ, μ)), (3.2)

where θ ≥ θ are value on which max
θ

r(θ, μ) and min
θ

r(θ, μ) are reached respectively.

Figures 3.3–3.6 present a non-radially symmetric solution on each of these four non-
radially symmetric solution branches showed in Figure 3.2.

4. The model without symmetry. It is known [12] that the non-radial solu-
tions near the bifurcation point μn has a symmetry property. We will track non-radial
symmetry branches corresponding to the condition number of the Jacobian for the
system without symmetry and check if there exists another bifurcation in this section.
Since the system (1.7) is clearly translational and rotational invariant, the system has
five degrees of freedom from translations and rotations by removing the symmetry
assumption. The coordinates (x, y, z) of the origin yield the three degrees of freedom
from translations. Rotations in θ and φ yield two degrees of freedom. This corre-
sponds to the Jacobian of our discretized system having corank 5, which was verified
numerically.

Since we are only concerned about the families of solutions, we center the domain
at the origin, fix the x-axis as parallel to the normal direction at θ = π/2, φ = 0, and
fix the y-axis as parallel to the normal direction at θ = π/2, φ = 3π/2. By fixing these
choices, our Jacobian is full rank at solutions for a generic point μ.

To verify that the non-radially symmetric solution branches have this φ symmetry,
we utilized this discretized system which did not impose this φ symmetry. The corank



6

of this Jacobian is also 1 at the critical points of μ2 and μ3 and the nonradially solution
branches are the same as obtained before. No more bifurcation points are found by
checking the condition number of the Jacobian for the system without symmetry along
the non-radially symmetrical branches.

The left picture of Figure 4.1 displays the grid corresponding to a radially sym-
metric solution and the right picture of Figure 4.1 is the projection of the grid points
onto the x, z plane.

5. Linear stability. Similar to [17], the linearized system of (1.7) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1t − Δσ1 + σ1 = 0, in Ω0

−Δp1 = μσ1, in Ω0

σ1|r=ρ0 = −ρ1σ0r|r=ρ0

p1|r=ρ0 = κ1 − ρ1 · p0r |r=ρ0

ρ1t|r=ρ0 =
[

p0rρ0θ

ρ2
0 + ρ2

0θ

+
p0θ

ρ2
0 + ρ2

0θ

]
ρ1θ +

[
p1θρ0θ

ρ2
0

− p1r

]

+
[
− p0rρ

2
0θ

ρ0(ρ2
0 + ρ2

0θ)
− p0rr +

p0θrρ0θ

ρ2
0

− p0θρ0θ

ρ3
0

− p0θρ0θ

ρ0(ρ2
0 + ρ2

0θ)

]
ρ1

(5.1)

Let Un = (σ1(nτ), p1(nτ), R1(nτ)), where τ is the time step size. We solved the
linearized system using a third order scheme in the spatial direction coupled with
the backward Euler scheme in the time direction, which is unconditional stable. In
particular, at every time-step, we solved the linear system Un+1 = AUn, where the
matrix A depends on σ0, p0, R0 and τ .

This scheme transfers the question of linear stability to a question regarding the
spectrum of the matrix A. In particular, if |ρ(A)| < 1, then ‖Un‖ → 0 which yields
linear stability. Otherwise, it is linearly unstable. Tables 5.1 and 5.2 list the maximum
absolute value of the eigenvalues of the matrix A for different values of μ along all the
non-radially symmetric solution branches as in Figure 3.2.

6. Nonlinear stability. We now turn our attention to numerically determine
nonlinear stability. To that end, let G := r − R(θ, φ) = 0 be the equation describing
the boundary. Then, the velocity Vn of ∂Ω(t) is

Vn =
Gt

‖∇G‖ =
rtr√

r2 + R2
θ + R2

φ/sin(θ)2

Time marching with the system (1.6) allows us to numerically determine the local
stability of the nonradial steady state solutions. In particular, we used a random
perturbation of a solution as the initial condition as then computed the steady state
solution. Our tests utilized a perturbation size on the order of 10−3.

For example, consider the solution corresponding to μ = 3.9422 on the “upper”
solution branch. Table 5.1 yields that this solution is linearly stable. Figure 6.1
shows the convergence of the perturbed solution back to the original solution we
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Table 5.1: Maximum eigenvalue for the “upper” branches in Figure 3.2

μ max|ρ| μ max|ρ| μ max|ρ|
9.30460 1.0003895 8.49450 1.0003473 4.02897 0.9999995
9.22571 1.0003862 8.21950 1.0003308 3.92597 0.9999953
9.14521 1.0003825 7.94450 1.0003136 3.82297 0.9999911
9.06471 1.0003786 7.66950 1.0002958 3.71997 0.9999871
8.98421 1.0003745 7.39450 1.0002775 3.61697 0.9999834
8.90371 1.0003703 7.11950 1.0002589 3.51397 0.9999801
8.82321 1.0003660 6.84450 1.0002399 3.41097 0.9999773
8.74271 1.0003615 6.56950 1.0002206 3.30797 0.9999750
8.66221 1.0003570 6.29450 1.0002013 3.20497 0.9999732
8.58171 1.0003524 6.01950 1.0001824 3.10197 0.9999720

Table 5.2: Maximum eigenvalue for the “lower” branches in Figure 3.2

μ max|ρ| μ max|ρ| μ max|ρ|
9.30996 1.0003897 7.99500 1.0002553 4.43128 1.0000753
9.21539 1.0003860 7.24500 1.0002989 4.43082 1.0000737
9.08177 1.0003776 6.49500 1.0003061 4.43169 1.0000745
8.94815 1.0003658 5.74500 1.0002070 4.39295 1.0000637
8.81453 1.0003514 4.99500 1.0002009 4.33595 1.0000521
8.68091 1.0003354 4.35318 1.0000877 4.27895 1.0000413
8.54729 1.0003185 4.38048 1.0000777 4.22195 1.0000309
8.41367 1.0003014 4.40151 1.0000771 4.16495 1.0000208
8.28005 1.0002846 4.41662 1.0000768 4.10795 1.0000111
8.14643 1.0002687 4.42651 1.0000762 4.05095 1.0000016

perform time marching in t using (1.6). In particular, this shows that this nonradially
symmetric solution is stable.

We performed similar computations to yield the stability of the solution branches
which is displayed in Figure 6.2. In particular, green lines denote the stable solutions
and red lines denote the unstable solutions. Therefore, we have numerically verified
that the non-radially symmetric solutions are stable for μ < μ2 and unstable for
μ > μ2.
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Fig. 6.1: Convergence of the perturbed nonradially symmetric solution at μ = 3.9422

Fig. 6.2: Stability of the solutions
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