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Abstract. An algorithm is presented for computing the tension in an elastic cable
subject to sagging under its own weight, a problem highly relevant in tethered
systems such as cable-driven parallel robots. This requires solving the two coupled
equations of the Irvine cable model, which give the endpoint position as a function
of vertical and horizontal components of tension. Via a change of variables, we
reformulate this system as a pair of uncoupled equations, which are shown to
have a unique solution. We develop an efficient numerical procedure to solve one
of these, after which closed-form formulas provide the solution of the second
equation and ultimately the tension components.
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1 Introduction

We present a solution for determining the tension force in a suspended sagging cable
and its associated profile at equilibrium, given the end-coordinates and the unstrained
length of the cable. This problem is highly relevant in tethered systems such as cable-
driven parallel robots (CDPRs), where real-time estimation of cable tension force and
profile is essential for effective planning and control. Due to the non-algebraic nature
of the cable sag equations, which are highly sensitive to minor variations in geometric
and material parameters, significant numerical challenges persist. A recent study in the
literature proposed a semi-analytical approximate solution for a special case, assuming
in-extensible cable properties (7). However, for the general elastic sagging cable system
given by the Irvine model (3), the prevailing real-time approach appears to involve the
development of neural network models (6). In this work, we introduce an alternative near-
closed-form solution flow that entails reformulating the sagging cable model through
a change of variables, thereby reducing it to the solution of a single equation in one
variable. We prove that this resulting non-algebraic equation always has a unique solution
for valid geometric and material parameters. The solution can be efficiently obtained in
real-time using the secant method with initial guesses derived based on real analysis. The
implementation of this algorithm addresses the outstanding computational challenges
associated with determining cable tension forces and estimating cable profiles in large
CDPRs and other tether cable systems.

2 Mathematical model

Consider the schematic of a cable in the vertical XZ-plane with O as the origin coinciding
with one end of the suspended cable as shown in Fig. 1. We assume gravity to act
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Fig. 1: Irvine sagging cable model

downwards along 𝑧-direction. We neglect all lateral static forces on the cable. This makes
it a planar approximation model in the vertical plane. The cable is modeled as an elastic
element capable of deforming under tension and sagging under its own weight. Let 𝜇,
𝐴, and 𝐸 be the physical properties associated with the cable, namely, linear density,
cross sectional area, and the Young’s modulus of the cable material, respectively. Let
𝐿 be the unstrained length of the cable and (𝑥, 𝑧) be the end-coordinates of the cable.
Let 𝐹𝑥 and 𝐹𝑧 be the horizontal and vertical components of the tension, respectively.
The kineto-statics equations which relate the end-coordinates, namely, (𝑥, 𝑧) and the
respective tension components (𝐹𝑥 , 𝐹𝑧) according to the Irvine model (3) are:
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A necessary condition of the Irvine model for the cable to be in tension is

𝐹𝑥 > 0. (2)

In particular, Eq. (1) together with the inequality condition in Eq. (2) accounts for the
configurations in the half-plane 𝑥 > 0. Configurations in the half-plane where 𝑥 < 0 can
be safely disregarded as they possess a mirror-symmetric equivalence relation.

Problem statement. Suppose that (𝑥, 𝑧) and 𝐿 are known. For example, (𝑥, 𝑧) can be
measured by an external measurement system such as a camera system and 𝐿 can be
measured via encoder data from cable pulleys or other position sensors. The objective
is to determine the cable tension components (𝐹𝑥 , 𝐹𝑧) quickly and accurately so that
they can be used in real-time to profile the cable. The challenge is that (𝐹𝑥 , 𝐹𝑧) are
computed by solving the non-algebraic system of equations given by Eq. (1). For real-
time computation, this is not straightforward due to the reliance on a good initial guess
for (𝐹𝑥 , 𝐹𝑧) as well as the sensitivity of these forces to minor variations in the geometric
and material parameters involved.

Recent work (1) developed an alternative, but mathematically equivalent cable model
allowing cable sag, derived through a change of variables from (𝐹𝑥 , 𝐹𝑧) to (𝛼, 𝛽) under
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the physically-meaningful assumptions that 𝜇 > 0 and 𝐿 > 0, namely:
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The corresponding cable tension (𝐹𝑥 , 𝐹𝑧) in the vertical plane is then:(
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Equation (3) defines the sagging cable kineto-statics in terms of the new real variables
(𝛼, 𝛽) with a necessary operating condition that 𝛼 > 𝛽, which is equivalent to Eq. (2).
Although Eq. (3) cannot be made algebraic as it contains both algebraic and exponential
forms of 𝛼 and 𝛽, it does define Pfaff manifolds (4). Hence, one still obtains finiteness
properties on the number of real roots for 𝛼, 𝛽 given 𝑥, 𝑧, 𝐿. In particular, we show below
that it admits a unique real root for all valid parameters.

To further simplify Eq. (3), the following linear change of variables is introduced:

1
2
(𝛼 + 𝛽) = 𝜒,

1
2
(𝛼 − 𝛽) = 𝜓. (5)

Hence, (𝛼, 𝛽) can be expressed in terms of the new variables (𝜒, 𝜓) via:

𝛼 = 𝜒 + 𝜓, 𝛽 = 𝜒 − 𝜓. (6)

Moreover, the inequality condition 𝛼 > 𝛽 becomes 𝜓 > 0.
Using the following identities:

sinh [𝜒 + 𝜓] − sinh [𝜒 − 𝜓] = 2 cosh [𝜒] sinh [𝜓] ,
sinh [𝜒 + 𝜓] + sinh [𝜒 − 𝜓] = 2 sinh [𝜒] cosh [𝜓] ,

cosh [𝜒 + 𝜓] − cosh [𝜒 − 𝜓] = 2 sinh [𝜒] sinh [𝜓] ,

Equation (3) can be rewritten as:
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which is a representation of the Irvine cable model in terms of the variables (𝜒, 𝜓).
Using the following identity:

sech2 [𝜒] + tanh2 [𝜒] − 1 = 0,

Eq. (7) uncouples to become:

𝑓 (𝜓) :=
(
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)2
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a vertical hung cable of length 𝐿
2 under its self-weight. More importantly, Eq. (8) is a

univariate non-algebraic equation in 𝜓 that can be solved for 𝜓 > 0 using local methods
and then Eq. (9) yields the corresponding value of 𝜒 from 𝜓. The following analyzes
Eq. (8) to show that 𝑓 (𝜓) = 0 always has a unique solution with 𝜓 > 0 for any given set
of valid parameters.

3 Existence and uniqueness

For 𝑔(𝜓) := sinh[𝜓]
𝜀+𝜓 and ℎ(𝜓) := 1

𝜀 coth[𝜓]+1 , the function 𝑓 (𝜓) in Eq. (8) becomes

𝑓 (𝜓) = 𝑥2
𝑚𝑔(𝜓)2 + 𝑧2

𝑚ℎ(𝜓)2 − 1 = 0, (10)

where the valid parameters correspond with real 𝑥𝑚 > 0, 𝑧𝑚, and 𝜀 > 0. In order to
show that 𝑓 (𝜓) is strictly increasing for 𝜓 > 0, it is sufficient to show that both 𝑔(𝜓)
and ℎ(𝜓) are positive-valued and strictly increasing themselves for 𝜓 > 0.

– 𝑔(𝜓): This function is positive for any 𝜓 > 0 since sinh[𝜓] is positive for 𝜓 > 0.
Furthermore, 𝑔′ (𝜓) = cosh[𝜓]

(𝜀+𝜓)2 (𝜀 + 𝜓 − tanh[𝜓]) is always greater than zero for
𝜓 > 0. Thus, 𝑔(𝜓) is a positive-valued and strictly increasing function for 𝜓 > 0.

– ℎ(𝜓): Since coth[𝜓] > 0 for𝜓 > 0, ℎ(𝜓) is positive-valued. Additionally, the strictly
decreasing nature of coth[𝜓] for 𝜓 > 0 proves that ℎ(𝜓) is strictly increasing over
the same domain.

Since 𝑓 (𝜓) is strictly increasing for 𝜓 > 0 with 𝑓 (0) = −1 and lim𝜓→∞ 𝑓 (𝜓) = ∞, this
shows that 𝑓 (𝜓) = 0 always has a unique root for 𝜓 > 0.

With existence and uniqueness confirmed, the next step is to present a pathway to
compute this root.

4 Initial guess function

In most metallic cable systems, 𝜀 → 0+ is a reasonable approximation in sagging
configurations as 𝐸 is large. This in-extensible cable approximation may be used to
obtain a good initial guess to solve for 𝜓. In the limit of 𝜀 → 0+, 𝑓 (𝜓) = 0 becomes
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Since 𝜓 > 0 and 𝑥 > 0, Eq. (11) is equivalent to
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As expected, sinh [𝜓] /𝜓 is strictly increasing for 𝜓 > 0 and limits to 1+ as 𝜓 → 0+.
Hence, this approximation can only hold true when 𝑥2 + 𝑧2 < 𝐿2 yielding 𝑘 > 1. As
𝑘 →∞, it denotes configurations along the vertical axis, where 𝑥 → 0. It must be noted
that in high tension taut configurations, the variable 𝑘 may marginally drop below 1.
Therefore, we will address both cases: 𝑘 > 1 and 𝑘 ≤ 1 to obtain initial guesses for both
scenarios.
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4.1 𝒌 > 1:

For the case of 𝑘 > 1, we proceed by developing an implicit fixed-point rule based on
Eq. (12), which is equivalent to:

𝜓 = sinh−1 [𝑘 𝜓] . (13)

For deriving an explicit guess function 𝜓0, the fixed-point rule can be used in recursion
with a starting basis function of the form 𝑎(𝑘 − 1)𝑏 for 3 iterations:

𝜓0 = sinh−1 [
𝑘 sinh−1 [

𝑘 sinh−1 [
𝑘 𝑎(𝑘 − 1)𝑏

] ] ]
. (14)

For 𝑎 > 0 and 𝑏 > 0, the starting basis function 𝑎(𝑘 − 1)𝑏 is chosen based on the
observation that in Eq. (13) we have 𝜓 → 0+ when 𝑘 → 1+ and 𝜓 is strictly increasing
with respect to 𝑘 . The parameters (𝑎, 𝑏) can be computed by performing a weighted
numerical optimization to minimize error over 1 < 𝑘 < ∞ in Eq. (13) via:

argmin
𝑎>0,𝑏>0

∫ ∞

𝑘=1

(
𝜓0 − sinh−1 [𝑘 𝜓0]

𝑘

)2

𝑑𝑘

yielding approximately 𝑎 = 2.120 and 𝑏 = 0.413. Figure 2 compares the proposed
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Fig. 2: Comparison of the proposed explicit guess function 𝜓0 against the implicitly
defined value satisfying the in-extensible cable model 𝜓 = sinh−1 [𝑘 𝜓]

explicit function 𝜓0 given by Eq. (14) against 𝜓 defined implicitly by solving Eq. (13)
which shows a good match.

The value 𝜓0 may already be accurate enough for many applications, but to obtain
an even more accurate solution, one can use it as the initial guess for a local root-finding
method. To avoid computing the derivative required for Newton’s method, we use the
secant method instead. This requires a second guess, 𝜓1, which we obtain by solving a
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first order Taylor series approximation of Eq. (12) about 𝜓0:

𝜓1 = 𝜓0

(
1 + 𝑘𝜓0 − sinh [𝜓0]

cosh [𝜓0] 𝜓0 − sinh [𝜓0]

)
. (15)

Although the secant method has a lower convergence rate per iteration than Newton’s
method, its lower cost per iteration makes it the more efficient method.

4.2 0 < 𝒌 ≤ 1:

In the alternative case of 0 < 𝑘 ≤ 1, it happens that 𝜓 → 0+, so 𝜀 dominates 𝜓. By
Eq. (12), 𝑥2 + 𝑧2 ≥ 𝐿2, which means that the cable is in high tension, because even with
zero weight it would be stretched beyond its natural length. For this case, by solving
a second order approximation of 𝑓 (𝜓) given by Eq. (8) about 𝜓 = 0, we obtain the
alternative guess pair 𝜓0 = 0 and 𝜓1 = 𝜀√

𝑥2
𝑚+𝑧2

𝑚

. As before, the guesses, 𝜓0, 𝜓1, are used

to initialize the secant method to solve for 𝜓.

5 Numerical algorithm
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Fig. 3: Histogram of computation time for a random test data set of 10,000 samples

Starting from the initial guesses 𝜓0 and 𝜓1 computed in Sec. 4, the secant method
converges to the unique value of 𝜓 > 0 solving Eq. (8). In our experiments, due to the
accuracy of the initial guesses, the iterations converge to a tolerance of 10−12 within 5
iterations. Once 𝜓 has been obtained, 𝜒 can be determined from Eq. (9). Then, (𝛼, 𝛽)
are computed from (𝜒, 𝜓) using Eq. (6), which in turn yields (𝐹𝑥 , 𝐹𝑧) from Eq. (4). The
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Algorithm 1 Solving for Cable Tension in Irvine Sagging Cable
Initialize system parameters: 𝑥 > 0, 𝑧 ∈ R, 𝐿 > 0, 𝜇 > 0, 𝑔 ← 9.81, 𝐸 > 0, 𝐴 > 0
Set algorithm constants: 𝑎 ← 2.120, 𝑏 ← 0.413, tol← 10−12, 𝑗max ← 25
Calculate normalized parameters: 𝑥𝑚 ← 𝑥

𝐿
, 𝑧𝑚 ← 𝑧

𝐿

Calculate 𝜀 ← 𝜇𝑔𝐿
2𝐸𝐴

, 𝑘 ←
√

1−𝑧2
𝑚

𝑥𝑚

Define the non-algebraic function 𝑓 (𝜓) :=
(
𝑥𝑚 sinh[𝜓]

𝜀+𝜓

)2
+
(

𝑧𝑚
𝜀 coth[𝜓]+1

)2
− 1

if 𝑘 > 1 then
𝜓0 ← sinh−1 [

𝑘 sinh−1 [
𝑘 sinh−1 [

𝑘 𝑎(𝑘 − 1)𝑏
] ] ]

𝜓1 ← 𝜓0
(
1 + 𝑘𝜓0−sinh[𝜓0 ]

cosh[𝜓0 ]𝜓0−sinh[𝜓0 ]

)
else

𝜓0 ← 0
𝜓1 ← 𝜀√

𝑥2
𝑚+𝑧2

𝑚

end if
Compute the function residues 𝐹0 ← 𝑓 (𝜓0) and 𝐹1 ← 𝑓 (𝜓1)
𝑗 ← 0
while 𝑗 < 𝑗max do

Compute the next approximation of 𝜓 using the secant method: 𝜓next ← 𝜓1 − 𝐹1 · 𝜓1−𝜓0
𝐹1−𝐹0

if |𝜓next − 𝜓1 | < tol then
Converged: 𝜓next is the solution for 𝜓
break

end if
𝜓0 ← 𝜓1, 𝐹0 ← 𝐹1
𝜓1 ← 𝜓next, 𝐹1 ← 𝑓 (𝜓next)
𝑗 ← 𝑗 + 1

end while
if 𝑗 = 𝑗max then

Not converged within 𝑗max iterations
return error

end if
𝜒← tanh−1

[
𝑧𝑚

𝜀 coth[𝜓]+1

]
𝛼← 𝜒 + 𝜓, 𝛽← 𝜒 − 𝜓

𝐹𝑥 ← 𝜇𝑔𝐿

sinh[𝛼]−sinh[𝛽 ] , 𝐹𝑧 ←
𝜇𝑔𝐿 sinh[𝛼]

sinh[𝛼]−sinh[𝛽 ]

return 𝐹𝑥 , 𝐹𝑧
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cable profile can be easily determined from parametric closed-form Irvine expressions
available in literature (3) in terms of (𝐹𝑥 , 𝐹𝑧). The entire workflow is presented in
Algorithm 1.

A test data set of 10,000 random samples is generated in the range 𝑥 ∈ [0.01, 10],
𝑧 ∈ [−10,−0.1], and 𝐿 ∈ [0.01, 50] along with 𝑘 > 0.95. The cable properties chosen
are as follows:

𝜇 = 0.079 kg m−1, 𝐴 = 0.1256637062 · 10−4 m2, 𝐸 = 100 GPa,

and acceleration due to gravity 𝑔 = 9.81 m s−2. Using this dataset, we demonstrate
that (𝐹𝑥 , 𝐹𝑧) can be computed in approximately 0.25 milliseconds on average using
Algorithm 1, with computations executed in Wolfram Mathematica (8) on an Intel®
Core™ 2.80 GHz system. Figure 3 presents a histogram of the computation times for
solving each sample in the test dataset. The same algorithm, employing Newton’s method
instead of the secant method, takes about 0.3 milliseconds on average. This justifies the
choice of the secant method in this case, emphasizing the accuracy of the proposed
guess function.

6 Summary

This work introduced a new algorithm for determining tension forces in sagging cables
for any given valid set of geometric and material parameters. We prove that this non-
algebraic system admits a unique solution and show that it can be found in real-time
using the secant method with carefully chosen initial guesses. Notably, this work offers
valuable insights for modeling CDPRs. When developing neural network models for
the kineto-statics of large CDPRs, e.g., (2; 5), it may be sufficient, subject to further
investigation, to develop a kinematic model instead of a kineto-static model because
forces and cable profiles can be back-calculated uniquely in real-time.
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